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The potential ehergy of a deformed lattice can be written in the form
V=Vot+Vi+ 7V,

where V, is a constant (the energy of the undeformed lattice), Vi the part linear in the dis-
placements of the lattice points from their normal positions, V. the part quadratic in the
displacements. The terms of higher order are neglected. In view of the requirement that the
normal position of each lattice point be a position of equilibrium the linear part vanishes
(V1=0) so that the energy is simply equal to V, (apart from the constant V,). As the energy
must be invariant with respect to rotations of the system, W. Voigt postulated the invariance
of V;and derived from this assumption the so-called Cauchy relations between the elastic coef-
ficients. A closer analysis shows that this conclusion is open to objection. The term ¥V, represents
the energy only because of the subsidiary condition V=0 which, upon investigation, turns out
to be not invariant with respect to rotations. Hence, V. is not invariant either: a fact which
removes the theoretical basis of the Cauchy relations.

1. INTRODUCTION

N recent years the problem of elastic oscil-
lations of crystalline solids (conceived as

atomic lattices) was the subject of papers by
Blackman,! Kellermann,? Fine,® Montroll,* and
others. Considerable progress has been achieved
by these authors in the study of these oscillations
and in devising numerical methods for cal-
culating the frequency distribution. It seems,
nevertheless, that some of the more funda-
mental questions are not yet very well under-
stood and need further elucidation. We refer, in
particular, to the relations between the coef-
ficients of the quadratic form representing the
potential energy of the lattice, on one hand, and
the measurable coefficients of elasticity, on the
other.

It is usually stated that, in the case of central
forces between the atoms of the lattice, the
symmetry of the lattice coefficients is such that
it involves the so-called Cauchy relations between
the coefficients of elasticity. In mentioning the
Cauchy relations all modern writers on the
subject refer to W. Voigt.® Although these rela-

! M. Blackman, Proc. Roy. Soc. A148, 384 (1935); 149,
126 (1935); 159, 416 (1937); 164, 62 (1938).

2E. W. Kellermann, Phil. Trans. 238, 519 (1940).

8 P. Chs. Fine, Phys. Rev. 56, 355 (1939).

‘E. W. Montroll et al., J. Chem. Phys. 10, 218 (1942);
11, 481 (19_43); 12, 98 (1944).

SW. V01%t, Lehrbuch der Kristallphysik (Leipzig, 1910),
Sections 297, 298.

tions are admittedly in contradiction to observed
facts, nobody seems to have thoroughly re-
examined their derivation or the conditions
under which they are supposed to be valid. We
shall show in this paper that Voigt's proof
contains a serious flaw which invalidates his
results: as far as measurable elasticity coefficients
are concerned, no relations of the Cauchy type exist
between them, even in the case of central forces.

This fact is not only of theoretical interest but
has also some bearing on practical problems.
Indeed, in some of the above mentioned papers,
the Cauchy relations were used as a means for
determining the numerical values of the lattice
coefficients. In the light of our results these
numerical estimates are no longer reliable and
will have to be revised.

2. EXPRESSION FOR THE POTENTIAL ENERGY

Let an atom (or point) of the lattice be labeled
by the Greek index g, and let the three cartesian
coordinates of its normal position be denoted by
x4 (4=1, 2, 3), so that the latin subscript ¢ refers
to the three orthogonal directions of space. When
the lattice is deformed, all the points get slightly
displaced, and their coordinates assume the new
values x,;+s,;, where s,; is called the 7-com-
ponent of the displacemeént of the point p.

As our primary purpose is to investigate the
validity of the Cauchy relations, which are
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claimed only for central forces between the
atoms, it will save space if we restrict ourselves
to the case of such forces. We assume, therefore,
that the mutual energy of the pair of lattice
points u and » is given by the function

@(7"“,),
symmetric in the pair of indices u, ».
Fu? = (@1 +5u1—5,1)2
+ (@wat5u2—5v2) 2+ (@urs+Su3—515) %,

where @,i= —a,,i=%,;—x,; is the i-component
of the distance between the points u and ».
Hence, the normal distance between these
points is 7,,,

ruvz = a‘w12 +a;w22 +auv32-

Thus the total potential energy of the lattice
can be written in the form

V=% E ‘I’uv(fur)a (1)

where the factor } insures that each term &,

occurs in the expression only once.

Expanding the expression with respect to the
small differences s,;—s,; up to terms of the
second order, we obtain

V=Vo4Vi+ Vs, 2

where V, is the energy of the undeformed
lattice, while the terms of first and second order
can be written as follows, using Einstein’s con-
vention with respect to the latin indices:

Vi=X Ay i(Suj—Sv3), 3)
By
V=2 [(Buwi— Curtys i) (Suj—5vj)*
ur
+ Cyrauviaprj(spi - Sﬂi) (sﬂf— S'J') ]' (4)

In introducing these notations we anticipate
to some extent the results of Section 5 where it
will be shown that the meaning of the coefficients
is as follows:

Ay ;= 3(0%,/00,7) 0,
B,,i=3%(3®,,/0a,u,%)0,
()

Coryr iy ;= 3(0°®py/ 90uri0@uv7) 0,

for i73j.
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The notations are chosen so as to bring out the
symmetry character in the subscripts u and »
since it can be inferred from the Egs. (5) that
Ay, Buj, Cy are all symmetric in g, ».

However, for the present, we shall not make
use of the relations (5) and shall regard the coef-
ficients simply as empirically given constants
whose dependence on %, j, and symmetry charac-
ter in u, » could be established in a different way.
Indeed, it is possible to proceed as follows.
Instead of introducing explicitly Eq. (1), the
theory can be built up on the following two
postulates:

(1) The potential energy can be represented
as the sum of mutual potential energies of pairs
of points (without introducing from the start the
dependence on ).

(2) The potential energy is invariant with
respect to translations and rotations (law of
action and reaction).

The dependence on the differences s,;—s,,
only, is then obtained from the invariance with
respect to translations, the symmetry character
of the coefficients from the invariance with
respect to rotations. In particular we wish to
underline that the independence of the coeffi-
cients 4,, and C,, of the directional subscripts
1, j, is a necessary consequence of the rotational
invariance. We shall briefly return to this
question in Section 4.

3. TRANSFORMATION TO STRAIN COMPONENTS

We shall define the first-order strain com-
ponents as the matrix

1 aSj
eij(o) =—(—+
2 9x;

a9s;

), G j=1,2,3). (6)

9x;

It should be noted that this definition is
slightly different from that used in some text-
books in that the element off the diagonal (77 )
is supplied with a factor 3. In addition we shall

need the components of the rotations in their
usual expression

1 aSj as;
w;,-=——(-———- ) (7
2\9x; 9x;
Adding the two formulas
95/ 0x;=e;; +wii (8)
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Integrating this over a region in which e;;(®
and w;; are uniform, s; is obtained as a linear
function in e;;‘9. The substitution into the
energy expressions (3), (4) gives the energy as a
function of the strain components. There is,
however, one difficulty: the significant terms are
those of second order in the strain components;
these are incomplete as calculated by the above
formulas, because e;;(® is only an approximate
expression neglecting second order terms. It is
sufficient for substitution into V, where the
lowest terms are of the second order, but it is
not sufficient to be used in V; since the error
introduced by this approximation is of the same
order as V), itself. It is therefore necessary to
express the displacement of s; as a function of
the strain components up to terms of the second
order. This fact was overlooked by Voigt who
uses only the linear approximation. This is the
point from which our theory begins to differ from
his.

I do not know whether the creators of the
theory of elasticity were familiar with the more
accurate expression of the strain tensor. The
earliest reference which is at my disposal is in
the third volume of P. Appell’s treatise on
mechanics.® The formula is in our notations as
follows:

1/9s; 9s; 1 3si s

b= (—+—)+-——
2 8x.- ax,- 26xi6x,-

where Einstein’s convention applies to the index
k appearing twice. As we are interested only in
terms of first and second order, it is permissible
to substitute into those of the second order the
first approximation (8) and even to omit in this
approximation the superscript 0 (i.e., replace in
these terms e;;(” by e;;). Hence,

1/709s; 0ds;

L(eatwi) (entwi)-
\ow o, 3(eantwa) (esn+wje)

(10)

=eij—

It is useful to abbreviate the writing by intro-
ducing the symbol
fii=eijtwis; (1)

this symbol is, however, non-symmetric (fi;#f;:)

¢ Paul Appell, “Traité de Mécamque Rationelle” (Gau-
tier-Villars, Paris, 1901), Vol. 3, p. 243.
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because e;; is symmetric and w;; antisymmetric.

€ij =€, Wi ;= —Wji. (12)
Adding w;; to the Eq. (10), we find
8s;/8si= fij— 5 fufin. (13)

This can be readily integrated over a region
where f;; can be considered as constant, with the
result

S;=fzkxz—%f1kfjkxz-

Actually, the expression could be written in a
slightly more general form by adding a constant
of integration s;(® which represents the possible
translation. However, the invariance of our
energy expressions with respect to translations
is a matter of course so that we simplify the case
by putting s;® =0.

We need to substitute into Eq. (4) only the
first term of the formula (14). On the other hand,
the second-order part of Eq. (3) entirely depends
on the second term of (14). Indeed, it is easy to
see that the part of second order of V1=V, +V,"”
takes the form

Vi'=—3 2 Apfafutuw i@,
uy

(14)

which can be also written as

Vi'= =} T Apfeifituntior. (15
14

On the other hand, the function V', becomes

=3 2 A{ (Bwi— Cuttw ) frifij
uy
+ Cotr i if kif13} Q. (16)

The complete second-order part of the energy
is thus
V"4 Ve= Z{( rd A frifii

X vaaywauvjfkiflj} QuykQpuvl-

#va/-wJ -
(17)

The writing of the last two equations is not
quite orthodox with respect to Einstein’s con-
vention. What is meant here is that the sum-
mation over an index is implied if the index
occurs in the term two or more times. (According
to the strict Einstein rule it must occur just two
times.)
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4. RELATIONS BETWEEN COEFFICIENTS

Since the energy V is invariant with respect to rotations all coefficients of the expansion of V
with respect to the powers and products of w;; must vanish. The first-order part V;’ contains only
linear terms, while V"4 V, contains either terms of second order in w;; or terms in which components
of w;; are multiplied by components of e;;. As the rotations are independent of the strain, the two
functions V' and V,”"+ Vymust beinvariant each for itself. This involves certain relations between
the coefficients A,,, B,j, and C,,. It will be necessary to write out our quadratic form explicitly:

'+ V=3 :z:: { (B — A w) w1+ [ (Bus — A ) s fos® + (Buvz — A ) s f32? + 2 Couttna s fas fa2 ]
+2Cur2’@urs* foof53+ 2 Cunun1®aun2@uns(fas+ fa2) fr
+2[(Bui— A w) far+ Cotini*f131 1104103+ 2[ (Bunn — A w) fr+ Cusnr® f12 1 f 1101002
+2[(Bun— Aw) farfs1+ Con(frafr1s+ frafor+ farfro) @un®Jameaums +ete. ). (18)

By “etc.” are meant additional terms which result from those written out by cyclic substitution of the
indices (other than u, »). If we replace the symbols f;; by their definitions (11), the invariance with
respect to rotations requires the vanishing of all terms containing components w;; or their squares
and products. This affects only the components w;; with 75 because w:; is identically zero. The
square and product terms entail the following relations,

Z [(B‘WS —Auv)auﬂ? + (B;WZ —Auv)auv32 - Cuval-tﬂga’#”z] = ()v
uy

% (Buv1— Ay — Cuyn1?) @r2,r3 =0, (19)
while the linear terms lead to
}; L(Burs— Aw)aue® — (Buwe— A1) @3> ]=0,
’ ﬁ‘: (Bui = A= Coy1?) @301 =0, (19)

Z (Buvl _A;w - vaavaZ)ayvlanﬂ = 01
ur

and again to another relation already listed. Further, the relations must be added which result from
these by cyclic substitution.

These relations can be used to reduce to a simpler form the remaining terms, which depend only
on ¢;; namely,

Vi'"+Ve=% 3 {(Buwi—Auw)@ui®e11> +2 Cooyn220ur3% (2625 +€22€33)

uy

F+4C1®(@ur2€12+ Aurseis) €11+ 4 Couyn1 * a5 (e11625+ 2e10615) +-ete. }. (20)

Returning to the remark about the symmetry of the coefficients made at the end of Section 2,
we may make here the following statement. If we had not postulated in Egs. (5) the independence
of 4,, and C,, on the directions but had written more generally A,,;, C..j; then the requirement of
rotational invariance would have given us a much larger number of conditions than the set (19),
(19). The burden of those additional conditions is precisely that A,,; C.u.; are the same for all
subscripts 4, j. Thus our assumptions (5) do not represent a loss of generality but only a more con-
cise way of writing.



ELASTIC PROPERTIES OF LATTICES

5. ANALOGS TO THE CAUCHY RELATIONS

Owing to Voigt's influence it has become cus-
tomary to write quadratic forms of the type
(20) in a manner which with our definition of e;;
is as follows

Vi + Vo= {3b11€11+ 2b4s€23> + bageeess
+2(b14€23+bisesi+-Diserz)en

+4bsee1ze13+etc. } . (21)

All the coefficients b;; are symmetric in ¢, j.
By “etc.,” again, are meant terms which result
by cyclic substitution from those written out. In
these permutations the subscripts 1, 2, 3 and
4, 5, 6 form two separate permutation groups:
for instance, the term derived from 4bgee10e13 is
4bgserzenr.

By comparing with the form (20) it will be
seen that taking care of the rotational invariance

leads to the following symmetry relations:
bag=bas, (22)

to which must be added those following by
cyclic permutation,

bM = b56)

b31=b55, b25=b64y

22’
bae = bus. (227

b12="Dbgs,

These relations form the analogs to Voigt's
Cauchy relations and we shall refer to them by
that name. We shall first show that these rela-
tions are indeed identically satisfied when we
have central forces. Carrying out the differenti-
ations indicated in the Egs. (5) we easily find

A,=3, /21, ‘l
Buyi=5(Quri/Twr) "’
L1 = (@wri/ 10)* 1B’ / 2,
Cor=[Pw" — B /10 ]/21".

(23)

The accent and double accent denote here,
respectively, the first and second derivatives of
®,,(74) with respect to the argument 7,,.

We have seen that the Cauchy relations (22),
(22') are an immediate consequence of the con-
ditions (19), (19’) and of their cyclic permuta-
tions. It is, however, obvious that all these
conditions can be satisfied by the single relation

B,,i— A= Cuauit, (24)
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holding not only for the double sum but for each
term separately. Now we find, indeed, from the
Egs. (23)

BAWJ'—AW = %(alﬂi/rlﬂ') 2[4)” - CI)I/’#']

— 2
= Curlupj-

(25)

We shall now go back to Voigt’s work and see
in what it differs from ours. It was mentioned
in Section 3 that Voigt overlooked the second
order terms (in e;;) contained in V; of Eq. (3);
this led him to attribute rotational invariance
to the energy term V. alone. Such a contention
is clearly untenable. Indeed, Voigt’'s theory
differs from our formulas of Section 4 only in
one point: the terms with 4,, are left out in all
the equations. Thus Voigt arrives at conditions
equivalent to our conditions (19), (19’) with
the 4,, terms crossed off. For instance, the first
condition is, according to him,

Z [:.B‘nSayv22+-Bpr2a}"32 - pﬂpyzzamaz:l =0. (26)
By

However, we have just verified that in the
case of central forces the condition is satisfied
in our form. Hence, the left side of Voigt's Eq.
(26) is not equal to zero but to the negative of
the missing terms, namely, to

Z AM (a'uﬂz + aw'az) .
By

This expression does not, in general, vanish but
is often of the same order magnitude as the other
sums entering into the Eqgs. (19). In fact, it is
possible to supply examples of lattices in which
it can be explicitly calculated. However, it is
well to remember that the simplest possible
model in which each atom interacts only with
its nearest neighbors is not suitable for the
purpose, since in such models 4,,=0. Thus the
deviations from the Cauchy relations are caused
by interactions between points which are not
nearest neighbors.

Voigt wrote the quadratic form V, in the form
(21) with the only difference that he designated
the coefficients by c¢;; (instead of b;; in our form
Vi'+V,). He claimed for them the Cauchy
relations

C23 = Cu44, etc.

(27)

It follows from our discussion that this claim
was unfounded. If Voigt or the many authors

C14=Cp6,
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who repeated his ¢laim had gone to the trouble
to substitute into his relations of the type (26)
the actual values of B,,; and C,,, as they result
from the assumption of central forces, they
would have noticed that these relations are not
satisfied. Some authors seem to regard the
Cauchy relations as additional restrictive con-
ditions imposed upon the coefficients A4,,, Buj
C,. This. is, however, a misconception. In
quadratic forms which are invariant with
respect to rotations these conditions are merely
a manifestation of the symmetry inherent in this
invariance, they are satisfied identically and do
not impose any further restrictions. In quadratic
forms which are not rotationally invariant the
Cauchy relations are not satisfied.

6. MEASUREMENT OF STRAINS

So far our discussion has been purely mathe-
matical. We have now to tackle the physical
question whether the actually measured elas-
ticity coefficients are of the type satisfying the
Cauchy relations. It is shown in the theory of
elasticity that the deformation energy of an elas-
tic body can be represented as a quadratic form
in the strains e;;. This quadratic form may be writ-
ten out in the manner of formula (21). Following
the customary notations, we shall designate the
coefficients by ¢k, and we shall restrict ourselves
in what follows to crystals and lattices of ortho-
rhombic symmetry. This is done exclusively for
the purpose of making the writing less cumber-
some: all the arguments and conclusions apply
just as well to the general case. The orthorombic
symmetry requires the vanishing of all the terms
which are linear or bilinear in ess, es1, €12. Thus
the energy expression becomes,

V'=[3cuen’+2cue2s®+cosesesst+etc.].  (28)

If this energy is referred to a crystal cube of
the volume 1 cm?, the components of the stresses
can be obtained from it by differentiation,

Pu=09V/de11=cne11+c1ze2s+C13€s3,

(29)
D23 =30V /de23=cusers,

and so on, by cyclic permutation. As the com-
ponents of the deformation e;; and the stress
components p;; are both observable, it is possible
to infer from direct measurements the coefficients
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of elasticity cix; by means of the Egs. (29). The
question which we have to answer is as follows:
with which of the two quadratic forms of the
lattice must the form V be identified?

In going back to the expressions (2)—(4) of the
lattice energy in terms of the displacements, it
is important to point out that V;=0. In fact,
the j-component of the force acting on the point
v is given by —daV/ds,;. For the undistorted
lattice we get thus

Zu Auva#ﬁ:o;

because in the undeformed lattice every point is
in an equilibrium position, so that the force on
it vanishes. Multiplying this by s,; and summing
with respect to », we find that the second term
with s,; in the expression (3) vanishes. This
implies, however, that the term with s,; also
vanishes because it is equal to the other term,
4,, being symmetric and a,, antisymmetric in
u, v. Consequently, V;=0; from the mathe-
matical point of view it is important that this is
not an identical relation but an additional con-
dition imposed on the variables of the system.
At any event, there follows,

V=", (30)

Therefore, the two quadratic forms in e;; dis-
cussed in the preceding section have the following
properties. (1) The form V, represents the energy
of the lattice, but it is not invariant with respect
to rotations and does not satisfy the Cauchy
relations. (2) The form Vy’+4 V, is rotationally
invariant and satisfied Cauchy’s relations, but it
is not equal to the energy. The mathematical
reason for this behavior lies in the fact that the
Eq. (30) results from the subsidiary condition
V1=0 which is not invariant with respect to
rotations. Thus it comes about that the physical
requirement of the invariance of the energy with
respect to rotations is mathematically satisfied
only when the energy is represented by the sums
of a linear and a quadratic form and not by a
quadratic form alone.

Since the function ¥ which is used in the Egs.
(28) and (29) for the determination of the coef-
ficients of elasticity must represent the energy,
it is obvious that it must be identified with the
form V.. Hence, the coefficients of elasticity do not
satisfy the Cauchy relations.
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Since the whole burden of our argument hinges
on this identification, it will not be amiss if we
make it more cogent by calculating the stresses
in a quite different way. This method has the
further advantage that it works with linear
relations only and is, therefore, independent of
the second-order corrections to the strain ex-
pressions (as far as the stress-strain relations are
concerned). Since the choice is only between the
forms V, and V"4 V,, one single experimentum
crucis is sufficient to decide the question: we
need only to calculate one stress component in
one particular kind of lattice.

Let us consider an orthorombic lattice whose
principal directions coincide with the coordinate
axes j=1, 2, 3. Let it have the shape of a prism
with a square cross section of 1 cm? area and with
its axis in the direction j=1. We imagine the
prism divided into two halves by an ideal plane
normal to the axis and lying between two
lattice-net planes. We wish to calculate the
forces exerted in the axial direction by one half
of the prism upon the other half.

For this purpose we shall use the representa-
tion of the lattice energy by the sums (3) and (4)
in which each term refers to the mutual energy
of two lattice points labelled u and », respectively.
The force on the point » exerted by the point u
in the axial direction is equal to the negative
derivative with respect to s,; of their mutual
energy, namely, to

Auwa'uvl + 2 (-Bpwl - Cm'apvlz) (Spl - Svl)
+ 2 Cuvauvlauvk(syk - svk) .

Let now the points in the positive half be
denoted by p and those in the negative half by ».
The force of interaction of the two halves is then
obtained by taking the double sum of the ex-
pression, where u is extended over the positive
half and » over the negative half. We see that the
first term of the double sum is a constant and
independent of the displacements: it represents
the force holding together the two halves of the
undeformed crystal, and it is of no interest to us.
The second and third terms of the double sums
are the force due to the existing deformation, in
other words, they represent the normal stress
pu=2 3 {(Buwi— Cu1?) (Su1—51)

B14¥1-

+ Cosur 1@ (Suk— Suie) § -
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To explain the symbols at the sign of the sum
we must make the following remark. The sub-
scripts p and » are abbreviations each for three
indices p1, u2, us and vy, ve, v3 labeling the coor-
dinates of the points. Thus the sum is actually
sixfold. We do not bring in evidence the sum-
mations with respect to us, us, v2, v3 because they
extend over the complete cross dimensions of the
lattice. But it is necessary to keep in mind that
w1 extends over the positive half and »; over the
negative half in the axial direction.

We make now the transition to strain com-
ponents by means of the relation (14). As we
need only linear terms and as rotations are
inessential to us, this relation simplifies into

S;i=€4i%q.

After substituting this into our sums, all the
terms with odd powers of a,,2 or a,,; will disap-
pear because the summations in the 2,3 direc-
tions extend over the whole crystal whose

dimensions are supposed to be extremely large
compared with the lattice constant. The result is

Z [-B;Lvlell+va(a‘w22822+a‘w32e33)]auvl-
(31)
It is possible to get rid of the summation with
respect to »; in a way which we shall carry
through in detail only for the case of a simple
orthorhombic lattice with only one point in every
fundamental region. Let us consider all the
points of the » half which lie in a straight line
parallel to the axis and are, therefore, charac-
terized by the same fixed parameters vz, v;. All
these points are acted on by forces originating
in points of the p-half. In particular let us con-
sider their interactions with the points lying in
a straight line parallel to the axis in the w-half
and labeled by the common fixed parameters
w2, us. With respect to the paramaters yx; and »;
(which change along the two straight lines) we
can divide all these interacting pairs of points
into groups such that the axial component of
the mutual distance a,,1 of two points is constant
within a group and equal to a, 2a, 3a, ---,
respectively, in the different groups (where a is
the lattice constant in the axial direction). The
number of point pairs in the group a,,1=na can
be readily inferred from the fact that the coor-
dinate », can assume the values —§, —é6—a, -

pu=

Bre¥1-
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—&—(n—1)a, where ¢ is a fraction of a. These
are, altogether, » different values, whence the
number of pairs within a group is also #=a,,1/a.
Now in the sums (31) the terms relating to point
pairs of the same group are all identical, because
B, Cu,y @41 are all the same within the group.
Hence, we can omit the summation with respect
to »; if, instead, we multiply each term of the
sum by a,1/a. Thus we find

pu=(2/a) X [Buen+ Cun(aueess+aus’ess) Jau®.

K1+

In this sum » has a constant value. Since all
terms are symmetric in g, v (including sym-
metry in uj, »1) the summation could be ex-
tended, instead, over the negative half of the
crystal (u1~) without changing p1;. Hence, it can
be also extended over the whole crystal, pro-
vided that the sum is supplied with the factor 3.
In practice the coefficients By, C, decrease
very rapidly with the distance between x and ».
Hence, very few net planes of the lattice to both
sides of the plane »; appreciably contribute to the
sum. Therefore, the plane »; can be taken any-
where, within the crystal with the exception of
two negligible layers at the borders. As the sum
is independent of the choice of »;, we may sum
with respect to »; over the whole crystal and at
the same time divide by the number N of values
which »; assumes within it, i.e., by the number
of net planes in the direction j=1. To make the
case comparable with that treated above, we
must have a cubical crystal of 1-cm edge. Hence
its length in the direction 1 is 1 c¢cm, and the
number of the net planes is N=1/a. Therefore,
we arrive at

Pu= Z I:Buvlell+ Cuy(a,wzzezz +auv32833) ja/,wl2y (32)
uy

where the summation symbol denotes the ordi-
nary double sum over the whole crystal.
Although the special case of the simple lattice
is entirely sufficient for our purpose, we remark
that this method of calculating the normal stress
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can be applied (with but slight changes) also to
the general case when each fundamental region
contains several points, possibly, of different
physical properties. The result is identical with
(32) in the general case also. On the other hand,
the method must be modified to a greater degree
in calculating the shearing stresses, because then
not only the magnitudes of the individual inter-
action forces are significant, but also their points
of attack.

Let us now see what form our general ex-
pression (18) of V"4 V, assumes in the special
case of orthorhombic symmetry. Because of the
relation a,;= —a,,; all the terms disappear
which contain odd powers of one of these para-
meters. Using the notation of the coefficients
given by the formula (21), we find for V"4V,

b11= Z (Buvl—Auv)auvl2y ]
uy

bu= % Z E(Bl"'3 -—A,.,.)a,,,f
By
+ (Buv2 - Auv) a#v32 + 2 Cuvauvzzauv:iz:l»

b23 = Z vaapv2zauv32-

g

r(33)

J

On the other hand, the quadratic form V.
differs from this only in that the quantities 4,,
are left out. In particular, we shall write out
explicitly the following coefficients

1= Z Buv . nv121 Ci12= Z Cyrauvlzauﬂz’
uy

uy
(34)
C13= Z Cyvauvlzauv32-
uy

From these results it is clear that we obtain
the Eq. (32) only when we substitute V=V into
the first relation (29), while the assumption
V="V,"4+V; lead to an entirely incorrect result.
Hence, we obtain another confirmation that the
quadratic form (28) fundamental in elasticity
must be identified with the function V, which is
not invariant with respect to rotations and
which does not satisfy the Cauchy relations.



