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magnetization, and, therefore, in resistivity, it
was necessary to separate this effect from the
change in restivity due to domain orientation.
The separation was made by the method used
by Englert,!® by extrapolating the p vs. H curve,
as illustrated in Fig. 12 for 83 percent nickel. The
points for transverse magnetization lie on a
straight line permitting easy extrapolation to
the demagnetizing field corresponding to satura-
tion; for the specimen of tape used this was
small, (V/47)B,=0.047X9800=450. The same
slope of p vs. H curve was used to extrapolate the
longitudinal measurements to H=0.

The slope of the p vs. H line for nickel was
nearly the same as that reported by Englert.
The slopes for the other specimens are recorded
in Fig. 13, as percent change in p for H=20,000

1 E, Englert, Ann. d. Physik 14, 589-612 (1932).
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oersteds. The results are probably not accurate
to less than 0.1 percent, but appear to lie on a
smooth curve. The explanation of the shape of
the curve is not apparent. On the one hand one
might expect the effect to be large when the
curie point is low, as it is at each end of the range
of alloys studied, because there the change in
spontaneous magnetization with field is rela-
tively large. On the other hand, near 70 to 75
percent nickel the crystal anisotropy is zero, and
order-disorder phenomena are observed, and
there may be some connection, not now estab-
lished, between these and the effect of spon-
taneous magnetization on resistivity.

I am indebted to Dr. C. L. Dolph and Miss
C. L. Froelich for assistance with the mathe-
matics and computations involved in the solution
of the energy equation.
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The Velocity of Sound in Hydrogen when Rotational Degrees of
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The velocity of sound in parahydrogen, normal hy-
drogen, and 50 percent para-50 percent orthohydrogen
mixtures has been observed at several temperatures, and
over a range of frequency to pressure ratio from one to 60
megacycles per atmosphere. Dispersion attributed to
failure of the rotational degrees of freedom to follow the
temperature associated with the translational degrees of
freedom has been observed with all mixtures and at every
temperature at which observations were made. Measure-
ments at two different frequencies for similar samples at
the same temperature indicate that frequency and pressure
affect the velocity of sound only as the quotient, fre-
quency/pressure, with the exception of small corrections

HANGES of sound velocity in some gases

with variation of the frequency to pressure
ratio have been known for a number of years.
These have been attributed to failure of the
internal degrees of freedom of the molecules to
follow temperature changes in the sound wave.
The first phenomenon of this type to be observed

*Now at Georgia School of Technology, Atlanta,

Georgia.

that must be applied because hydrogen is not a perfect
gas. Experiments indicate that the dispersion occupies a
greater range of frequency to pressure than would be
expected if the rotational specific heat behaved as a simple
relaxation phenomenon. It is shown that a simple relaxa-
tion phenomenon is not to be expected, and that the
dispersion in parahydrogen can be characterized, approxi-
mately, by two relaxation frequency to pressure ratios, one
for the rotational transition 0-2, and another for the
transition 2—4. An expression for these relaxation frequency
to pressure ratios, that roughly fits the observations, is de-
rived on the basis of some assumptions about the collision
process.

was associated with vibrational degrees of free-
dom. In this respect carbon dioxide has been
extensively investigated.!

Recently in this laboratory E. S. Stewart?
observed a similar phenomenon associated with

1W. T. Richards, Rev. Mod. Phys. 11, 59 (1939).

2E. S. Stewart, Phys. Rev. 69, 632 (1946). See also, E.
S. Stewart, J. L. Stewart, and J. C. Hubbard, Phys. Rev.
68, 231 (1945).
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the rotational degrees of freedom of hydro-
gen. This had been sought for by others,® but
their work was not done at a sufficiently high
ratio of frequency to pressure.

MEASUREMENTS AND APPARATUS

Measurements of sound velocity in para-
hydrogen and in mixtures of ortho- and para-
hydrogen were made at different frequency to
pressure ratios. The results of the measurements
are recorded in the curves of Fig. 1.

The velocity measurement was made by
measuring the wave-length with a sonic inter-
ferometer and at the same time measuring the
frequency. The interferometer was the one de-
scribed by J. L. Stewart*; however, the electrical
circuits were different. No separate oscillator
was used to drive the quartz crystal of the
interferometer ; rather, the crystal was employed
as one of the tuned circuits in the oscillator.
Resonance of the gas column was indicated by a
sensitive vacuum tube voltmeter that indicated
change of the radiofrequency voltage across the
quartz crystal.

The interferometer was inverted in a large
Dewar flask which contained a liquid bath to
maintain constant temperature. Water and ice
were used for measurements near zero degrees
Centigrade ; dry ice and alcohol, near 200 degrees
absolute; and water, near room temperature.
The temperature of the bath was measured with
a calibrated thermocouple.

The hydrogen was purified by slowly passing
it through a trap surrounded by liquid hydrogen.
Parahydrogen (99.8 percent) and 50 percent
para-50 percent orthohydrogen were prepared at
the temperatures of liquid hydrogen and of
liquid air, respectively, by adsorbing hydrogen
onto activated charcoal.®

RELATION BETWEEN THE VELOCITY OF
SOUND AND THE RATE OF ROTA-
TIONAL TRANSITIONS

If the effects depending upon the first and
third derivatives of the displacement of an ele-

2A. S. Roy and M. E. Rose, Proc. Roy. Soc. London
A149, 511 (1935).

4 J. L. Stewart, Rev. Sci. Inst. 17, 59 (1946).
. %A, Farkas and H. W. Melville, Experimental Methods
in Gas Reactions (The Macmillan and Company, Limited,
London, 1939), p. 154,
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ment of mass (heat conduction and viscosity)
are neglected, Newton's laws of motion and the
principle of conservation of mass yield for the
velocity of plane waves of sound in a hemo-
geneous isotropic medium :

ap MT sop \*pP
G5 Ga.
dp/ v Cp*\oT/,
where M is the molecular weight of the material;

p, the density; T, the absolute temperature; C,
the specific heat per mole at constant volume;
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F1G. 1. The velocity of sound in hydrogen as a function
of f/p, the frequency to pressure ratio; f/p is on a loga-
rithmic scale. Velocity is shown in units equal to the
calculated low frequency velocity for the temperature
indicated. Figure 1A is for pure parahydrogen; 1B for
normal (25 percent para-, 75 percent ortho-) hydrogen,
and 1C is for a 50 percent para-, 50 percent orthohydrogen
mixture. All experimental points were observed at a
frequency of one megacycle except those in 1C indicated
by o’s, which were ogserved at a frequency of two mega-
cycles. That both one and two megacycle observations lie
on the same curve indicates that %requency and pressure
affect the velocity only through the quotient, f/p, except
for small correction terms that depend upon the second
virial coefficient. The experimental errors are greater the
greater the value of f/p.
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», the pressure; and V, the complex velocity of
sound.

In (1) M is constant; T and p are average
temperature and density and are considered
constant. Both partial derivatives are associated
with the translational degrees of freedom. Conse-
quently, they should be real in a sound wave
whose period is long compared to the relaxation
time for translational motion. All sound waves
to be considered here have periods far longer
than the relaxation time for translational motion.
Only C is associated with internal degrees of
freedom. When excitation of any internal degree
of freedom lags behind the temperature change
in the sound wave associated with the transla-
tional degrees of freedom, then C becomes com-
plex. Then V also becomes complex, and it is
the real part of V that represents the phase
velocity, the quantity that one measures with a
sonic interferometer.

If V?is expressed as a+18 and V as v+iu,
where v is the phase velocity, then,

V=12 — w2+ 2iuv=a-+10;

from which,

2

v*=3a[1+(8*/*+1)H]. @)

If B/ is small compared to one, as it proves
to be in the experiments considered here, then,

o[ 14162/a2]. (4)
An empirical equation of state for hydrogen is®
p=RTp/M+p*B/M?, )

where R is the universal gas constant, and B is
the second virial coefficient for hydrogen. This
function for p inserted into (1) gives, after
dropping second-order terms,

RT T¢ R Ts*dB

. (6
T2 C TdT} ©

T is 273.1 degrees absolute.

The theory of the effective specific heat for a
two level gas has been carried through in great
detail by Rutgers’ for the case when the levels
are associated with molecular vibrations. His
approach applied to molecular rotations follows:

$E. H. Kennard, Kinetic Theory of Gases (McGraw-

Hill Book Company, Inc., New York, 1939), pp. 221-223.
7A. J. Rutgers, Ann. d. Physik 16, 350 (1933).
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Consider a gas transmitting a sound wave of
angular frequency w. Suppose some internal
degree of freedom has only two levels, a and b,
with energy difference AE between them. Let #n
be the number of molecules per mole, n, the
number in state @, and 7, the number in state b.
Then n,+ny=n, and dn,= —dn,. The reaction
equation is,

dny/dt = kapta — koatts, (7

where k4 and kg, are probabilities per second per
molecule of the transitions a—b and b—a, re-
spectively. At equilibrium dn,/dt =0, so,

kba = k,,bna/nb. (8)
For a rotator
ne 2J.+1
= GAEIRT, 9)
nmy 2Jp+1

where
AE/RT = o[ Jo(Jo+1) — Ju(Ja+1)T; i

0)
o=h?/8mIkT;

J is the rotational quantum number; % is
Boltzmann’s constant ; I is the moment of inertia
of the molecule. Suppose T varies periodically
so that T'=T,+ATe*t, and suppose #ny=mn,°
+Anpeit. Then n,=n,"—Anwet. After dropping
second-order terms, so long as An,<Knq, Any<Kns,
ATKT, these suppositions lead to,

iwAnb = - kabAm - kb,,Anb
+ (naoAkab - n2oAkba) .
(1a°Akap — 12°Akse) = Akasna®

(11)

74° 2J,+1
—nbo(Akab———k.,b eAE/kTAT),
nbo 2]1, + 1
AEAm, n’ (AE)? /
=RKabv— /(1w+kab+kba)- (12)
AT m°® kT?

The term on the left is the effective rotational
specific heat, and the expression on the right
reduces to the statistical mechanical equation
for the specific heat of a rotator with two levels
if w is set equal to zero. The general statistical
mechanical equation for the specific heat of a
rotator is Eq. (21) below. Thus the effective
specific heat associated with levels @ and b is
Cr

Cp'=——y, (13)
14+1w/wo
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where

2J.+1
wo=kab+kba=kab(1+

1eAE'/kT), (14)

b

and where Cg is the rotational specific heat when
w=0. For a non-radiating rotator, rotational
transitions are effected only by molecular colli-
sions. The rate of collisions is proportional to
the pressure, p. Thus, k. contains p as a factor,
and (13) and (14) may be written,

cR'=cR/(1+iO{//§)D); 15)

kay 2J.+1
f/p)o=—( 14 ew/w). (16)
2p\ 2J,+1

If the specific heat obeys (15), it is said to
exhibit simple relaxation phenomena.

That frequency and pressure enter the dis-
persion only as f/p is shown by Fig. 1c. The
ratio (f/p)o will be referred to as the relaxation
frequency to pressure ratio.

To analyze such phenomena in a three level
gas, one must solve three differential equations
simultaneously. If 74, 73, 7. are the numbers of
molecules per mole in levels a, b, and ¢, then
n=mn,+ns+n., and the three equations are

Ana/dt = —kata—+Reans;

dne dn.
dmp/dt= ————;

17
at dt {an

dnc/dt = kbcm - k,;,nc.

This development neglects the possibility of tran-
sitions a —c and c—a. As before, koo = kap(11a/1s) ;
ko=Fky(ns/n.). The assumption of harmonic
variation of n4, ns, %, and T gives, after dropping
second-order terms,

1wAn, = — kaAng~+ Rap(1.°/1°) Any+ P1AT
Amy= —Ang—Ane; (18)
1A = kocAny — kyo(1°/18) An.+ PoAT

where the P’s contain #'s and k’s as in Eq. (11).
Elimination of An; in (18) leaves,

1wAn, = — ko[ Ana+ (1.°/m°) (Ana+Ang) 1+ PLAT
(19)
1wAn.= — kyo[ (Ang+Anc) + (1°/n0) An. |+ PAT.
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If there were some simple relation between
ke and ks, then (19) might be reduced to the
form of (15), with the specific heat exhibiting a
simple relaxation frequency to pressure ratio.
With the help of some plausible assumptions,
such a relation has been found for a vibrating
molecule with many levels.? A simplifying factor
in the case of a vibrator is the fact that energy
levels are equally spaced. This is not the case
with a rotator. If there are appreciable numbers
of molecules in more than two levels, there is no
simple relaxation frequency to pressure ratio for
rotational specific heat.

Parahydrogen at room temperature is essenti-
ally a three level gas with most of its molecules
in rotational levels with J=0, 2, and 4. One
may associate 0, 2, and 4 with «, b, and ¢ in
(19). The 0—2 transition fails to follow the
sound wave at a lower f/p than the 2—4 transi-
tion. Most of the rotational specific heat is
associated with the 0 —2 transitions; thus Az, is
much greater than An, at low f/p. As f/p in-
creases, (19) describes An, and An.. To a good
approximation, at low f/p, An. may be neglected
in the first equation of (19). Then (19) becomes
identical with (11). As f/p continues to increase
An, becomes smaller, and the approximation
ceases to be valid. At sufficiently high f/p, Ang
becomes small enough to be neglected when
compared to An.. Then the second equation of
(19) becomes equivalent to (11). Thus at suffici-
ently high and at sufficiently low f/p hydrogen
may be treated as a two level gas.

The total effective specific heat for a two level
gas is,

cE=cm+(co—cw)/(1+¢(;//:)o), (20)

where the second term is obtained from (15).
Cy is the specific heat when transitions between
the two levels concerned follow the sound wave
and C, is the specific heat when no transitions
between these levels occur. The rotational specific
heat can be calculated by the methods of sta-
tistical mechanics for any number of levels. Its
value is?

8 L. Landau and E. Teller, Physik. Zeits. Sowjetunion
10, 34 (1936).

9 J. E. Mayer and M. G. Mayer, Statistical Mechanics
(John Wiley and Sons, New York, 1940), Chap. 6.
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Fi1G. 2. The solid curves show C, calculated from Eq.
(24). The upper curve has (f/p)o=7.2 megacycles per
atmosphere; the lower one, 20 megacycles per atmosphere.
The asymtotic values for these curves, Cy and Cn, were
calculated by Eq. (21). The dotted curve is the resultant
of the two solid curves, and the o's are experimental points
calculated by Eq. (23) from velocity measurements. The
dashed curve shows what would be expected if the whole
rotational specific heat showed a simple relaxation fre-
quency to pressure ratio. The value of (f/p)o for the
dashed curve was chosen to be 7.3 megacycles per atmos-
phere. The experimental points occupy a greater range of
f/p than this curve, indicating that the rotational specific
heat does not exhibit simple relaxation phenomena.

R
c,a-_-6 s QT+ 1)[eT(T+1) e I+D

——é—[z; 2T+ 1)oJ(J+1)e-odU+D]20 1 (21)

where Q is the partition function for a rotator,
Q0=2s (2J+1)e o/, (22)

If some rotational transitions are considered as
not occurring, the levels from which no molecules
enter or leave are omitted from the sums in
(21) and (22). The total specific heat is the
effective rotational specific heat plus the trans-
lational specific heat which is 3R/2.

Equations (20) and (6) substituted into (4)
give

RT Te R To* dB

i It |
i) o

where

cu=(c02+c:g:; i ;2) / (Co+c,,,§; ; i ;:2) (24)

RHODES, JR.

and
B_ (/p)o 05
« R[C0+Cw(f/1))2] cor e
(f/P)? (f/P)?

Relaxation frequency to pressure ratios were
obtained for the 0—2 and 2—4 transitions of
parahydrogen at 298.4 degrees absolute. For the
0—2 transition, which has the lower (f/#),
observed values of v were put into (23). The
last factor of (23) was first treated as one, and
first approximations for C, were obtained. The
value of (f/p)e that made (24) best fit these
values was then obtained by trial. This approxi-
mation to (f/p)s was used in (25) to obtain
B/, which was subsequently used in (23) to
obtain final values for C,. (These values for
B/a were all less than 0.08, and the corrections
on C, were less than 0.02 percent.) A final value
of (f/p)o was obtained to make (24) best fit the
final experimental values of C, for low values of
f/p. The value of oT used in all of these calcu-
lations was 82.6 degrees.!

For the 2—4 transition the same procedure
was carried out: (24) was made to fit the experi-
mental C,'s at high values of f/p rather than at
low ones.

Figure 2 shows how (24) for the final (f/p)¢’s
chosen fits the experimental points.

At lower temperatures parahydrogen is so
nearly a two level gas that no reliable figures
could be obtained for the 2—4 transition. The
(f/p)o’'s for the 0—2 transition were obtained.
Results are tabulated in Table I.

CALCULATION OF kg

After an inelastic collision in which masses M
and m collide with relative velocity »,, some of

TaBLE I. Relaxation frequency to pressure ratios
for parahydrogen.

Transition Relaxation frequency to

between pressure ratio, (f/#)e
rotational Temperature (m.c./atmos.)
levels: (deg. abs.) Observed Calculated
0-2 197.7 6.6+0.3 6.13
0-2 273.8 6.9+0.3 6.98
0-2 298.4 7.240.3
24 298.4 20. +5. 22.0

1P, S. Epstein, Textbook of Thermodynamics (John
Wiley and Sons, New York, 1937), p: 305.



VELOCITY OF SOUND IN HYDROGEN

the energy of their relative motion appears as a
subsequent relative velocity, and the rest goes
into the internal energy of the colliding bodies.
Momentum and energy are conserved. In order
to conserve energy and the component of mo-
mentum in the direction of »,, the maximum
energy of relative translational motion that can
go into internal energy is

1 mM
Epax =~ ——1,%

(26)
2m+M

If the colliding bodies are two hydrogen mole-
cules, then M =m, and Enax=3%(3mv,2)=1E,, or
half the kinetic energy of their relative motion.

In considering the probability that a molecule
in rotational level a will be left in level b after
collision with another molecule, one need con-
sider only those collisions for which

Emax+AE2§ AEab, (27)

where AE,; is the energy required for the transi-
tion a—b, and AE, is the amount of internal
(rotational) energy the colliding molecule might
possibly lose. In the calculations that follow AE,
is taken as the energy given up by the colliding
molecule in undergoing a transition from its
initial rotational level to its next lower allowed
level. When the colliding molecule is initially in
its lowest level, AE; is zero.

The number of collisions per second per mole-
cule in a gas with magnitude of initial relative
velocity between v, and (v,4dv,) is!

dz=3mD2N(m/kT)%3

Xexp [ —mv,2/4kT Jdv,, (28)

where N is the molecular density, D the collision
diameter of the molecule.

If (28) is integrated over all relative velocities,
one obtains the rate of occurrence of collisions.
Consider one molecule in rotational level a that
collides with a second molecule with an initial
relative velocity, v,. Let W be the probability
that the first molecule will undergo a transition
during the collision to its next higher allowed
level . W multiplied by (28), and then integrated
gives kg5, the rate per molecule in state a of the

U R. B. Lindsay, Physical Statistics (John Wiley and
Sons, New York, 1941), pp. 87-88.
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transition a —b. Thus:

kab = f Widz.
v,=0

Calculation of W requires the evaluation of
the expression for such a probability :

27 2
W=|:—; f f ¥, * Vc\Ifadxdt] .

¥, and ¥, are the rotational wave functions of
the molecule: ¥, in rotational level ¢, and ¥; in
level d. All coordinates of the rotator are included
in x; ¢ is time. V, is the potential energy of the
rotator resulting from the presence of the col-
liding molecule. In classical mechanics one can
express any impulse on a rigid body by an
equivalent impulse applied to the center of mass
of the body plus an equivalent impulsive torque.
V¢ corresponds to the potential energy associated
with this impulsive torque during the collision.
Necessary information about the molecular
forces during the collision for obtaining V. as a
function of the coordinates of the rotator and
time are lacking so (30) cannot be evaluated.
Some properties of W are available. Unless
condition (27) is satisfied, W is certainly zero.
One would expect that as the left side of (27)
becomes larger .compared to the right side, W
would increase. An attempt was made to express
W as a function of (Emnax+AEs—AE,s), for posi-
tive values of this quantity. Several simple
functions were tried, and it was found that

W & Emax+AE;—AEq (31)

best fitted observations. It is possible that W
can be accurately represented by a rapidly con-
verging power series in (Epax+AE;—AEg).

To calculate k. on the basis of this assump-
tion, one puts (31) and (28) into (29). Since W
is zero for negative values of (Emax+AEs—AE,;)
= (}mv2+AE,—AE,;), the integration is carried
out only from 92=(4/m)(AE.;;—AE;) to o,
when this lower limit is greater than zero. If
AE;>AE,;, then the integration is carried out
from zero to «. The result is

kot =Np'THX 42)e7X, X=0;
ko =Mp'TH—X+2), X=0,

where X =(AE.,—AE,)/kT. In obtaining (32),
the molecular density, N, has been given its

(29)

(30)

(32)
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value for a perfect gas, N=p'/kT, where p’ is
the partial pressure of the molecules in the level
that corresponds to AE,. All multiplying con-
stants, including the proportionality constant
for W, are included in X. In calculating k. by
(32), one must calculate a term for the fraction
of the molecules in each rotational level, as AE,
is different for each level. Thus the final k4 is a
sum of terms like (32).

From k., the relaxation frequency to pressure
ratio, (f/$)o, is determined by (16). The observed
(f/$)o for the 0—2 transition in parahydrogen
at 298.4 degrees absolute was used in (16) and
(32) to find \. Values for the other (f/#)¢’s calcu-
lated from this X are in the last column of Tablel.

Properly chosen assumptions about the quan-
tities in (30) can lead to (31). One such set
includes the assumption that the collision occu-
pies only a small region of the coordinates, so
that the product of the ¥ s can be replaced by
an average value; (30) then takes the form:

27
[ [ va]

2
’

HERBERT GOLDSTEIN

or W[ S VdtP. If V. is assumed to have a
maximum value proportional to (Emax+AE:
—AE,;); if a coordinate { is zero just as the
molecules “‘contact’’ and increases as they move
closer together; and if the molecular force asso-
ciated with V. is a rapidly increasing function of
the positive values of £, e*¢ or &7, with = large,
for example, then (31) results.

CONCLUSION

Dispersion of the velocity of sound in hydrogen
has been observed at several temperatures; the
frequency to pressure ratio at which the disper-
sion occurs shows no strong temperature de-
pendence.

The excitation of rotational degrees of freedom
in hydrogen is shown to have no simple relaxation
frequency to pressure ratio; however, each rota-
tional transition can be assigned a ratio that
approximates a true relaxation frequency to
pressure ratio. The range of frequency to pressure
ratio over which the velocity of sound changes
is greater for hydrogen than that called for by
the law for a simple relaxation.
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The properties of sea echo—a radar echo associated with
surface of the sea—have been measured at wave-lengths of
9.2, 3.2, and 1.25 cm, for grazing angles of incidence about
1° and over a wide range of sea states. The measurements,
which are given in terms of a suitably defined cross section
per unit area of the sea, were obtained with three experi-
mental truck-borne systems. Details of these systems, and
of the measuring techniques, are described. The trouble-
some rapid fluctuations of the sea echo signals were
eliminated by an electrical averaging scheme. A discussion
of the possible errors in the determination of the absolute
cross sections leads to an estimated uncertainty of +2 db
on 9.2 and 3.2 cm and %4 db on 1.25 cm. The results have
been interpreted in the light of possible theories of the

INTRODUCTION

T certain times, depending upon the state
of the sea, microwave radar systems will

* This paper is based on work done while at the Radia-
tion Laboratory, M.L.T.

scattering mechanism responsible for the echo. Assuming
the scatterers to be spray drops small compared to A, the
wave-length dependence of the cross section should be
between A™* and A8 whereas the observed variation is
between A? and A~% While these results are in better accord
with the hypothesis of scattering from irregularities on the
surface, the observed large changes of the cross section
with polarization seem explainable only by some form of
the drop theory. A modification of the drop theory is
proposed, which assumes the presence of drops of diameter
of the order of X\. The consequences of such a theory are
examined and found to be in rough agreement with
experiment.

receive echoes associated with the sea surface
and commonly known as ‘“‘sea echo.”” Large areas
on the indicators are often covered by the echo,
seriously interfering with the usefulness of air-
borne radar systems. The fundamental scattering



