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~HE question as to the existence of groups of electrons
and positrons having temporary stability has recently

been raised by J. A. Wheeler, ' who shows that clusters of
the form ++ and ++—are stable with respect to decay
into their elementary constituents. Kith regard to more
complex structures no definite judgment could be reached.

Wheeler found, as a first approximation, the upper limit
of —9.93 ev for the ground state energy of the hypothetic
"electromeson" or "polyelectron" composed of two elec-
trons and two positrons. A binding energy of 9.93 ev is,
however, about 3.6 ev below the energy me4/252 necessary
to prevent disintegration into two systems each of which

contains one electron and one positron.
The variational function in Wheeler's calculation is,

aside from a difference in notation and in the values of the
parameters, the ground state function employed by H.
Margenau and %. A. Tyrrell in their variational calcula-
tions of the binding energy of the alpha-particle, ' in which

orthogonal Hermite functions were used to approximate
the state of the particle.

The symmetry considerations in the alpha-particle
problem may be transferred unaltered to the case of the
four-component polyelectron in question.

If we choose the notation of Margenau and Tyrrell the
Hamiltonian of the polyelectron may be written
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The summation extends over four different terms indicated

by the double signs. In this form the Hamiltonian does
not include the center of mass term. The relative coordi-
nates are the scalar components along the Cartesian axes
of the vectors

pi=(4)~(ri+r2 —r.—r~), @2=(4)~(ri—r2), p3=(k)~(r. —r~).

The ground state harmonic oscillator function which yields
the energy value presented by Wheeler then takes the form

go=const. exp —iLppP+g(pP+pm )5, p=1.134'.

It follows from the form of the Hamiltonian above that
functions of odd degree of excitation do not combine with

the ground-state function. Nor do the two doubly excited
functions combine when p and q are given the values
which minimize H00.

The total second-order perturbation energy resulting
from the eight quadruply excited functions comes out to
be roughly 0.9 ev of which 0.65 ev originates from the
third and fourth functions in the enumeration of reference
2.

The three first sextuply excited functions add altogether
about O. i ev.

While there is no clear indication of convergence at this
stage, the small magnitude of the contributions from these

orthogonal functions suggests with reasonable assurance
that this structure is not stable against disintegration
into two bielectrons.

This conclusion is perhaps somewhat strengthened by
the following consideration. If the binding energy of the
bielectron (+—) is computed variationally with the use of
the analog of our &0 there results a binding energy of 5.75
ev, i.e., 85 percent of the true value of 6.77 ev. The calcu-
lations on light nuclei show that &0 represents a better
approximation to the lowest state of the four-particle
system than to that of the two-particle system. If, then,
we assume the value of 9.93 ev to represent 85 percent of
the true energy of the cluster, we arrive at a limit of
11.7 ev, which is still 1.8 ev below stability.

For these reasons the preceding perturbation calculations
were not extended by more refined variational methods.

It might seem that while Hermite functions are adapted
to the alpha-particle problem with its short range forces,
the Coulomb potentials in polyelectrons require more
hydrogenlike functions. To investigate this point, we
choose a new set of coordinates, replacing y&, p2 and y& by

s = {-,')&(ri+r2 —r, —r~), t = (-,')&(ri —r2 —r, +r~)
and u = (~2)&(r& —r2+r -rt, ).

The symmetry in identical particles leads to functions
symmetric and of even degree in the t and u coordinates.
When we take this fact into account we may write the
proper Hamiltonian for the calculation of matrix elements
in the form

k2 I 2II= ——fb, ,2+26 2j+242
m in —ti [t—si

Let us consider functions of the kind

P;=const. (s t u)* exp ', [as+tt(t—'+-u)5,

and take for a and p the values that minimize the re-
spective II;;. i=0 yields in this way a binding energy of
9.5 ev, that is, less than the ground-state oscillator func-
tion. i =$ however, yields 10.0 ev for a = 1.5505/,
P =0.81888 nse2/k2. This energy value is 73.8 percent of the
minimum binding energy required for stability. With five
functions in linear combination, i = 1/2, 3/2, ~ ~, 9/2, and
the same a and p which minimize H~„ this percentage is
increased to about 75 percent.

This is in fact below the value of 10.3 ev or 76 percent
which we may get variationally by combining the ground-
state harmonic oscillator function with the rather effective
fourth quadruply excited function. Changes in the values
of the parameters have been found to have very little
eEect on this result for the binding energy.

Although the evidence here presented against the
stability of the polyelectron composed of two electrons
and two positrons is not conclusive in a strict mathematical
sense, it counsels against the assumption that clusters of
this (or even of higher) complexity can be formed.
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