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The only other well-established case of inverse
predissociation is the observation by Stenvinkel"
of the emission of the predissociated lines of
AlH under conditions that strongly favor forma-
tion of AlH molecules from Al and H atoms in
two-body collisions.

Independent of the specihc mechanism of the
recombination process it follows that the dissoci-

"G.Stenvinkel, Zeits. f. Physik 114, 6O2 (1939).

ation energy of the C~ molecule is less than the
excitation energy of the v'=6 level and larger
than that of the v'=5 level that is between the
limits 3.4 and 3.6 volts —probably closer to the
upper limit. This value depends of course on
the correctness of the assumption of a recombi-
nation process for the explanation of the selective
emission of the v' = 6 progression of the Swan
bands (i.e., the high pressure carbon bands).
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' 'N a recent Letter to the Editor, Serber' has
pointed out that the existence of the straight,

6eld-free sections of the racetrack synchrotron
introduces a condition for the stability of the
orbits which depends upon (a) the ratio of the
length of a straight section to the radius of
curvature of the circular portions of the orbit
and (b) upon the frequencies of oscillation in the
circular portions. These latter, the frequencies
of the Z and of the radial motion, are propor-
tional to (n) & and to (1—e) &, respectively, where
'fI is the coefFicient determining the fall-off law
for the magnetic field.

The calculation made by Serber was for a
racetrack with two equal straight sections, and
it was found that the proposed dimensions of the
Michigan racetrack, while leading to stable
orbits, were uncomfortably close to a region of
instability.

%e have reexamined the problem and have
extended the formulas to include the case of N
equal straight sections, each of length L„con-
nected by N circular arcs of length 2xr/X. The
method of solution was as follows. Consider the
mth passage of the electron through a circular
portion of the orbit. Let the coordinate describing
the particle motion within the tube be x and let

~ The work described in this letter has been supported
by the Bureau of Ordnance, U. S. Navy, under contract
NOrd-7924.' R. Serber, Phys. Rev. VO, 434 (1946).

the frequency of oscillation be &o. (x may be
identified with either the Z or the radial dis-
placement from equilibrium. )

x=2 sin~t+B cosset

At the end of the mth circular portion of the
orbit the electron enters the mth straight section.
Throughout this section i remains constant but
the particle has received a displacement of
amount Lx/s where s is its forward velocity.
The particle now enters the (m+1)th circular
portion and wi11 again be described by

x=A„+~ sinad+B +'cosset.

Recursion formulas connecting A +1 and 8 +1
with A and B may be easily found and solved.

A =A sinmm p, +8 cosmx p,
Br' = C Sln8$mP, +D COS1Ãm'P, ,

where A, 8, C, and D are constants which are
related through recursion formulas.

It is thus seen that the amplitudes vary
sinosoidally and that the motion of the x co-
ordinate approximates to that of a modulated
wave. This statement would be rigorously correct
if m increased uniformly with the time. Actually
m is an integer and therefore discontinuous.
However the orbit, which is in reality composed
of short sinusoidal arcs connected by straight
lines, will closely resemble a modulated sine
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curve. The frequency of modulation may be
determined through the quantity ~p and the
equation which fixes its value also constitutes
the stability condition, since cosxy must lie

between +1. In agreement with Serber, ' we find,

cos7I p = cos'Jt'v —p slI1'Ev.

In this expression v=2n&/N and p=n&L/d for
the Z motion where d is twice the radius of
curvature of the circular arcs. For the radial
motion v = 2 (I—n) &/E and p = (1 n) &L—/d. From
our earlier study' it appears that the magnetic
fall-ofF parameter n should lie in the range from
0.56 to 0.75. In the following calculations a value
of e=~~ has been used. For the number of
straight sections, %=2, 3, 4, 6, and 8, the ratio
L/d must be less than 0.363, 1.06, 1.64, 2.69,
and 3.69, respectively, if the resulting orbits are
to be stable. Originally the design of the Michi-
gan synchrotron called for a ratio L,/d=0. 30
which is therefore just inside the range of sta-
bility for the case of N = 2. When the number of
gaps is increased to 3 or more, however, it is
clear that I/0 =0.30 is far from the instability
region and indeed may be somewhat increased
with safety.

A second way of viewing the phenomenon is to
calculate the degree of modulation. This quan-
tity, R, may be defined as the ratio of the greatest
amplitude of oscillation which the particle
achieves to its least amplitude. As I./d is de-
creased, R will increase and become infinite at
the point of instability. A calculation yields the

' D. M. Dennison and T. Berlin, Phys. Rev. 69, 542
(1946).

N
2

3

6
8

R (Z motion)

2.45
1.30
1.27
1.32
1.38

R (radial motion)

1.21
1.19
1.22
1.28
1.35

Since the final yield of high energy electrons
wi11 probably be greatest when R is the least,
the logical choice for the number of gaps is 4,
and the Michigan synchrotron wi11 be so con-
structed.

A study has been made to show how the
stability is affected by an inequality in the
lengths of the straight sections. It was assumed
that the racetrack contains two opposite sections
of lengths I.i and two sections of lengths I.~,

each section being connected by a quadrant of
circular arc. The stability condition becomes,

~
2 (coss v —p| sins v) (coss v —

pm sins v) —1
~
(I,

where for the Z motion v= ', n&, p~-=L~n&/d and

pm L~n&/d. A new ——region of instability is thus
revealed, namely when the values of pq and pg
bracket cote'. It would appear easy to use
dimensions for the 4-gap track so as to avoid
this region. (Incidentally the value p=cots v is
just that point where instability sets in for the
2-gap racetrack. )

formula,

R'= (sins v+p coss v+p)/(sins. v+p coss v —p).

In the following table R is listed for various
values of N and for both the radial and Z
motions. It has been assumed that L/D=0. 30
and s= 3.


