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Angular Correlation of Ga~~a-Rays
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The calculation of the angular correlation of successive gamma-rays from an atomic nucleus,
carried out by Hamilton, has been extended to take into account the effect of the magnetic
field at the nucleus because of the extra-nuclear electrons. Results are given in a form valid for
all multipole orders. In addition, it is shown that an external magnetic field may be used to
reduce the effect of the extra-nuclear electrons on the angular correlation. A method of calcu

culating the effect of an external magnetic field on the angular distribution of the successive
gamma-rays is indicated.

INTRODUCTION

fP HEN an atomic nucleus smite two gamma-
rays in succession, one might expect from

general considerations of radiation theory that
the direction of emission of the second gamma-
ray is related in some way to the direction of
propagation of the first. This correlation is
expected to depend on the electric or magnetic
multipole nature of the radiation and on the
angular momentum of the nuclear levels in-
volved. Some light may be shed on these factors
by a comparison of experimentally determined
angular distributions with the theoretical expec-
tations.

The pioneer investigations of Hamilton' into
the theory of the angular distribution of suc-
cessive gamma-rays emitted by a nucleus were
made with the restriction that torques due to
fields external to the nucleus be sufFiciently small
to have a negligible eRect on the angular cor-
relation. Inasmuch as helds external to the
nucleus, arising from the spin and orbital
angular moments of the extra-nuclear electrons,
may produce appreciable torques, it seems
desirable to investigate the quantitative eRect
of 6elds external to the nucleus and to determine
their inAuence on the angular distribution of the
successive gamma-rays.

THEORY

Consider an atom which is visualized as
existing in any one of three gross energy levels,
A', 8', and O'. Each of the gross levels consists

~ha =p (a~H, ~ p)bp, +hv.a.,, (1a)

—ihbp, ,=g (a~Hv(p)'a

+ 2 (pIH. lp)c„,,,.+h(v, yv, )b,,„(ib)
fs d

—ihb„, , .=g (p ( H.
~ y) *b,,
+h(vg+v, +v„)c, v„, (ic).

where 8 =Ilu„, etc. , and the zero of energy is
chosen at any convenient value.

The following solutions are assumed, subject
to determination of the constants involved by
substitution into Eq. (1).

a =8 exp (—2sI' t), (2a)

of several sublevels which arise through the
coupling of one of the nuclear energy levels A,
8, and C, with the external electronic structure
of the atom. That is, each gross level is composed
of a set of hyperfine structure sublevels with
separations very small by comparison with the
separation of the gross levels.

The sublevels of the gross energy levels A' are
indicated by a, a', a", ~ ~ ~; those of 9' by p, p',
P", ; and those of C' by y, y', p", ~ . If the
sequence of transitions

i. from a level a to a level p with the emission of a
gamma-ray p of frequency v~,

2. from the level P to a level y with the emission of a
gamma-ray o of frequency v„

is assumed, the equations for the probability
amplitudes become'

*Now at Clinton Laboratories, Monsanto Chemical
Company, Knoxville, Tennessee.' D. R. Hamilton, Phys. Rev. 58, 122 (1940).

' In setting up and solving Eq. (1), the procedure of
reference 1 is followed closely. Cf. G. Breit, Rev. Mod.
Phys. 5, 91 (1933).
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b,,„=E.i, lexp (—2~1'.t)
—exp (—2m I's, ,t) }, (2b) where

cy, p, r = Pa tag, 'p, ,r {exp ( 2%I at)

—exp (—2+I'„,,„t)}

r„,.= i—(vv+ v.+v,),
&'v~ =2 1(~IH. IP) I

'

&'vs =2 1(tl IH. I v) I

'

(3c)

(4a)

(4b)

+gp vy, „,.lexp (—2mi's, vt)

—exp (—2s.l'.,..t) }. (2c)

Upon substitution of Eq. (2) into Eq. (1), one
finds

F =pg —Sv, (3a)

(3b)

y~ and y~ are independent of the particular
sublevels n or P of A' or 8' from which they are
computed. gp, , denotes the sum over all states
P which can be reached by all perturbations H, .
One may deduce from Eqs. (2)—(4) tha. t 4s.y& is
the total transition probability from any level 0..

Also,

4'(ulH,
I P)*(PIH. I

y)* exp (i2n [vp+ v. v.jt—)
Lim c„v,,=Q

s (IYB+vpyvg), (z YA+v~vv, p vg)

where v, p
= v —

vp, etc. 8 expresses the arbi-
trariness of the phases of the wave functions of
the initial states, so that

(8 *8 )A, =8,
where 8, ~ is the Kronecker delta-function and
the angular brackets denote an average over all
nuclei.

With the aid of Eq. (5), the angular corre-
lation of the successive quanta may be obtained
as follows. m, defined by

given nucleus will be found in a final state y
and that quanta p and 0 will have been emitted
with definite directions, frequencies, @nd polari-
zations. The average of m over all nuclei, all
gamma-ray energies, ' both directions of polari-
zation of each quantum, and all finall states p
of the system, gives the desired directional
correlation of the successive gamma-rays:

Co ~ 00

W=Q ~ dv, dv. Q„w,
"o "o

us=
I
lim c,, v, , l',

may be interpreted as the probability that a

(7) where gv, N denotes an average over all nuclei
and all polarizations of the emitted quanta.

Using Eqs. (5)—(8), one obtains

( IH(k„P,) IP)*(~IH(k. , P.) I
v)*( IH(k„P,) IP')(O'IH(k. , P.) I v)

W(k„k,) = Q l u, P, P', y, Pv, P, }
1 —zvp, p~/2ys (9)

In Eq. (9), k, and k, are vectors indicating the
directions of propagation of the quanta, whereas
P, and P, indicate the polarizations (it is con-
venient in the following to use circular polariza-
tion, so that the quantum number I' has the
values 1 and —1 corresponding to left- or right-
handed circular polarization).

Each sublevel, n, P, or y, is completely
characterized by appropriate values of the
quantum numbers I, J, Ii, and m', I is the
nuclear angular momentum quantum number,
J the electronic angular momentum quantum
number, F the resultant of I and J, and nz the

projection of F on the Z axis, One may therefore
write (it is assumed that the emitted gamma-ray
does not alter the configuration of the electronic
state, so that J remains unaltered)

(eIH(k„P,) IP) =(aF m IH(k„P,) I bFsmq) (10).
Here, b represents the quantum numbers that

'The matrix elements in Eq. {5) are assumed to be
effectively independent of frequency over a range of
frequencies greater than both the radiation breadth of the
nuclear levels and the hyperfine structure separation of
the sublevels.

4 It is assumed in the present calculation that J is a
good quantum number.
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are the same for all sublevels of 8', that is, b

represents IB, J, and any other quantum
numbers necessary to describe the nuclear level
I3. Also, Pp means P{Fp,mpI, etc.

By using the well-known methods of trans-
formation theory, the matrix elements in Eq.
(10) may be written, in the first approximation,

Q (Iz&JF m
I IgJlmz)(almzIH(kv, P&) Ibnmz)

l& t@J& Q

(IJFm
I IJmzmz) are the transformation coef-

ficients for vector addition' and form a real and
unitary matrix, so that

P (IJmzmz
I
IJFm) (IJFm

I
IJmz mz )

E, M

= bmz, mz'5mz mz'& (12)

(IJFm
I
IJmzmz) (IJmzmz

I
IJF'm')

tNI& tsJ

=8v, v &1, . (13)
X (Izz Jnmz

I IsJFpmp). (11)
It is convenient to remember that

In Eq. (11), l is the component along the Z axis
of I&, n that of Izz, and mz that of J'. Similarly, (IJmzmzI IJFm) = (IJFmI IJmzmz) =0
in the following p will denote the component
along the Z axis of Iq.

unless m =mr+ms. (14)

Since the matrix element Upon substituting of Eq. (10) and (11) and a

(alms IH(k&, P&) I
bnmz) corresponding set of relations for (PI H(k, P ) I y)

into Eq. (9), one obtains, with the aid of Eqs.
is independent of mz, this quantum number will (12)—(14) and (17), for either k, or k, along the
be omitted when writing the matrix element. The Z axis,

where

W(k„k.) = p {I,n, n', p, P„P.I I (al I H(k„P,) I
bn)

I
'S„,„ I

(bn'
I H(k. , P.) I

cp) I
', (15)

(IsJnr I IsJFm)(Is JFm
I
IsJn's)(1s Jn'sI IsJF'm')(Is JF'm'I Ip Jnr)5„„.= (16)

s, s, m, Z, S",m' {2J+1I{1+(»,v /2vs)'I

The summation in Eq. (16) is over all values of
r, s, m, Ii, and F' consistent with the definition
of the transformation coefficients and the given
values of I~, J, n, and n'. vp, p is the separation
of the levels P and P' corresponding to F and F'.
The factor of 2J+1 in the denominator of Eq.
(16) is merely inserted for convenience. The
multiplication of lV by any constant factor is
permissible, since one is interested in the relative,
not the absolute, value of S' as a function of the
angle between the successive quanta.

In the calculation of Eq. (15), use was made
of the relation that, for k along the Z axis,

(al
I H(k, P) I

bn)*(al
I
H(k, P) I

bn') =0
unless n=n', (17)

which follows from kqs. (29)-(31), and (34)
below.

Equations (15) and (16) are the formal
results for the angular distribution of successive
quanta emitted by a nucleus, including the
eR'ect of the magnetic moment of the extra-
nuclear electrons. It is of interest to see how

these reduce to Hamilton's' result. The criterion
for this is that

(vv, v. /2yz&) '«1, (18)

so that, from Eq. (16),

5„,„=8„,„; L(vv, v /2ys) '«1]. (19)

This is precisely the result of reference 1.
The criterion (18) is in agreement with the

conclusion of Hamilton, who stated that the
radiation width of the levels P must be much
greater than the splitting of 8' because of the
magnetic field of the atomic electrons.

~ E. U. Condon and G. H. Shortley, Theory of Atomic
Spectra, {Cambridge University Press, Cambridge, 1935),
especially pages 73-78. See also reference 7.

If Eq. (19) is substituted in Eq. (15), the fol-
lowing is obtained.

W(k„k,) = Q {I,n, p, P&, P. I

X
I ( lIHa(k„P, ) I

bn)
I

'

x I (bnIH(k. , P.) I cp) I
'. (20)
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Equation (18) may be put in a somewhat more instructive form. Writing

S„,„=b„,„—e„,„,
one has from Eq. (16)

( [ppp/, 2ys)' q (nr~Fm)(Fm~n's)(n's~F'm')(F'm'/nr)

F E' (1+[pr, r~/2yB j2$ r, z, m, ~' 27+1

(21)

(22)

l~.. - I ~&(»/2Vs)',

where hv is the largest value, for all Ii and Ii',
of vp, p . If one assumes as the criterion that Eq.
(20) be valid the relation ~n„, „~ ~&0.01, a suf-
ficient condition for the validity of Eq. (20) is

~»/2~, (
&0.1. (23)

In a slightly diferent form, one has

1

4xyg 20mhv
(24)

as an upper limit to the lifetime of the inter-
mediate nuclear state for the validity of the
calculation of the angular correlation with the
nelect of the interaction of the nuclear magnetic
moment with that of the electrons. For a hyper-
fine structure splitting of 1 cm ', Eq. (24) yields
as the upper limit to the lifetime of the inter-
mediate state 0.5X10 "sec.This estimate seems
conservative.

The matrix elements in Eq. (15) may be
evaluated in a general manner applicable to
transitions of any multipole order by employing
the expansion of the potential of a plane elec-
tromagnetic wave in terms of the spherical wave
solutions of the radiation equations. A convenient
form of this expansion is derived in Appendix 1

by group theoretical methods.
The matrix elements in Eq. (15) correspond to

the emission from a nucleus of a plane wave in a
given direction and with a specified polarization.
A possible set of potentials to describe a plane
electromagnetic wave is

Equation (25) describes an electromagnetic
plane wave of frequency kc/2ic propagated in
direction ue. This wave is left- or right-handed
circularly polarized, depending on whether P is
1 or —1, as may be verified by using

18A
H=VXA; E= --—

c Bt

TABLE I. Spherical, wave potentials for the electro-
magnetic field. ~ In the gauge where the scalar potential
is zero, a complete set of potentials for the radiation 6eld
is given by the following electric and magnetic multipoles.
The multipole order corresponding to a given L is 2~,
and there are 2{2L+1)solutions for each I, since M can
take on any of the 2L+1-values —I, —(L—1), ~ ~ ~, (L—1),
I, and one can have either electric or magnetic radiation.
All potentials are normalized to (s hk) ' quanta/sec.

where

Magnetic multipoles. Ag(I.M)

2 &{Ap,. +iAp„) =Bxfl, (kr) Yl,~+' exp —ikct

A p, ——B0fr,(kr) YL,~ exp —ikct

—2 ~(Ap —iAp„) =B 1fr, (kr) YL,~ 'exp —ikct,

B,=(L, 1LMiL 1M+0 —n),

a=~i, 0.

Electric multipoles, A&(I.M)

2 &(A +iA ) = I CxfJ. (kr) YL, ~+'
+DE g(kr) Yc z~+'j exp ikct—

A,.= i C,fc~g(kr) Fc+g
+DQfl, 1(kr) YJ. 1 ) exp —ikct

—2 &(A~ —sA~) = I C 1fL,+1(kr) YI,+1
+D 1fr, 1(kr) YI, 1~-'I exp —ikct,

A(it, P) =2-&(u, +~Pus) exp ~(& r Itct)—
+2—&(ui —iPum) exp i( kr+kct), —

q(lr, F) =0,
(25)

where

C, = —
2L (L+1 1LM'iL+1 1 M+ a —o)

where
k k=k' k=ku P= +1

u; u;=8;, ;, i, j=1,2, 3;
ui Xus=us

D, =+ L+1
2I.+1 (L 11LMiL 11 M+ n —n)— —

cr= &1, 0.

*See references 6 and 16 in text.
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to obtain

E u, = —2&k sin (k r —kct),

E um ——P2&k cos (k r —kct),

E'Q3= 0,

H ui ———P2&k cos (k r kct—),
H u2 ———2&k sin (k r kct)—,

H u3 ——0.

The assumption is now made that the nuclear
transition corresponds to the emission of light
of some definite multipole order. ' Then, all the
matrix elements in Eq. (28) vanish except those
corresponding to, say, 2L-pole radiation, so that

(bnIH(k, P) Icp)

=~V(2L+1)& gir D&~&(y, 8, 0)irp,
X (bn

I
Pn [Ao(LM) +&PA, (LM) ] I cP). (29)

Only the term in Eq. (25) containing the factor From Appendix (3),
exp ( ickt) co—ntributes to the emission of radi-
ation, so that only this term need be considered (bnl e'LAD(LM)+~P (LM)l I p)
further. The following expansion is derived in C(I»I p&M IIcp) C~(IcLpMIIcLI») (30)

2-&(ui+iPu2) exp ~(k r —kct)
ce L

P(2L+1)&D&i&(«, c9, 0)ir, p

X &&Ao(LM) +iPA, (LM) j. (26)

Here, A.(IM) and A0(I M) are the various
spherical eigenwave solutions of Maxwell's
equations, as derived by Heitler' and as listed
in Table I. The D&~&(«, &l&, 0)ir, p are known
functions of 0 and q, some of whose properties
are briefly discussed in Appendix (2).' &l& and q

are the polar coordinates specifying the direction
of the propogation vector k, so that

k =k sin 8 cos y; k„=k sin 6 sin q,

k, =k cos 8.

where C and C' are independent of n, p, or M.
Also,

(InI Yr~II'P) =0 unless n=M+P (31)

(cf. Eq. (14)). Upon substituting Eq. (30) and
(29) into Eq. (15) and using Eq. (31) (8 is
written for the angle between k, and k,), one
6nds

M, M', n, n'

where S~„ is defined by Eq. (16) and

Since, in the gauge where q =0, P +1

H(k, P) =p A(k, P) (non-relativistic) (27a) In obtaining Eq. (32), k, was taken along the
Z axis and use was made of the result from
Appendix 2 that

(p is the linear momentum operator of the
radiating particle and e is the Dirac vector
matrix), one finds with the aid of Eq. (25) and
(26)

(bnIH(k, P) Icp) =~ p i'(2L+1)~D ' (q, a, 0)jr, p
I, M

X (bn
I »&&&AD(LM)+iPA. (LM) $ I cp). (28')

'W. Heitler, Proc. Camb. Phil. Soc. 32, 112 (1936).
An independent solution has been given by %.%'. Hansen,
Phys. Rev. 4/, 139 (1935).

'For a more complete discussion, see Eugen signer,
Grupperltkeorie (Friedrich. Vieweg und Sohn Akt. -Ges. ,
Braunschweig, 1931), Chapters 14 and 15.

'(0, 0, 0)ir p = 4r~ p.

If k, is taken along the Z axis rather than h„ the

Magnetic and electric multipole radiation of the same
order cannot occur in the same transition, since one or the
other will be forbidden by the parity selection rules.
However, a mixing of radiations of diferent multipole
orders, such as magnetic dipole and electric quadrupole,
might occur. (Cf. A. C. Helmholz, Phys. Rev. 00, 415
{1941)and S. M. Dancoff ance P. Morrison, Phys. Rev.
55, 122 (1939}).In this case, it is necessary, to determine
the angular correlation, to know the relative values of the
constant C in Eq. (30) for the two types of radiation.
Our knowledge of nuclear structure is insufFicient to
enable the determination of the complex constant C.
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following apparently different result is found

W(» =
I
(Ign+M'I Fi, ~'IIsn) I'

M, M', n, a'

XS... I
(Isl'

I &c
I
Icn™)I

'fi I (»,

To show this, note that

PM I
(Isn'I Fi,~ I

Ig, e' M) I
'f i,ir(»—

(I»'
I Fir D '(&)ir, i'l r. I Icp)

y, (P +1)
X(Isn'IQ D&~&(R)~, ~YI. 'lI p)*, (35)

where R denotes the rotation of coordinates that
would bring the original Z axis (along k, ) into
coincidence with k, . Upon applying the rotation
of coordinates R to Eq. (35) and using the
results of Appendix (2), one obtains

W(» = Q I
(Ign+M'I Fi, ~'I Isa) I'

M. Mt. s. Al. nil

xs.. ID& &(z-).-..
l

x
I
(Isn"

I Fl.
I
Ice" M)l', (32—")

&=&1

From Eq. (32") it is seen that the highest power
of cos 0 that appears in W(» is not greater than
2I~."Hence, k~& Ig.

~One may verify from Eq. (33) and reference 7, page
1SO, Eq. {27), that fL,~(8) is a polynomial of degree I. m
cos'8. From Eq. (32) one sees that %&~I-. Likewise, from
Eq. (32~), &~&1. .

'o This again follows from reference 7, page 180, Eq.
(27}

Since the angular correlation is independent of
the choice of coordinate axis, Eqs. (32) and (32')
should give the same result for W(». The
appropriate transformation of coordinates, when

applied to Eq. (32), can be shown to convert
Eq. (32) into Eq. (32'). Thisequivalenceof Eqs.
(32) and (32') is a useful check in specific cal-
culations.

Equation (32) may be transformed so as to
verify a conjecture of Hamilton. ' W(» is a
polynomial of degree k in cos'0, where k is an
integer such that'

&&1.; a&1.'.

Hamilton conjectured that also

TABLE II. The following values are obtained by the use of
Eq. (33) in conjunction with Eq. (A19).

0
1
0
1
2

2fz,.v(~)

2 —2 cosmic
1+ cos' 8

6 cos' 8 —6 cos4 8
1 —3 cos2 8+4 eos' 8
1 cos4 8

Values of the matrix elements (Inl Fl,~l I'p)
are given in many places, n while the fr, ir(8) are
listed in Table ll. A comparison of Eq. (32) with
the corresponding result of reference 1 shows
that whenever Eq. (19) is satisfied, the present
results are identical w'ith those of reference 1 for
dipole and quadrupole radiation. Higher multi-
poles are not considered in detail in reference 1.

To summarize, the angular correlation of
gamma-rays emitted in successive nuclear transi-
tions is given by either Eq. (32) or Eq. (32') in
conjunction with Eqs. (16) and (33). If the
lifetime of the nucleus in its intermediate state
satisfies Eq. (18), then S„,„may be replaced by
ill~„. This case may be indicated by saying that
the probability of reorientation of the nuclear
angular momentum while the nucleus is in its
intermediate state is negligible. In fact, it is
clear from Eq. (15) that S„„may be interpreted
as the probability that, if the nucleus has a
component n of angular momentum along the
Z axis immediately after the first gamma-ray is
emitted, it will have a component n' just before
the second gamma-ray is emitted.

"For example, references 5 and 7 (use is made of Eq.
(30))

EFFECT OF AN EXTERNAL MAGNETIC FIELD

Inasmuch as the projection along the 6eld of
the angular momentum of a system in a steady
magnetic field is a constant of the motion, one
might expect that the reorientation probability
could be reduced by the application of a suf-
ficiently strong field along the Z axis. (Note that
the direction of the Z axis has been previously
de6ned by the statement that one of the emitted
gamma-rays is collected along the Z axis. Hence,
the magnetic 6eld must be applied so that it
coincides in direction with the line from the
radioactive source to one of the gamma-ray
detectors. ) That this expectation is justified is
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shown below and an estimate of the strength of
the necessa, ry magnetic field is obtained.

To calculate the angular correlation of the suc-
cessive gamma-rays in the presence of an external
magnetic field in the direction specified above,
the derivation of Eqs. (15) and (16) is repeated,
taking into account the presence of the external
field. This field alters the zero-order wave
functions to be used in describing the states of
the system.

In the derivation of Eqs. (15) and (16) the
wave functions of the radiating system were
taken in the form

y(IJFm) =P{mg, mg}y~(Img)

&(P,(Jm g) (IJmimg
I
IJ'Fm),

where the transformation coefficients are so
defined that the wave functions P(IJFm) diag-
onalized the hyperfine structure operator

Ha f(r)E J—— (36)

If a magnetic held is present, the operator defined
in Eq. (36) is replaced by

Hi f(r)E J——+H, (prI, +iong J,), (3'/)

where H, is the apphed field. The eigenfunctions
which diagonalize H& may be written as

$(IJMrMg) =Q {mr, mg }Pgg(Imr)

Xyg(Jmg)(mgmg
I MgMg), (38)

where Ml and Mg represent the eigenvalues of a
complete set of operators which characterizt. the
levels of the system when the eR'ect of H~ is
taken into account and which, in the limit of
vanishing hyperfine structure separation or large
external field, become identical with tel and mg.

It is assumed for simphcity that J remains a
good quantum number for all magnetic fields
considered. This assumption will not acct the
validity of the conclusions to be obtained, which
depend primarily on the strength of the applied
field being suf6ciently great to decouple the
nuclear spin from all other angular momenta
that may be present.

In terms of the wave functions of Eq. (38),
one obtains in place of Eqs. (15) and (16) an
equation identical to Eq. (15) and the following
in place of Eq. (16):

, («I MgMg)(MrMg le'~)(ri'&I M'Mg')(Mg'Mg'I«)
5„,„(H,) =Q{r, s, Mg, Mg, Mr', Mg'} (39)

(2J+1){1+$(vM, Mg vMr Mg )/2y—sj'}

It is apparent from the foregoing that Eq. (39)
will reduce to Eq. (16) (although the use of the
quantum numbers MJ and Sf' is not convenient
in this limit) for H, =O.

The transformation coeKcients (mgmg
I
MgMg)

may be evaluated by the usual perturbation
theory for a degenerate state. From the con-
dition that P(IJMgMg) diagonalizes Hi, one ob-
tains

Q {mg mg} (mg'mg'
I
Hi I m.mg) (mgmg I MrMg)

=EMgMg(mg'mg'I MgMg), (40)
from which

1(m'mg'I Hi I mrmg) »-'-'b-'-—'I =o, (41)

where X denotes any EMIMJ
Now, from Eq. (37) using transformation

theory and the results of the theory of hyperfine
structure, one obtains

(mg'mg IHilmgmg) =H, (IIgmg+iggmg)bmg, mg bing, mg

+ P (mg'mg'IF'm')(F'm'I f(r)E Jl Fm)(Fmlmgmg)
F, FI, m, mg

{~s(plmg+ jlgmg)bmT mI +P (mI mg I Fm)kvv(Fm
I
mgmg) }bmr+mg mr +mg', (42)

F, m

where the vF are defined by the displacement from some zero position of the

F(F+1 ) I(I+ 1) J(J+ 1)j (43)
various levels in the hyperfine structure multiplet.

One may now substitute Eq. (42) into Eq. (41)
and Cgg is independent of F and m. That is, vv is to find EMrMg and then use Eq. (40) to determine
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where hv is the greatest value (for all F and F')
of vp —up, and assuming that

hdtv(QH,

pg,

one finds

ZMzMz = (mzmz l Hi
~
mzmz)

(45)

the (mzmz~ MzMz). But such a specific result is
not required. Noting that

~ Q (mz'mz'
~
Fm) vz (Fm

~
mzmz)

~

& $d i, (44)
F, m

lation with a strong magnetic field and from
measured internal conversion coefFicients, one
might then use these values to deduce from the
preceding theory the angular correlation at
intermediate fields. A comparison between theory
and experiment would check the assignment of
spin values and radiation multipolarity and
might also enable an estimate of the hyperfine
structure splitting of the intermediate state.

It has been demonstrated above that the
angular correlation of successive nuclear gamma-
rays emitted by an isolated atomic system is
given by either Eq. (32) or Eq. (32'), with 5„,
and fzzz(t'f) defined by Eqs. (16) and (33), re-

(47) spectively In Eqs. (16), (32), (32'), and (33)
the following notation is used:

+terms of order H.fit(jib, v/H. fzz) ',

with 3fl=mg, 3fg=mg, also,

(mzmz
~
3fz3lz) = omz+ ~z zzz+zzz

X I biz, zzz+terzns of order (hIz, v/H, fzz) I.

Substituting Eq. (47) into Eq. (39), one finds

5, (H,) =b, ~ lV(8}
Il—terms of order (kb, v/H, fzz)'. (48)

Thus, the probability of reorientation is neg-
ligible if the Zeeman splitting of the electronic
levels because of an external magnetic field is
several times as great as the hyperfine structure
splitting of the same levels.

It has been shown that with magnetic fields
obtainable in the laboratory it is possible to
reduce the reorientation probability to a neg-
ligible amount, provided the magnetic field is
oriented in a direction defined by the gamma-ray
emitter and one of the detectors. The field need
merely be large enough to give rise to a Zeeman
effect of the atomic levels several times larger
than the expected hyperfine structure splitting
of the intermediate state. "

An interesting experimental possibility might
be to measure the angular correlation as a func-
tion of the strength of the magnetic field. If one
can infer the spins and multipole nature of the
radiations for the nuclear transitions involved
from the available evidence as to angular corre-

M, M'

r, s
F, P

Pl 7 5Z

&/(4~~&)
vFF'

(Iae+ M'
i

Q(L)(y

If the intermediate state is sufFiciently short
lived, one may write~ The criterion of Eq. {45}may be written

HP&y(2 X 10 Zv)~

where H, is in gauss and d v in cm '. For bismuth
(b,v 3 cm '), the Paschen-Back effect of the hyperfine
structure is almost complete at 43,000 gauss. For most
atoms, d, v will be much less, so that smaller magnetic
6elds will sufrice.

S~, ~ =b~, ~' (19)

The criterion for this is given by either Eq. (18)
or Eq. (23). When Eq. (19) is used in place of

the angle between the successive gamma-rays,
the relative probability of a given value of 8,
the first nuclear transition gives rise to a
2~'-pole quantum,

I. the second nuclear transition gives rise to a
2~-pole quantum,
summation indices such that —I.&~ M && I.;—L'&+M'&& I.', unless otherwise noted,
summation indices such that. —Ig ~& n, n'&~ Ig,
spins of the initial, intermediate, and final
states of the nucleus, respectively,

J angular momentum of extra-nuclear electrons,
summation indices such that —J&&r, s&& J,
summation indices such that

~
Is j~ ~&I", —

F'~& Ig+ J,
summation indices such that —F'~&m'&&F';

lifetime of intermediate nuclear state,
hyperfine structure splitting of sublevels F and
P of the intermediate state,

(IsINr
~
IsIFm) transformat'ion amplitude for vector ad-

dition (cf. reference 5),
Yz. u'~Inn) matrix element of the spherical

harmonics (cf. reference 11),
0)~, +1, 2I+) dimensional representation of

the three-dimensional rotation group
(cf. Appendix 2, especially Eq. (Ai9),
and reference 7).
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Tasz.s III. 8, ~ for J= $ (cf. Eq. (16)}.

where

2~a(ra+1) —+'
(2Ig+1)'

r, (r,+1)—~(~~ 1)
(2I,+1)~

T= (p~/2ygg)~/I 1+(v@/2ya) j
and vg is the hyperhne structure separation of the two
sublevels of the intermediate state.

Eq. (16) one obtains Hamilton's results for the
angular correlations.

Even when the hyperfine structure separation
is appreciable, the validity of the approximate
Eq. (19) may be secured by the application of an
external magnetic field in the direction of propa-
gation of one of the collected gamma-rays. For
an indication of the necessary field strength, see
the discussion following Eq. (48).

where

W(8) =1+2 cos' 8,

(2I—1)(2I+3) —6T(2I —1)(2I+3)/(2I+ 1)'A=-
12I2+12I+1+2T(2I —1)(2I+3)/(2I+1) '

DISCUSSION

It is clear from Eqs. (15) and (32) and from
the subsequent discussion that the hyperfine
structure interaction of nuclear and electronic
magnetic moments will reduce the angular cor-
relation between the successive quanta over that
which would obtain for an isolated nucleus. The
shorter the lifetime of the intermediate state, the
less important is the e6ect of the external elec-
trons. As an example, one may consider a specific
application of the formula. For I= 1/2, I~ = Is
=Ic=I, both transition dipole (I.= I-' = 1), one
finds for the angular correlation

and (see Table III)
T= (»/»s)'/L1+ (»/»s)'3.

v& is the hyperfine structure separation of the
two levels of the intermediate state. For I=-,',
the distribution is isotropic and independent of
the hyperfine structure separation v&. For I&-,',
A is a monotonically decreasing function of v&,

as is to be expected.
The above discussed decrease in predicted

angular correlation may, as was previously
pointed out, " be in part responsible for the
small angular correlations observed experi-
mentally.

It is clear that the preceding calculations will

not apply in the event that there exist reorienting
torques on the atom other than those arising
from a uniform magnetic field. Thus, in the case
of a solid, the electric fields of adjoining atoms
will probably result in torques which reorient
the atoms, so that the angular correlation of
successive gamma-rays is not correctly given by
the foregoing formalism unless the lifetime in
the intermediate state of the nucleus is so short
that reorientation may be neglected. On the
other hand, there is no doubt as to the applica-
bility of the above results to a monatomic gas or
vapor at sufficiently low pressure.

Another limitation on the applicability of this
work is the possibility that the nuclear transition
gives rise to mixed radiations. In such a case, the
angular correlations calculated above will not
~ppl~

In conclusion, I wish to express my gratitude
to Professor I. S. Lowen for suggesting this
problem and for continued valuable suggestions
and discussions throughout the work. In addition,
I thank the Radio Receptor Company whole-
heartedly for the grarft of a research fellowship
which made this work possible.

APPENDIX 1. EXPANSION OF A PLANE ELECTROMAGNETIC WAVE IN TERMS OF
SPHERICAL WAVES'~

One may expand the potential

A(It, P) = 2 &(u&+it'u~) exp i(k r kct)— (Ai)

in terms of the spherical potentials of Table I. The symbols in Eq. (A1) have the meanings given
them after Eq. (25).

"A preliminary report on some aspects of the present work has been previously published (G. Goertzel and I. S.
Lowen, Phys. Rev. W, 533 (1946}).

'~ See also Hansen, reference 7.
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The foHowing expansion is given in many places:"

exp ilt r=s2& g i'(2/+l)&f~(kr) Fg'(0, s)
L 0

(A2)

where cos P=ue r/r. Substituting Eq. (A2) in Eq. (A1), one obtains

A(k, P) = s (u&+iPu2) exp ikc/ —P i'(2l+1) ~f&(kr) YP(&, v). (A3)

Equation (A3) is the expansion of a plane wave in terms of spherical waves in a coordinate system
in which the plane wave is propagated along the u3 axis. It is desirable to obtain this expansion in
terms of any arbitrary axis system.

A new axis system de6ned by unit vectors v&, v2, v3 is set up relative to the u&, u, ua system by the
tfansforIQatlon:

u~ ——(cos a cos p cos y —sin a sin y) v~+ (sin a cos p cos y+cos a sin y) vm —sin p cos y va,

um—- —(cos a cos p sin y+sin a cos y) v~ —(sin a cos p sin y —cos a cos y) v2+sin p sin y vs,

us = cos a sin p vs+sin a sin p v2+cos p va.

(A4)

Define r, 8, y as the spherical coordinates of a point relative to the u~, um, ue, system and r, 8, and C

as the coordinates of the same point relative to the v~, v2, V3 coordinate system.
The factors (uq+iPuq) and F~ (8, p) on the right side of Eq. (A3) may be expressed in the v&,

v2, vg coordinate system as

—2 &P(ug+iPu2) = p D&'&(a, p, y), , pw. ,
o=o, +1

~P(&, v) = Z D'"(a, p, v), 01'i"(e, C'),

w g=2 ~(vy —%vs); wp=vs, wy= —2 1(vy+zvm)

(A5)

(A6)

and the D&~& are the 2I+1 dimensioned representations of the three-dimensional rotation group.
Substituting Eqs. (AS) and (A6) in Eq. (A3) and using the formula

D"'(a, P v)., pD'"(a, P, v)-, o= 2 (/1~el/1L~+s)D"'(a, P, v)-+., p(/1LPI/10P), (A7)

which is a special case of Eq. (A18) below, one obtains

A(1t, P) = —24P Q F(2/+1)&(/1mpl/Lim+p)D&~&(a p y) + p
p, m, E, L

X(/1LPl/10P)f~(kr) Y~ (9, C)w, exp zkc/. (AS)—
But, for I'= +I

pL+1q ~

2&(2/+1) &(/1LP
l
l10P) = (2L+1)&l

l
for L =/+1,

&2L+1)

(
=(2L+1)&l l

for L, =l —1,
&2L+1i

= —(2L+1)&P for L, =/,

(A9)

'~ For example, E. T. Whittaker and G. N. Watson, Modern Analysis (The Macmillan Company, New York, 1944),
American edition, p. 40j., exercise 9.
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so that

A(lt, P) =&r Q i~(2L+1)&D&~&(n, &t&&, y)»i, iw, exp ik—ct
L, M, p

X iP —(I-+1 1M+ p —plL+1 1LM)l l Fi+i +~(8, C)f~i(kr)
(2L+1)

(I.+1 q
i

—(L 11M+—p plL —11LM—)l l
F + (8, C)f (kr)

(2L+1]

+(L1 M+ p plL1L—M) Fi~+&(8, 4)fr, (kr) . (A10)

Noting that
A=2 &(A—.+sA„)w i 2—&(A. iA—„)wi+A,wo (A11)

and comparing Eq. (A10) with Table I, one obtains

A(it, P) =&r P P j~(2L+1)&D& (a, P, y)»r, p{AO(LM)+iPA, (LM) I (A12)

where Ao and A, are given in Table I,

It =ku» ——k(vi cos a sin p+ vm sin n sin p+ vs cos p),

and the A(LM) are evaluated in the vi, v», vm coordinate system.

APPENDIX 2. ROTATION OF COORDINATES AND SOME PROPERTIES OF THE REPRESENTATION OF
THE THREE-DIMENSIONAL ROTATION GROUP. ~

Consider two sets of coordinate axes specified by the unit vectors u~, u2, u3 and vt. , v2, va, respec-
tively, where the relation between the ui, uq, uo, and the vi, vm, vl is given by Eq. (A4). Let xi, xq,
xe and r, 0, q be rectangular and polar coordinates of an arbitrary point in the uI, u~, u3 set of coor-
dinates and let X&, X&, Xe and r, e, 4 be the coordinates of the same point in the vI, v&, e3 system.
It is a well-known principle of quantum theory that any wave function P&„(x) of a system in free
space may be expressed as a linear combination of the wave functions Pq»r(X) for the same system.
Here, J is the total angular momentum of the system and m, M are the components of J along ue
and ve, respectively. Therefore, one may write

PJ (x) = g»i P~&s (X)D (n, P, y) w (A13)

which specifies the D'~& completely, if the phases of the P's are specified. A specialization of Eq.
(A13) of particular interest is"

F~"(~, v)=E~ F~ (8 c')D'"(~ P, v)M, -.
From Eq. (A13) it is immediately apparent that

D&~&(0, 0, 0)»r. = 4r.

Also, a comparison of Eq. (A14) with the spherical harmonic addition theorem

4xF"(,.)=l l Z F."u. -)*F"(8. )
&2L+1)

(A14)

(A15)

"We use Condon and Shortley's {reference 5, page 52) choice of phases for the associated Legendre polynomials.
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shows that
P 4x

(2L+1 3
(A16)

Since

(4x/3)&r Yi'(6, y) = 2—&(xi+ix2); (4s/3)&r Yi'(i1, q) =x3, (4x/3)&rY, '(8, q)
—=2&(x,—ixm),

it is apparent that 2—&(xi+ix2), x3, 2 &(xi ix2) and 2—&(ui+iu2), u3, 2 &(ui iu—2) transform as
Yii(i1, q), Yio(8, q), Yi '(i7, &p). Hence, one finds with the aid of Eq. (A4) the following values of
Dn)(~ p ~) . . 17

—1

I 1+eos P,,
2

,sin P
V2

. 1—cosP
~%X e '~

2

sin P,.
42

cos P.
sin P (A17)

. 1—cosP .
17

2
,sin P

V2

,. 1+cos P

A relation of particular interest to us is derived in group theory:"

D&~&(a, P, y)ii, ~D&"(a, P, »„, = Q (j JmMlj JF m+M)D~r~(n, P, y)ir+ „v+„(jJF n+N~j JrIX).
~-I~—il (A18)

Upon setting X=O, j=1 in Eq. (A18) and using Eqs. (A16) and (A17), one obtains

4x q 1
D"'(~, p, »~, i= —

l(2L+1)L(I.+1)
MYI,~(P, a)*sin Pe '&

1 —cos P+(I.+1+M)&(L M) &Yl~+'(P—a)*e' e—'&

1+cos P—(L+1—M)&(L+M)iYi~ '(p n)*e '~ e '& . (A19)

APPENDIX 3. EVALUATION OF A CLASS OF MATRIX ELEMENTS

It may be shown by group theoretical methods that if an operator transforms under change of
coordinates according to the relation

H(L, M'; 0, e) = Q~ H(L, M', e, 4)D&~'(a, P, »~, ~,

the matrix elements of the operator are given by

(JmlH(LM)
l
J'm') =C(J'LJtl

l
J'Lm'M) = C'(Jml Y

l
J'm'),

where C and C' are independent of m, m', and 3L"
"See also reference 7, page 182.
"Reference 7, page 204, Eq. (16b).
'9 Reference 7, page 264, Eq. (19).

(A20)

(A21)
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The opera, tora

Hi(LM) =p Ao(LM); Hm(L, M) =p A,(LM), (A22)

where p is any vector and Ao and A, are the potentials of a spherical electromagnetic wave as given
in Table I, satisfy Eq. (A20). To show this, one proceeds as follows.

Let
P~= 21(—P.+iPo)' Po=P. P ~=2 (P tPo)

Ay=2 &(A +iAo)' Ao=A ' A —g= 2 &(A iAo)

Then

H, (I., M; &1, y) = Q P.(8, &o)Ao, .(L, M; &1, s)
e~+1, 0

P, (&1, y)(L1LMIL1 M —o o)fr, (kr) Fr,~ '(0, &o) exp ikct-
e~&1, 0

D&"(n, P, y). ..D&c'(o., P, y)w, m .P. (8, 4)(L1LMIL1 M —o o)
tr, &r', M'

Xfc(kr) Fc~'(8, 4) exp —ikct

(LIM'o'~LIL' M'+o')D&c'(~, p, v)w+. , ~(L1L'M~IL1 M oo—)
e, a', M', L'

XP~ (8, 4') (LILM ~IL1 M oo)fz, —(kr) Yz~'(8, 4) exp ikct—
= Q (L1LM'

~
L1 M' —o o) D&c&(a, P, y) pg. , If c(kr) Fg,

'—(8, 4)P.(8, 4) exp —zkct
cr, M'

=P~. D&c&(a P y)~, ~Hg(L, M;8, 4).

A similar demonstration gives the corresponding result for H~(LM). It has therefore been shown

that the matrix elements of the operators of Eq. (A22) are given by Eq. (A21).

Errata: A New Method of Measuring the Electric Dipole Moment
and Moment of Inertia of Diatomic Polar Molecules

)Phys. Rev. 70, 570 (1946)j
HAROLD KENNETH HUGHES

Socony- Vacuums Laboratories, Brooklyn, Nne York and Pupin Physics Laboratories,
Columbia University, ¹mYork, Net York

~HERE are typographical errors in Eqs. (1) and (4). These should read
as follows:

6IJ,'IE'
f= =4.529 X 1075p, 'IE'.

20(9)104kk'

I= (P/c&')(1.97X10 "),g cm'. (4)


