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It is shown that dipole arrays may be represented as vectors in a many-dimensional vector
space. The classical dipole interaction energy is a quadratic form in the components of the
dipole moments. Its calculation is reduced to the diagonalization of this form. The charac-
teristic vectors are so called basic arrays. An arbitrary array may be decomposed into a linear
combination of basic arrays, the energies are additive and may be obtained from the charac-
teristic values of the quadratic form. The method is demonstrated by the complete solution
of the characteristic value problem of a highly symmetric class of cubic arrays. . The minimum
energy arrays are obtained without and with an external magnetic field for the simple cubic,
body-centered cubic, and face-centered cubic lattices. The results are in good qualitative
agreement with the experiments of de Haas and Kiersma on Cs Ti alum. Some discrepancies
are attributed to quantum effects and to incomplete saturation (entropy $)0). The extension
to these more general cases will be considered in a following paper.

L INTRODUCTION

V ARIOUS problems in the theory of solids
lead to the consideration of interaction

among dipoles. Typical examples are the dielec-
tric and thermal behavior of certain crystals
containing polar molecules and of most of the
substances used in experiments on adiabatic
demagnetization.

The paramagnetic substances which are suit-
able for these experiments contain magnetic
moments whose freedom of orientation is re-
stricted by the weakest possible interaction.
This requirement is satisfied by magnetic ions
containing an odd number of electrons. In fact,
a theorem of Kramers' states that magnetic ions
consisting of an odd number of electrons main-
tain a double degeneracy in any electrostatic
field, and therefore the usually important crys-
talline Stark e8ect is ineffective in this case.
However, Nernst's theorem requires that some
mechanism should exist for removing this de-
generacy and the splitting actually is a result
only of the weaker forces from the direct coupling
between spins. This coupling arises from the
magnetic (dipole) forces, or to some extent from
exchange forces. The dipole coupling is certainly
more important. Moreover, ln contrast to most

types of interaction, it contains no unknown
constants relating to atomic or crystalline struc-
ture. Thus the calculation of the magnetic
interaction energies and of the partition sum is
of added interest.

The present state of the theory of the dipole
interaction is rather unsatisfactory. The simplest
approach is the Lorentz field method whose
shortcomings are well known. ' That the magneti-
zation is not the only factor in determining the
internal field is most clearly visible from the
calculations of Sauer' who computed the energies
of certain intuitively selected dipole arrays and
found that ordered arrays of zero magnetization
may have widely diAerent energies, some of them
lower than that due to the Lorentz field. Sauer's
calculation is valid only for absolute zero and
vanishing external field.

A consistent theory has been developed by
Van Vleck' who expands the partition sum of the
crystal in decreasing powers of the temperature.
This calculation fails at low temperatures where
the interaction becomes really important.

Other attempts have been made to develop a
theory for all values of the field and temperature4
with no satisfactory results. The reason seems to
be that all attempts were based on some kind
of "nearest neighbor" method. However, the

~ This paper is based in part on work done for the 2 Cf. J. H. Van Vleck, J. Chem. Phys. 5, 320 (193'7) and
0%ce of Scientific Research and Development under Ann. N. Y. Acad. Sci. 40, 293 (1940).
contract OEMsr-262 with the Massachusetts Institute of ' J. A. Sauer, Phys. Rev. 5'7, 142 (1940).
Technology. 4 E.g. J.A, Sauer —A. N. V. Temperley, Proc. Roy. Soc.

H. A. Kramers, Proc. Amsterdam Acad. 33, 959 (1930). 176, 203 (1940).
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dipole interaction lends itself particularly badly
to such kind of treatment. In the first place, the
forces are of comparatively long range and even
more important, their peculiar directional de-
pendence makes the averaging over the direc-
tions inadequate.

The main point of the present paper is the use
of a simple and rigorous "normal coordinate"
method rather than the clearly inadequate
"nearest neighbor" treatment of dipole inter-
actions.

It mill be shown in Section II that dipole
arrays can be represented as vectors in a many
dimensional space 6Il. The dipole interaction
energy appears as a quadratic form in the vector
components of the dipole moments.

Thus the whole calculation is reduced to a
characteristic value problem, the solution of
which is greatly facilitated if the symmetry of
the problem allows the application of group
theory. The characteristic vectors will be called
basic arrays (B.A.), their energies are the charac-
teristic values of the quadratic form. The energy
of any arbitrary array can be obtained by means
of decomposition into a linear combination of
basic arrays, as the energies of the arrays are
additive. The arrays of minimum energy may
also be obtained in a systematic manner.

The method is demonstrated by the complete
solution of the problem for a very symmetrical
class of simple cubic (S.C.) arrays (Section II).
The results are extended to the body-centered
(B.C.) and face-centered (F.C.) cubic arrays in
Section IV. The numerical calculations are indi-
cated and their results tabulated in Section I II.

As the class of arrays considered in this paper
is highly ordered, the results can be applied
for real crystals only in case of vanishing entropy.
These conditions are approximately realized for
demagnetization experiments from high initial
fields. Comparison rvith experiment is discussed
in UI. Quantum effects and the extension to more
general arrays wil1 be discussed in a following
paper.

IL VECTOR SPACE REPRESENTATION OF
DIPOLE ARRAYS

Let us first consider S.C. dipole arrays ob-
tained from S,C. lattices by placing a dipole of

definite moment and direction at every lattice
point (I.p.).

Dimensionless quantities will be used through-
out this paper. Dipole moments will be measured
in terms of an arbitrary dipole moment p, length
in terms of the lattice constant c. All magnetic
(or electric) fields will be expressed in units of
p/a~ and energies per unit volume in terms of
N'jLt, ' where N is the number of dipoles per unit
volume. In the S.C. , B.C., and F.C. cases one
has X= 1/a', 2/u', 4/u', respectively.

As indicated in the introduction, only ordered
arrays will be considered in the present paper.
A precise definition of an "ordered array" can be
given by making use of the symmetry of the
array. Let F be the group of cubic translations
lil+lg+Ialr (Ii, Iz, ls are integers, i, j, Ir, are unit
vectors in the x, y, z direction).

The most completely ordered array is in-
variant under the same group, i.e. , all its dipoles
are equal and parallel. This array is of importance
in building up others and will be called an S
array. The dipole interaction energy of an S
array is ——',(4z/3 —l) where I is the demag-
netization coe%cient. For a spherical sample
/=4m/3 and the energy vanishes.

A more general class of ordered arrays is
obtained if invariance is required only under
the subgroup F' of 1 consisting of the trans-
lations of the form Ii(2i)+lg(2j)+la(2k). Such
arrays are said to be of the class I' and will be
the only ones considered in this paper. '

To generate such arrays we have to specify 8
dipoles p" (i = 1, 2, 8), where v is associated in
some definite manner with corners of the unit
cube having the coordinates li, l2, l3 ——0, 1. The
whole array is constructed by the translations
p2

The resulting array may be considered as a
superposition of eight arrays each of which con-
sists of parallel dipoles. These arrays are geo-
metrically similar to the 5 arrays previously
introduced, but have a lattice constant two (in
units of a). These shall also be called 5 arrays;

' There are very good reasons to believe that the
configurations of lowest {and highest) energy are of the
class F'. All arrays calculated previously' are of this class.
No rigorous proof of this statement seems to be possible,
however, before the investigation of the more general
arrays has been carried out. We hope to come back to
this question in a sequel to this paper.
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in case of ambiguity the lattice constant will be
specified. This point of view will be useful for
the numerical calculations of Section III.

It is seen that every array of class I' can be
specified by a set of 24 numbers, e.g. , the three
rectangular components of the 8 dipole moments
p, ", p„", p,"=1, 2 8. Also, in a more concise
notat1on pq, 1= 1, 2, ' ' ' 24.

In the cases of practical interest the dipoles
placed at the 8 cube corners will have moments
of the same absolute value which will be denoted
by p. For such an array the 24 numbers satisfy
the 8 conditions:

(b)

(c)

P+Q = IY+q" I,

cP= {cp"t,
8

P Q=Zp" q".

The square of the norm of an array P is defined as

P P=Z (p")'. (3)

If the array P is of constant strength p, its norm
is 8&p.

In order to compute the energy of an array P
it is necessary to know the field generated by P

8 The dipole strength of our array should be distin-
guished from its resultant dipole moment. The latter is
proportional to the vector sum of the moments of the 8
cube corners.

7 Boldfaced small letters will denote ordinary 3-dimen-
sional vectors and boldfaced capital letters vectors in the
24-dimensional vector space.

(p*")'+(p~")'+(p ") =p' v=1 2 ' ' '8 (1)

It will, however, prove advantageous to tem-
porarily disregard these conditions and admit
arrays of unequal dipole moments into the class
1'. In this case every set of 24 real numbers
defines a I' array and there is a one to one cor-
respondence between these arrays and the points
of a 24-dimensional vector space (R. The arrays
satisfying the conditions (1) will be called arrays
of constant (dipole) strength p. ' The correspond-
ing points form a 16-dimensional hypersurface in
(R. This will be frequently used in what follows
and will be briefly called the "constant dipole
surface. "

The operations of addition, multiplication with
a scalar and taking the scalar product are defined
in the usual manner. '

where 5 is the "field operator. " It is linear, as
follows at once from the well-known expression
f'or the field f of a dipole p at a point r:

f = (3r(p r) pr-")/r'. —

The dipole interaction energy per unit volume is'

U= —(1/16)P F= —(1/16)P sP. (6)

Equation (6) is an invariant relation independent
of the choice of coordinate system. If, as above,
we choose a coordinate system in which the array
is represented by the rectangular components of
the 8 dipole moments then one may rewrite Eq.
(6) in matrix form:

U= —(1/16) P P S„.*~p.p„.
k4 &=~ &r Q

The matrix F„," satisfies the symmetry rela-
tion

cp zy p yz
JlV l Jl

This is a direct consequence of the existence of
a potential energy for two dipoles; the energy
can be considered as scalar product of the first
dipole moment with the field due to the second,
or vice versa.

It is sometimes convenient to write (7) and (8)
in a more concise form by replacing the index
couple p, , x by a single index i running from 1 to
24.

One has'

(7a)

' The numerical factor in this expression is explained as
follows: the energy per unit volume is in our units the
energy of one dipole, while (6) involves 8 dipoles. The
additional factor $ corrects in the usual manner the fact
that the interaction of every pair of dipoles is counted
twice.

~ In case of vectors in the space (R superscripts describe
components and subscripts distinguish between diferent
vectors.

at all the lattice points. Obviously, the field will
have the same symmetry (F') as the array.
Hence the set of vectors representing the field
at the lattice points will again correspond to a
vector in the space (R, and will be denoted by F.

The operation leading from any array P to its
field F can be regarded as a mapping of the space
R on itself. One may write symbolically

F=sP
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il II

Z4

Fro. i. The eight basic arrays. Interchange the
labels Z3 and Z4.

The quadratic form (I) can be transformed
into a sum of squares by means of an orthogonal
transformation of the coordinate system in (R

which leaves (3) invariant (rotation). The new
coordinate system will be given by an orthogonal
set of vectors A;, i= 1, 2, 24, which will be called
basic arrays (B.A.). These are closely analogous
to the normal coordinates introduced for the
description of vibrating systems. The calculation
of the energy of an arbitrary array can then be
reduced to finding the characteristic values of
the operator F. This problem is greatly facilitated
by group theoretical methods, based on the
remark that the operator F is invariant under
the group F.'0

(9)

This relation is intuitively evident, as it is
immaterial whether a translation F is carried
out on a field F, or on a corresponding array P
and the mapping leading to the field is carried
out afterwards.

It follows from (9) by standard methods used
in case of other hnear operators (Schroedinger
operator, vibrating systems) that the eigen-
vectors can be so chosen as to transform accord-
ing to irreducible representations of the group F."

It may be remarked that so far no essential use
has been made of the fact that the arrays P are
of the class F', If instead of F' another sub-group

"In fact, it is invariant also under the group including
the cubic rotations. However, this wi11 be of no importance
in the special case considered in the present paper."Cf. for instance B. L. van der %'aerden, Die Gruppee-
theoretische Method@ ~n Ar Quaeten Mechee~k (Edwards
Brothers, New York, 1944). E. %'inner, Goettinger Nach-
richten, p. 133 (1930}.

This is caused by the fact that a F2 array is
invariant under a mirroring y—+—y, while the
expression of the y component of the field con-
sists of terms proportional to xy and thus changes
sign.

In addition, because of the cubic rotational
symmetry

Thus the 24-dimensional matrix is reduced to
three identical 8)&8 matrices.

It is well known that the representations of
the group F are the roots of unity. In the case
of F~ arrays the relevant roots are the square
roots +1 and —j.. One is thus led uniquely to a
definition of the B.A. which will be given now.
The fact that they are B.A. , i.e., characteristic
vectors of the operator 5 can be easily verified
without any reference to group theory.

Corresponding to the reduction of the matrix
F into 3 identical 8 row matrices, the 24, B.A.
fall into 3 groups, X;, 7;, Z;, i=i, 2, ~ 8 con-
sisting of dipoles pointing in the x, y, 2' directions,
respectively.

The 8 non-vanishing components of the Z;
arrays are given by

where u;, P, , y;=0, 1. It may be recalled that the
superscripts are associated with the 8 cube
corners l~, l2, 13=0, j.. One has the following 8
possibilities:

Zl
Z'Q

ZI
Z0

n P
0 0 0
0 0 1
1 0 0
0 1 0

Z6

Z0
Zv

Z$

u P
1 0

0 1 1
1 0 1
1 1

of F had been chosen, the only difkrence in the
above considerations would be that the number
of dimensions of the space (R would be larger
than 24. The formulae (1)—(9) will form the
basis for a second paper, in which more general
arrays will be discussed.

The actual solution of the eigenvalue problem
is considerably simpler, however, for the class F'
than for the general classes.

A F' array consisting of dipoles all pointing
in, say, the x direction gives rise to fields at the
l.p. pointing in the same direction, i.e.,

5„„&=0unless x=y.
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8
~= —

2 Z (a,'+b,'+c )f,

8

=P (aP+b 2+c i) U;,
(13)Z,"Z;=85;;,

These arrays are explicitly given in Fig. 1. and the ene.-gy per unit volume
X; and Y; are obtained from Z; through cubic
rotations, so that identical subscripts refer to
identical geometric arrangements. Being basic
arrays the Z& Zs are orthogonal. They obey
the relations:

(18)

and similarly the X; and Y;.
Equation (13) can be verified either by means

of Fig. 1 or algebraically as follows:

8

Z; Z;=PZ;"Z)"
v=1

Q(), ), ), 0 i)( ){u,+u, )l~+(p, +e;)l~+(yi+y;))~

If i/ j, then at least one of the inequalities
holds: n;~n;, P, ~P;, y;~y, . Say a;~a;, then
a;+a, = 1 and Z; Z; =0, because of the sum-

mation over l~.

X,, Y;, Z; form a complete set of 24 orthogonal
vectors and are the only ones which have the
correct transformation properties. Hence they
solve the eigenvalue problem:"

&X,=fg;, FY,=f~Y,, FZ;=f,Z; (14.)

where U;= f;/—2
It is seen that the computation of the energy

of any F' array is reduced to the knowledge of
the characteristic values f; The.se ha.ve been
computed by a method outlined in the next
section and the values are to be found in Table I I.

From the point of view of practical application
there is also a somewhat different problem to be
considered: given a S.C. crystal with dipoles of
constant moment (taken as unity), but undeter-
mined orientation, what is the F' array of
lowest energy& Or, in the terminology introduced
above: find the minimum value of the energy
(18) for arrays lying on a given constant dipole
surface. These arrays satisfy the 8 auxiliary con-
ditions (1) which can be rewritten in terms of
B.A. as follows:

Because of the completeness, every I' a~ray ( 8 ) ' ( s

P can be represented as I
Za'X'" I+I Zb'Y'" I+I Ec'Z'" I

=1 (19)(=i ) ~'=) ) E i )

P=P (ag;+b,Y;+c;Z,) (15) v=1, 2, 8.

with a, =gP X;, b, =-',P Y,, c,=,—,'P Z;. The
square of the norm of P is obtained in terms of
the new coordinates from (3), (15) and the
orthogonality relations:

P P=SQ(a2+b2+cm). (16)

The factor 8 arises because the B.A. are nor-

malized to have the dipole strength unity, and
hence have the norm 8&. The field corresponding
to P ls g (a,'+b,'+c 2) =1.

i=1
(20)

The standard procedure accounting for the
auxiliary conditions by the method of Lagrange
multipliers proves to be very cumbersome. The
following artifice yields the desired result without

any further calculation, not only in the simple

case considered here, but also in some of the
more complicated cases discussed in Sections IV
and V: The condition of constant dipole strength
unity implies that the norm of the array is
8&, or, using (16),

F= Q (a;f;X;+b,f,Y;+c;f;Z;), (17)
i 1 The conditions (19) imply (20), but not vice

versa. Therefore they will be called brieRy the~ Equation {14)could be easily verified directly using
the explicit expressions of Section III. strong and the weak conditions, respectively.
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The procedure consists in minimizing the
energy (18) under the weak condition alone.
This can be done at once by means of the well-

known extremum property of the characteristic
values. i3

The lowest value of the energy is f—/2 where

f„ is the greatest characteristic value of the
operator F. The array is a linear combination of
the B.A. corresponding to f„If s.ome of these
linear combinations satisfy the strong condi-
tions, then the original problem is solved.

It is seen from Table II that the lowest energy
for the S.C. lattice is f5/—2 = —2.676. The cor-
responding array is a5X5+b5Y5+c5Z5 with
a52+b52+c52 = 1. It is easily seen that this array
satisfies the strong condition and represents
the correct solution of the problem.

III. CALCULATION OF THE FIELDS

The object of this section is the computation
of the characteristic values f; defined in the
preceding section. According to its definition f
is the value of the field of the ith B.A. say Z; at
a lattice point. It was pointed out at the be-
ginning of Section II that any F2 array (and
thus in particular Z,) can be considered as a
superposition of eight S arrays of lattice con-
stant two. Hence, the field at any point of a
B.A. will be known as soon as the field of an 8
array is known at every point. Ke shall denote
the field of a s directed S array as" S(r), r being
the location of the point in question.

Using the expression (5) for the field of a
dipole we arrive at the following equations for
the x, y, and s components

00 3(lg —x) (l2 —s)
S (r) = Q (/i, la, /r}

[(ll x) 2+ (l2 y)2+ (I 2) 2]5/2

QO 3(l2 —y) (I2 —s)
S„(r)= +pi, /a, /. )

[(Il x)2+ (I2 y)2+ (I5—z)2]5/2
(21)

00 2 (I2 —s) ' —(I~
—x) ' —(I2 —y) '

S (r) = Q(l4 his),
[(Ig

—x) '+ (l2 —y) '+ (l2 —z) '$"'

Using the function S(r) (which we shall call
the "characteristic function"), we may write the
field H; at any point r of Z; explicitly as

H;(r) =S g{/i, /~, /5, =0, i/( —)~"~+/2'~+&"~

(I,—x l2 —y I2 —s)
xs(

2 2 2 )

where n;, P;, y, correspond to the B.A. Z;. The
-', in the argument of the characteristic function
and the 8 multiplying the entire expression arise
from the fact that the characteristic function is
defined for an S array with lattice constant
unity, while the component 5 arrays of a B.A.
have lattice constant equal to two. Thus the
question of finding the characteristic values is
reduced to the knowledge of the values of the

"C.f. for example, Courant-Hilbert. , Methoden d. Math-
ematischen I'hysik (Verlagsbuchhandlung Julius Springer,
Berlin, 193j,), Vol. I, p. 26.

function S at the points with coordinates having
half integral values.

It will be seen in the next section that the
solution of the characteristic value problem for
the B.C. and F.C. lattices necessitates the
knowledge of the field in the body centers and
face centers. These may also be obtained pro-
vided a few more values of the function S(r) are
computed.

In the actual computation of the fields full
use is made of symmetry considerations, which
show that at. many points the field is zero, or is
simply related to the field at other points. As a
typical example, we shall show that the field of Ze
at a lattice point is minus one-half the field of Zq
at a lattice point. From the expression for the
dipole interaction (5) and the definition of the

i4 S(r) is a spatial vector point function of the points r
within the unit cell, and should not be confused with the
24 dimensional vectors representing the field at the lettice
Points.
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Array
Field at

l.p.
Field at

B.C.
Fields at F.C.

XF Face FZ Face ZX Face

Zl
Z2
Z3
Z4
Zf
Z$
Zf
Zs

0
f?Sa
f3Za
f4Z4
f3Zs
feZ6
fvZv
0

0
0
0
0
0
gY7
gX6
0

—2hiZi—2h2Zs
0
0
0
0
0
0

hiZ1
0
hgZ3
0
0
h3Yg
0
h4Ys

hiZi
0
0
h2Z4
0
0
h3X6
h4Xs

basic arrays one easily finds

2)2 )2 )2
H6 (0 0 0) = P (—) "+",

(I 2+/ 2+[ 2)6/2

2~3' —~i' —~2'
H (0 0 0) =P ( )/~+/~

(I 2+I 2+) 2)6/2

(23)

(24)

TABLE I. Values of the fields. The values given for Zi
are valid for spherical samples. Otherwise ((4m/3} —l)Zi
should be added to every term in the first line. l is the
demagnetization coefficient. The numerical values of f;, g,
h are to be found in Table II.

TABLE II. Characteristic values f, g, and h.

f2=f':
f4=
f5
fe
fv=
g=

hi ——

h2 ——

hg ——

h4 ——

$ S(0—;S.(0,—~4 S.(o,—4 S.(0
~4 S,(0,
i4 S,{0,

Su(4,
S,(0,
S,(0,

~t S„(0,
kl:S.(0,

$, $)—S,(g, 0, 0))=
4, 4) —S*(4,0, 0).I=
$, $)—Ss($, 0, 0}
k, k)+S.(k, 0, 0)
y, g)+s, (i, o, o)J=
4 k)+S.(k, o, 0)3=

k, k)„,) —S,(0, „,) =

—9.687
4.844
4.844
5.351—2.676—2.676

10.620
4.334
7.992

17.065
14.461

could have been chosen, but these turn out to be
convenient. Table I gives all the fields expressed
in terms of these fields. The numerical values of
the first three have been taken from a paper of
McKeehan, " while the others have been cal-
culated using the Ewald" method. A check on
our values may be obtained from McKeehan
since it is possible to evaluate S„(0, 26, 26)

—S„(2, —'„—,') from his tables. The agreement is
excellent. The values of these fields are:

noticing that l~ and l2 enter into (23) in the
same manner, we get

$2 j'2

S,(-'„0, 0) = 15.040,
S.(0, —,', 1) = 4.334,
S„(-,', —,', —,') = 10.620,

S,(0, —,', —,') =31.521,

H6, ——2 g' (—) '~+'~.

() 2+I 2+( 2)6/2

Interchanging'6 I2 and l6 in (24) we get

2) 2 )2 l2~

&6.=2' (—) "+'*
(I 2+/ 2+) 2)6/2

( —) '"'*=—-'If6
)~2+)22+$62

which is the required result.
Many other relationships exist, connecting the

diferent Fields at the body centers with each
other, connecting diR'erent lattice point Fields,

different face-center fields, etc. By means of
these relationships it is possible to calculate the
fields at the lattice points, body centers, and face
centers of a B.A. by computing only six diferent
values of the characteristic function S(r). These
are S.(-', , 0, 0), Sg(0, -'„-',), S„(-'„-,', 6), S.(0, -'„-',),
S„(0, 26, 62), S„(22, 62, -', ). It is clear that others

'~Such procedures may be justified by transforming
these series to absolutely convergent ones by means of the
Ewald method. For details see J. Bouman, Archives
Neerlandaises L3Aj, 13, 1-28 (1931}.

Tables I and II give the resulting values of all
the fields.

IV. BODY-CENTERED AND FACE-CENTERED
ARRAYS

It is convenient to consider the B.C. and F.C.
arrays as consisting of two and four S.C. arrays,
respectively, which can be resolved into B.A.
In this representation the field matrix contains
diagonal elements corresponding to the energies
of the constituent S.C. arrays and off-diagonal
elements giving the interaction of B.A. at dif-
ferent points. The interaction terms are listed
in Tables I and II. It is apparent that most of
the off-diagonal terms vanish and the energy of
any B.C. or F.C. array can be readily computed.
As an example, we have considered a set of

's L. W. McKeehan, Phys. Rev. 43, 913 (1933}.Mc-
Keehan gives values to five decimal places. However, by
means of our symmetry relations we can check some of
his values. %'hile the agreement is generally very good,
sometimes it does not extend beyond the third decimal
place. The uncertain digits have been omitted.

'7 P. P. Ewald, Ann. d. Physik 64, 253 (1921).See also
H. Mueller, Phys. Rev. 50, 547 (1936); M. Born and H.
Kornfeld, Physik. Zeits. 24, 121 (1923); and H. Kornfeld,
Zeits. f. Physik 22, 27 (1924).



DIPOLE INTERACTION IN CRYSTALS 961

arrays previously computed by Sauer. s Table II I
compares the energies resulting from the decom-
position into B.A. with the values obtained by
Sauer through direct summation.

This representation does not lead in any
systematic way to the minimum energy con-
figuration of an array of given dipole strength.
The latter problem can be solved by completing
the diagonalization of the field matrix and
introducing B.A. in the 48- and 96-dimensional
vector spaces corresponding to B.C. and F.C.
arrays, respectively. Since most of the off-

diagonal terms vanished in the above repre-
sentation, this can be easily carried out. The
procedure will be explained in detail for the B.C.
case.

It is seen from Table II that if one of the B.A.
X;, Y;, Z; (i/6, 7) is placed at the lattice points
it gives rise to no field at the body center.
Similarly, one of these arrays placed at the body
centers will give rise to no field at the lattice
points, as the lattice points and body centers
are inter-changeable. Thus by placing X; at the
lattice points and nothing at the body centers,
we obtain a B.A. and similarly placing X; at the
body centers and nothing at the lattice points
mill also give B.A. We now introduce the notation
[P, Q] to denote a B.C. array with P at the
lattice points and Q at the body centers. The
above B.A. will then be written as [X;, 0] and
[0, X~], respectively. Using the same process on
Y;, Z;, we obtain four more B.A. [Y;, 0],
[0, Y;], [Z;, 0], [0, Z~]. These six B.A. all cor-
respond to the same characteristic value f; of
the field operators F, therefore any set of six
orthogonal linear combinations of these B.A.
will also be B.A. In iew of the considerations
at the end of II, it is convenient to choose B.A.
having constant dipole. strength. Such a choice
would be [Z;, Z~] and [Z;, —Z~] and similarly
for X;, Y;.

The number 6 and 7 arrays require special
consideration as they give rise to ofF-diagonal
terms in the field matrix. In other words, there
is an interaction between, for example, a Z6
array at the lattice points and a Y7 array at the
body centers. The diagonalization is easily com-
pleted by choosing [Zt, Yt] and [Zt, —Yt] as
B.A. The corresponding characteristic values are

TABLE III; Arrays calculated by Sauer. (Sauer's symbols
are in the first column. )

Type Resolution into basic arrays

Energy constants
Present

Sauer paper

the 'tt

b
C

d

t$gtt

a
b
C

d

Z5
Zi at l.p. , —Zi at b.c.
z5+xy+ Ys at l.p. and b.c.
Z» at l.p. and XY f.c.—Zi at YZ and ZX f.c.
Zi+ Yi at l.p. and YZ f.c.—Zi —Yi at XY and XZ f.c.

Z5
Z5 at l.p. , —Z5 at b.c.
z5+xy+ Ys at l.p. and b.c.
Zi at l.p. and YZ f.c.—Zi at XY and XZ f.c.
Zs+ Ysat l.p. , XYand YZ f.c.—Zs —Ys at ZX f.c.

2.7
0—1.75

2.2

—2.7—1.35—1.75

—1.1

—1.8

—2.676
0—1.770

2.167

—1.084

—2.676—1.338—1.770

—1.084

—1.808

8
b
C

d
e

4tgtt

is S.C., dipole direction 001
is B.C., dipole direction 001
is B.C., dipole direction 111
is F.C., dipole direction 001
is F.C., dipole direction 011
is an array which has nearest neighbor

antiparallel dipoles
is an array which has nearest neighbor

antiparallel dipoles if the dipoles are
in a plane perpendicular to the dipole
and passing through the dipole.

strings of

strings of
contained
direction,

ft+g and ft g—S. imilar B.A. are constructed
from the other 6 and 7 arrays.

These results are summed up in Table IU.
The F.C. case can be discussed in exactly the

same manner. The treatment is somewhat more
complicated because of the presence of many
more interaction terms. Only the results are
given (Table V). In order to obtain the energy
values in units of ¹y'one has to multiply the
characteristic values of 8 by (—-', ) in the B.C. case
and ( —ttt) in the F.C. case.

Since all the B.A. are defined so as to have a
constant dipole strength, the minimum energy
configurations are simply obtained by choosing
the highest characteristic values from Tables IV
and V. Hence, the minimum energy for the B.C.
case is ~(g+f—t)Ntttt=1. 986Nttt' and for the
I'.C. case —(h4 j8)N'yP = —1.808N'ttt.

It may be noted that Sauer correctly guessed
one of the minimum energy arrays in the S.C.
and F.C. case, but not in the B.C. case.

Finally, the possibility of "ferromagnetism"
for these arrays should be discussed. Summing
up our results, we notice that in all cases the
minimum energy configuration has been non-
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polarized. This result, however, is true only for
spherical samples. Otherwise one has to add a
term —~~(4ir/3 —l)¹y' to the energy of the
polarized number 1 arrays, for all three cubic
types. In the extreme case of a very long thin
needle t'=0, and the energy constant becomes
—2ir/3= —2.094, while the energy constants of
the lowest non-polarized arrays are for S.C.
—2.675, for B.C. —1.986, and for F.C. —1.808.
Thus the S.C. array is always non-ferromag-
netic, while the other cases should exhibit ferro-
magnetism for long thin needles. In the case of
a F.C. lattice cut in the firm of a prolate
spheroid the ferromagnetic state is favored above
an axis ratio of 6:1.This result has been found
before by Sauer. ' Khether this ferromagnetic
state has a physical reality is, however, subject
to some doubt. This question is taken up once
xnore in VI.

V. DIPOLE ARRAYS IN A MAGNETIC FIELD

The energy of a given j. 2 array in a magnetic
field is easily calculated. Considering first the S.C.
case, one has:

This expression should be minimized under the
strong condition (19), which we again replace
temporarily by the weak condition (20). In our
present notation (20) takes the form:

2 (a"+b,'+c,')+q'=1
4=2

(27)

fi (4ir/3——l)

We now minimize the energy at fixed q. From
(26) we see that cos 8= 1, i.e., the magnetization
is para11el to the magnetic field. The minimiza-
tion of the first term is exactly the problem
solved at the end of II since fi ——0. The solution is

I =aiXi+biYi+ciZ, +aQi+b~Y~+ciZq, (28)

with. a '+bq2+c ' = 1 —g2

The energy becomes

U= —-', (1 q') fi, —qH (4—ir/3 ——l)q'/2. (29)

Equation (29) may now be minimized with
respect to q: 8 U/Bq= 0 leads to

8

U= —y Q f (a'+b'+c') —(aiH. +biH„+ CiH. )

(4ir/3 I) (a12+b12+c12)/2 (2$)

Defining a critical field II, as

H. =fi (4mr/3 —l)—
and remembering that g~ 1, we have

(30)

since only the number 1 arrays have a resultant
magnetic moment. Let us introduce the notation
a~'+b~2+c~2=g', q being the magnetization of
the array in units of Xp. Denoting the angle
between magnetization and external field by 0
(25) becomes

TABLE IV. Characteristic values and typical basic arrays
in the B.C. case. Valid for spherical sample, otherwise,
cf. Table I.

Characteristic value
of P

Typical B.A.
Degree of At lattice At body

degeneracy points centers

f1=f8=

f2 = —9.687
f3=f4 = 4.844

f6 = 5.351
fe+g = 7.944
fe —g = —13.296

6
6
6

12
6
6
6

Z1
Zs
Z2
Z3
Z6
Z6
Zs

Zl
Zs
Z2
Z3
Z6
Yg—Y7

U= —
2 2' f'(a"+b"+c")

—qH cos 0—(4ir/3 —l)q'/2. (26)

t H/H, for H(H,
L1 for H)H, . (31)

In other words there exists a magnetic field II,
above which the magnetization is constant
(saturation) and below which it drops to zero
linearly with the field. It is recalled that the
magnetization is given in units of Np, .

Whether or not (28) is the correct solution is
still dependent on whether it satisfies the strong
conditions. This is generally not the case for an
arbitrary direction of the magnetic field (ai/0,
biNO, ci/0). If, however, the magnetic field is
along one of the cubic axis or in one of cubic
planes, then the resulting array can be chosen to
have constant dipole strength. For example, if
the field is along the cubic axis, say in the Z
direction, then the array

P =aug+ bgYg+c)Zg

satisfies all the requirements.
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Tsar.E V. Characteristic values and typical basic arrays in the F.C. caw.
Valid for spherical samples, otherwise, cf. Table I.

Characteristic
value of 5 Degree of

degeneracy At l.p.
Typical B.A. with this characteristic value

At XY face At YZ face At ZX face

0—4h1 = —17.336
2k1 = 8.668

f2—2h2 ———25.671
f2+2h2 —— 6.297
f3+k2 = 12.836
fs —k2 = —3.148

f6 = 5.351
f8+hs = 14.389
fs —hs = —19.741

k4 = 14.461
h4 = 14.461—2k4 = —28.922

3
3
6
6
6

12
12
12
12
12
4
4

Zl
Z1
Z1
Z2
Z2
Z3
Zs
Z6
Z6
Zs
Zs

2X8+Ys—Zs
Xs-Ys—Zs

Zl
Zl
Z1
Z2—Z2
Zs
Zs
Z6
Zs
Zs
Z8

2Xs+Ys—Zs
Xs—Ys+Zs

Zl
Zl
Z1
Z2
Z2
Zs
Zs
Z6
Y7—Yy
Ys

2Xs+Ys —Zs
Xs+Ys+Zs

Zl—Z1—Zl
Z2
Z2
Zs—Z3
Z6—Yy
Yg—Ys

2Xs—Ys+Zs
Xs+Ys—Zs

Since in the general case the simple artifice of
first ignoring the strong conditions does not
work, one has to introduce (19) at the outset.
This can be done by the method of Lagrange
multipliers, but the resulting equations are very
complicated and have not been solved. The
case of physical interest is the F.C. array (para-
magnetic alums), and here the simple method
works once more.

The above considerations may be repeated for
the F.C. case. Equations (25) through (31) are
maintained provided the characteristic values
and B.A. defined for the S.C. case for the space
(R are replaced by the corresponding quantities
in the 96-dimensional space. In particular the
energy constant fq/2 shou—ld be replaced by
—h4/8. The minimum energy array under the
weak condition is a superposition of the polarized
B.A. and those belonging to the characteristic
value h4. Here, however, the formal identity ceases.
Actually, the situation is more favorable than in

the S.C. case as the strong conditions may now
be satisfied for an arbitrary magnetic field. The
array which satisfies the strong conditions is a
superposition of the polarized arrays and those
arrays belonging to the second class of k4 arrays
given in Table V. In the case H, &0 ferromag-
netism will exist. Cf. IV.

VI. DISCUSSION

The main purpose of the present paper is to
demonstrate the application of the proposed
method and to lay the groundwork for generaliza-
tions. These would include, first of all, a treat-
ment of the statistical mechanics of dipole

arrays which requires the discussion of more
general arrays than those of the class j.', and a
method of evaluating the partition sum in terms
of them. The statistical problem must be solved
before the theory may be applied to cases
in which the entropy is finite (not equal to zero)
such as is found for the hydrogen halide
crystals in the neighborhood of their phase
transition.

The ordered arrays of class j. ' should, however,
be expected to give an adequate description of
paramagnetic crystals containing ions with one
valence electron (Ti, for example) in a state of
zero entropy. Such a state is realized to a high
degree of approximation for the entire process of
adiabatic demagnetization with high initial
helds. Although in reality the spin system should
be treated quantum mechanically, it may be ex-
pected that the present classical method will give
the essential features. A rigorous quantum treat-
ment in which the Hamiltonian is set up in terms
of the Pauli spin matrices is being planned for a
sequel to this paper.

The computation of the magnetization curve
in V will now be compared with the measure-
ments of de Haas and Wiersma'8 on Cs —Ti
alum. The salient feature of these experiments is
that the magnetization stayed constant from
H = 24,000 gauss (approximately 90 percent
saturation) to a field of about 100 gauss, and
then dropped to zero almost linearly with the

"W. J. de Haas and E. C. Wiersma, Physica 3, 491
(1936); cf. also H. B. O. Casimir, Magnetism and Very
I.ohio Temperatures (Cambridge University Press, England,
1940), p. 74.



fieM. This behavior is in excellent agreement
with the results of Section V. The calcu1ation
leads to a critical field of H. = 65 gauss which is
the correct order of magnitude. The theory of
this experiment has been worked out by Van
Vleck'9 as an application of his general method. '
The resulting magnetization curve is much too
smooth. In fact, it is well known that no discon-
tinuity of any kind can be expected on the basis
of a "virial coeScients" method.

The magnetization could also be obtained on
the basis of a theory of Sauer and Temperley. 4

This leads to a critical field below which the
magnetization drops at once to zero. Such a
result is an immediate consequence of their
assumption that the spins are always parallel or
antiparallel to the field. Hence, in this model
there is no possibility of a state with vanishing
entropy and having a magnetization inter-
mediate between zero and the saturation value.
This coupling scheme corresponds to that used
in the case of the Paschen-Back effect. Actually
for H&II, one is in the region of anomalous
Zeeman eRect. The sharpness of the transition
arises from the fact that one is dealing with a
crystal rather than an atom.

In the case of alums containing magnetic ions
with more than one electron the magnetization
curve is very much inHuenced by the crystalline
field and the present theory may not be used
alone. The dipole interaction, however, should
be the decisive factor for the state of the system
at absolute zero if the number of electrons in the
magnetic ions is odd. The question of main in-

terest is whether or not the state will be polarized
(ferromagnetism or anti-ferromagnetism). In IU
it was shown that for spherical samples the
lowest state was always non-polarized, but that
in the important F.C. case (to which the para-
magnetic alums belong) a prolate spheroidal
sample of axis ratio larger than 5, the polarized
state will have the lower energy. This is of

"J.H. Van Vfeck, J. Chem. Phys. 6, 81 (1938).

interest in connection the "ferromagnetism"
observed by Kurti, Lain', and Simon" for iron
ammonium alum at low temperatures. That a
stable ferromagnetic state really exists is still
open to some question. In the first place, the
numerical values of the energy constants might
be changed by the above mentioned quantum
mechanical treatment. In addition, it should be
emphasized that pure energy considerations
cannot completely decide questions of stability.
The forces tending to polarize the crystal
originate in distant parts of the sample, while the
depolarization forces are due to relatively near
neighbors. If the sample is cooled to a tempera-
ture below the Curie point by contact with a
heat bath, rather than by adiabatic demag-
netization, a ferromagnetic state would certainly
not be established. This is not to be confused
with the situation in true ferromagnetics, where
the saturation moment is masked only by the
domain structure. The question needs further
study, both from the theoretical and the experi-
mental point of view. It may certainly be said,
however, that dipole ferromagnetism —if it
exists—has a character essentially different from
exchange ferromagnetism.

Finally, it may be noted that the more general
developments of II are by no means restricted
to cubic crystals. The difference in a non-cubic
crystal would be in the characteric function S(r)
defined in III, and in the detailed structure of
the B.A. The calculations are much more difficult
for the non-cubic case, however.

The method is not even restricted to dipole
forces, but could be extended to Coulomb,
quadrupole or exchange interactions. In fact, the
method is applicable to any interaction which
is quadratic in a property of the source.

In conclusion, the authors wish to thank
Professor John C. Slater for having read and
criticized the manuscript.

"N. Kurti, P. Lain', and F. Simon, Comptes rendus
204, 675 {1937).


