
H. EKSTEI N

From (2.9), (2.11), (2.14) we find e'=(m/2a')&.
Similarly the values of A and 8 can be found to
be

A = (m/2a')&(4a —m)/(2a+m), (2.16)

8= (2a'/m)&(2a —2m)/(2a+m). (2.17)

As our final solution for the gravitational po-
tentials we obtain

e&= (1+m/2a)~/(1+mr'/2a')' (2.18)

e"= L2a —2m+m(4a —m) r'/2 a']"-/

((2a+m)(1+mr'-/2a') j'. (2.19)

GI. CONCLUSION

In the Schwarzschild solution it was found4

that a sphere of given density is bounded in

mass and size by m ~& 4a/9, a'- ~&8P/9. In our
solution these bounds are smaller and are given
by m »&0.4a, a'- &» 0.278"-. Thus an observer using
an isotropic coordinate system would find smaller

4 A. S. Eddingtnn, reference 2, p. 170.

upper bounds than an observer using a coordin-
ate system in which the line element takes the
form (1). This shows that these upper bounds
are definitely a property of the coordinate sys-
tem used by the observer, and it is conceivable
that coordinate systems may exist in which these
upper bounds may be infinite.

Having obtained the interior solution it is
easy to show that the complete solution is
mathematically equivalent to the Schwarzschild
solution. It is already known that the trans-
formation

r = (1+m/2r) 'r, r & a

takes the isotropic exterior solution into the
Schwarzschild exterior solution. The trans-
formation

i' = (1+m/2a)'r, '(1+mr" /2a'), 0&~r &~-a

does the same for the interior solution. 3'Iore-
over the two transformations piece together con-
tinuously at the boundary r =a.
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The vibrations of anisotropic bodies under the inAuence of sinusoidally variable volume
forces and boundary stresses are investigated. The displacement components are represented
as sums of a system of "zero-order" solutions which solve approximately the free-vibration
problem. By using Betti's theorem, the problem is reduced to a system of inhomogeneous linear
equations which, for the free-body case, further reduces to the homogeneous system derived
in an earlier paper (reference 2}.If the external forces are piezoelectric, the forces are no longer
given explicitly because the electrical field distribution is known only if Maxwell's equations
are solved simultaneously. However, if the pertinent piezoelectric constants are small, the field

can he calculated approximately as if the crystal were not vibrating. The solutions can then
be obtained by the above method, and the electric reaction of the crystal upon the driving sys-
tem can be determined. As an example, forced vibrations of thin quartz plates between parallel
electrodes are discussed.

L INTRODUCTION

HE rigorous solution of vibration problems
meets such great mathematical difhculties

that even in comparatively simple cases only
approximation methods can be used. The analogy
with scalar vibration problems of the Schrodinger

type suggests that the solution U, might be
represented as a linear combination of "zero-
order" functions I;{&. This method is straight-
forward if the u, {"& satisfy the boundary condi-
tions of the problem. But in most cases, the
convenient system I;& & does not satisfy the
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given boundary conditions. In this case, the sum

U, =A u;&")

cannot be differentiated term by term after
being inserted in the difkrential equation of the
problem. In the following, the self-adjoint prop-
erty of the differential operator, as stated by
Betti's theorem, is used to avoid this diAiculty.
It is then only necessary to assume that an
in6nite series involving I;™may be integrated
term by term, a condition which imposes fewer
restrictions upon the series. In this manner, the
coe%cients A can be calculated after a secular
equation has been solved. The usual methods of
perturbation theory can be used to obtain
approximate solutions.

The piezoelectric excitation of vibrations pre-
sents a more complicated problem. The stress
depends upon the electric 6eld which in turn
depends upon the strain. It would be necessary
to solve Maxwell's equations simultaneously
with the elastic equations. The following ap-
proximation method can be used when the
piezoelectric constants are small, as in most
cases: the electric field is put equal to the external
fieid (in absence of the crysta1) so that the
problem reduces to the case of given surface and
volume stresses. Once this problem is solved,
e.g. , by the perturbation method described
above, the polarization ean be expressed in terms
of the known strains. Kith this value of the
polarization, the electric field equations are
integrated again. As a result, one obtains the
electric reaction of the crystal upon the driving
system. Successive higher approximations can
be obtained by inserting ihe improved values of
the electric 6eld into the elastic equation, etc.

It is convenient to represent the reaction of
the crystal upon the driving system by an
equivalent electric network. It will. be shown
that this is possible if the network contains a
series of parallel resonant circuits and a series of
resonant circuits which are coupled inductively
and capacitatively to the parallel circuits. The
values of the circuit elements can be expressed
completely in terms of the crystal constants.
This equivalence will be discussed for a particular
case.

Very little is known about the energy dissipa-
tion in crystals. Although Voigt has developed a

formal theory of friction, in which the frictional
stresses are proportional to the rate of change of
the strains, experiments have shown that the
process is more complicated. In the case of
quartz, e.g. , the friction depends mainly upon
the minute surface irregularities' rather than
upon volume constants. Under these coiiditions,
it seems preferable to renounce an introduction
of damping in the general equations and to insert
simply a damping constant into the final formu-
las, or to insert a resistance into each resonant
circuit of the equivalent electrical network.

II. FORCED VIBRATIONS WITH GIVEN
EXTERNAL FORCES

In this section the forced vibrations of a non-
piezoelectric crystal, driven by sinusoida1ly vari-
able volume forces and boundary stresses, are
treated. Only cartesian coordinates are used, so
that we do not need to distinguish between
covariant and contravariant tensors.

In the steady state, all mechanical quantities
have a time-part exp (irut) where v=ru/2s is the
frequency of the driving forces. In the following,
this time-part mill be omitted. Let U; be the
displacement components, and

the strain tensor. Kith the usual convention on
summation, the stress tensor is

where
&s~I;i =&~sat =&~aj; = 4s~u, =A~t&.

The dynamical equations are:

f (e) +p~2U, —

where f;&'~ are the components of the volume
force. If q;&') are the components of the boundary
stresses, then the boundary conditions are:

T;;n; = n;c;;q~B U—q/Bx~ = se;~'~

where n; are the components of the normal to
the surface, directed inward. The solution U, is
now represented as a linear combination of

' K, S. Van Dyke, Pmc. I.R.E. 23, 386 (1935).
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functions I & ' satisfy any specific boundary conditions. Practi-

U=A u& ) cally, one will choose solutions of a reasonably
s

similar but sufficiently simple problem for u "".
where in general the number of functions u, &"& We multiply Eq. (4) by u;&"&, sum over the
will be infinite. It is not required that u;t' & indexi, and integrate over the crystal volume:

8"- UI..
dv.I u &"&(f &'&+ pea'U )dv= — u,'"'c;;&&

Bxpl9X i

Through integration by parts, the second member becomes

OUI,
u&" c&;, ;kdv= ' u, &"&n;c;,&, & ds+ I c;;&,.&

ax;ax, ~ ax, BX& BXg

the first integral on the right-hand side being extended over the surface.
The second integral of the second member of Eq. (8) does not change when the functions u, &"' and

V; are interchanged, on account of the symmetry of c;;I„-i. Therefore

l &u&"&

~&

l

dv =
~

u;("~c»I„-i dv+, u;(")n&c;&ki dh
Bxt ~ BxBxI, " "xl

8'u (") i)uI„.(")

j Uc p i de+ Unc p i
—ds.

BX&l9X~
~ BXi

Equation (9) expresses Betti's theorem.
Equation (7) may now be written

l
8'up(") t 8uj.-(")

u &"&(f &'&+pau'U~)dv+ Uc;p& dv+ ~ Un, c;;&& ds+ j u, &"&qr,&'&ds=0.
&&X&.&&x& I& &&x&

(10)

In the last integral Eq. (5) has been used.
We substitute Eq. (6) for U; and assume that the integration can be carried out term by term.

If we define

8'uI„.(")
t

Bug(")
IInm = I~me = u ~ &~'yI;i d&'+, us ng&sg't;i

ax;axi ~ ax&

P = ' f,&'&u;&"&dv+ C &&&;&'&u,&"&ds,

(12)

(13)

then Eqs. (10) and (6) yield
A (p«PN . H„„)+F„=O. — (14)

The fact that II„„=II„„in Eq. (12) results from
Betti's theorem (Eq. (9)).

In the case of free vibrations, Ii„=0, and Eq.
(14) becomes a homogeneous system of linear
equations which has non-vanishing solutions only
for certain characteristic values of p+'. This case
has been discussed in a previous paper. '

' H. Ekstein, Fhys. Rev. 50, 108 (1944). Further referred
to as I.

Let us suppose that the functions u;( ) are
exact solutions of the free problem where

f,"=&&~&'& =&0. Then it can be proved that the
"non-orthogonality" integrals X„vanish for
n /nz. 3 The non-diagonal elements II „also

' A. E. H. Love, Mathematical Theory of Elasticity (Dover
Publications, New York, 1944), p. 180. This is not neces-
sarily true for degenerate solutions but it can be so postu-
lated.
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vanish in this case, because by Eq. (4) (for
f &=0) the volume integral in Eq. (12) becomes
proportional to N„and, therefore, vanishes,
while the surface integral in Eq. (12) vanishes
in virtue of Eq. (5) (for s,&' =0). Then Eq. (14)
red uces to

A „(psPE„„JI„—) +F„=0,

In these equations, EI, are the components of the
electric held intensity, e;;& the piezoelectric con-
stants, a;i the (clamped) susceptibilities, and I';
the components of the electric polarization.

Ke consider again the steady state, where all
variables have a time-dependent factor exp (aA)
which will be omitted in the following equations.

The dynamical equations are again

(16} paP U, =BT,;/Bx;, (4a)

By Eq. (6) we have

por2N„„—II„„
as in Eq. (4) in absence of external mechanical
forces, and the boundary conditions are

—F„u;~"~

po)~N„„—JI„„
(17)

which is, of course, equal to the solution of the
analogous scalar problem. )f we want to take
into account the effect of energy dissipation,
we simply add an imaginary term to the denomi-
nator:

where q„may be a function of the driving fre-

quency, but not necessarily proportional to it.
In any case, when the dissipation is small, only
one term of the series (18) will be important,
vis. the term for which

III. PIEZOELECTMC EXCITATION OF MECHANICAL
VIBRATIONS AND REACTION UPON

THE DRIVING SYSTEM

%hen a piezoelectric crystal is placed between
two electrodes with sinusoidally variable poten-
tial di6'erence, it is excited to mechanim1 vibra-
tions. It will be assumed that the crystal is
otherwise free from mechanical forces. According
to Voigt, the general equations of piezoelectricity
are —T;;= c;p, (Sp) —e;;Imp,

I' =&I i,SI ~+~;I~a. (21)

psF—II„„/N„„.

On the other hand, if the functions u, (") are not
exact solutions of the "free" problem under
consideration, but solutions of a similar but
simpler problem, then the above statements are,
in general, true approximately, except when
several I,&"' are degenerate. One case of this
particular type was discussed in I.

T;;n, =0.

These equations do not yet fully determine the
problem, because the held intensity is in turn
dependent upon the strains.

Jn the absence of true charges, we have

and
188

curl E= ——
c 8t

(22)

(23)

Ke shall consider only comparatively low fre-
quencies so that the second member in Eq. (23)
may be disregarded. We then have the equation
of the static held

88;/Bx BZ /Bx, =0— (24)

and the held intensity can be represented as a
potential gradient:

(25)

On the conducting electrodes

V= constant,

Eg ——0,

D„=4m',

' (26)

(27)

(28)

where q is the surface charge density, D„ the
normal component of the displacement, and E&

the tangential component of the held intensity.
According to the method discussed in the

introduction, we hrst calculate the held as if the
crystal were absent, i.e., we integrate the electro-
static problem defined by Eqs. (22), (24) to (26)
as if I'; were zero. In this manner, we obtain a
held distribution described by the function E„.
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TABLE I. Comparison of notation.

Uoigt
This paper

X P ~ Xz
x1 X. X8 S11

Py Sz Ps Xg Xy

S2E S83 2S.8 2SI 8 2S12

TABLI. I I. Correlation of subscripts.

Uoigt
This paper

2
22

4 5 6
23 13 12
or or or
32 31 21

Uoigt X F'„Z, V. X, X„g v

This paper TII +22 +38 ~23 ~13 r"I +I U2

here with the constants c „used by Voigt, it
sufFices to correlate each pair of subscripts (U')

and (kl) with one of Voigt's subscripts n and m,
respectively. Table I I gives this correlation.
e.g., our constant c$232 c$223 equals Voigt's con-
stant c64=c46. The physical definitions are iden-

tical with those of Voigt, e.g. , the stresses are
positive when they are compressive.

The piezoelectric constants e;;y must satisfy
the following symmetry requirements:

e;;A-,
——e;;I„e,;~ = e~~;,

~%I;
+p+ U = —

Ci&7;I

Bx~ 0x&Bxf

(29)

and by Eq. (5a)

Inserting this into Eqs. (2) and (4a) and taking
into account the definition of S&i (Eq. (1)) we
obtain

if they are to agree with Voigt's piezoelectric
constants e . The correlation between our con-
stants e;;& and Voigt's e is found by replacing
the first pair of subscripts (ij) by Voigt's corre-
sponding subscript e according to Table I I;
the third subscript k of our notation is identical
with Voigt's second subscript m, e.g. ,

~123 ~63 ~232 e42 ~

UI,
@~Cig I, &2& i~Ir~01~

&xi
(30) IV THIN QUARTZ PLATES OF THE Yi TYPE

Equations (29) and (30) a.re analogous to Eqs.
(4) and (5) which can be solved by the method
discussed in Section II. Let the solution thus
obtained be U, .;. If this is inserted into Eq. (21)
we obtain

~ U.a
+ii,iEii

Bx)
(31)

4 W. G. Cady, Physics /, 237 (1936).

as a first approximation for the polarization.
8&& are here the components of the field intensity
in first approximation, which can be determined
by integrating the electrostatic Eqs. (25) to (27)
together with Eq. (31). When this is done, Eq.
(28) yields the first approximation of the charge
density, i.e. , the reaction of the crystal upon the
driving system.

This method follows closely the one which
Voigt uses for the static problems of piezo-
electricity. The same method has been used by
(.ady4 for a particular vibration problem in
piezoelectricity.

It seems necessary to establish the corre-
spondence between the abridged notation used
in this paper and Voigt's notation (Table I).

In order to correlate the constants c;;H used

The general method will be applied to the
case of thin rectangular quartz plates which
have one of their major edges parallel to the
crystallographic twofold axis. The Ar and BT
crystals on which most of the experimental work
concerning coupling of modes has been done,
belong to this type. The crystals under con-
sideration have metal coating on both major
surfaces but otherwise they are free. The weight
of this metal will be disregarded.

In this section the explicit notation of Voigt
will be used rather than the abridged notation
of the preceding sections. The edges will be
assumed to be parallel to the x, y, s direction
and to have the lengths 2a, 2b, 2c, respectively,
and the thickness 2b to be small as compared
to either 2a or 2c. The origin of the system of
reference is at the center of the plate.

The first step is to select the zero-order modes.
Of course, this selection is largely arbitrary, but
the nature of the problem suggests the convenient
choice. As pointed out by Atanasoff and Hart'
the vibrational spectrum of thin plates becomes
simple as the lateral dimensions tend toward
infinity. The complex spectrum actually found

~ F. V. Atanaso6' and P. F. Hart, Phys. Rev. 59, 85
{1941}.
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on thin plates can be attributed to the existence
of the small lateral surfaces. It is logical, there-
fore, to consider as zero-order functions those
which satisfy the volume equations of free vibra
tions (Eg. (4) unth f,&'=0) and the boundary
conditions (5) of free vibrations on the major, but

not on the lateral surfaces Th.ese zero-order
functions will be closer to exact solutions as the
lateral surfaces are smaller in comparison to the
major ones.

It has been shown in a previous paper' that,
if the solution is assumed under the form

(33)

dimensions a and c, and the wave number 0, is of
the order of magnitude of the inverse thickness
1/2b.

We shall apply the method developed above to
this case. If the presence of the crystal is disre-
garded, the electric 6eld between the two plane-
parallel electrodes is

E.„=—V/2b, E. =F„=O,

disregarding, as usual, the small curvature of the
lines of force in the neighborhood of the lateral
edges.

According to Eq. (29) the dynamical equation
is that of the free body:

it is possible to satisfy the above-mentioned
requirements with elementary functions of y.
Furthermore, it is possible to satisfy approxi-
mately the boundary conditions of free vibra-
tions on the lateral boundary, by convenient
choice of o..

One particular type of zero-order mode was
tres, ted explicitly in (II), namely,

p Us= Csjioi
xl

(38)

—n c "I,-

Bxl
= ~~s22~oy

On the major surfaces, we have n&=n3=0 and
n& ~1 for y= &b, so that Eq. (30) becomes:

cos

sin

x sin —y+ (m odd, n odd)
2b

x sin —y+ (m even, n odd)
2b

(34)

As the subscript i runs from I to 3, Voigt's
corresponding subscript n takes the values 6, 2,
and 4, so that the piezoelectric constants in Eq.
(39) are e62 e22 and e42. But according to Voigt,
the constants e22 and e24 vanish, since the x axis
coincides with a twofoM axis. Therefore, we have

1tcuy: t
n q' ~m q' '

=-I —
l I

—I+hi —
l

2 & p i &2b) (2a)
(35)

and the components v and m are proportional to
b/a. The frequency belonging to this mode is

~UI,—'n;c2;I,
&l

= —
n&c3&pi

Bx~

—n) c;;I,i = &e62F,„,
Bxg

=0

If a tends towards infinity, this "thickness shear
mode" becomes identical with the thickness- If we introduce the symbols q;&'& of Eq. (5) for

shear solution for an infinite plate the first members of Eq. (39), we obtain

nx'I=sin —y
2b 1 t'c66) ' n

with r= —
l

—
l
—.

2L p) 2b

P1( ) —~g62jV q)2( ) —P3( ) —0 (41)

The quantities F„defi end by Eq. (13) are:
(36)

F,= eg2E.„ t (u„(b) u„( b) jdx—ds, —(42)
From the equations given in (II) the existence
of other types of zero-order modes of the form
(33) could be inferred. For these "lateral" modes
the frequency is mainly determined by the

' H. Ekstein, Phys. Rev. M, 11 I'1945). Further referred
to as II.

where P stands for one of the zero-order modes.
According to the discussion in Section 2, only
those zero-order modes whose frequencies are
near the driving frequency &u/2s. , will be of
importance. We shall discuss here the case where
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Fp = 862K py2 ' 2c
16

cos xdx = cae«&E,„(43).
2c w1r

If all the zero-order functions are chosen, the
coefficients of Eq. (14) are known. After solving
for A~, the solution appears under the form (6):

U; =A„u,(».

Ke now have to calculate the charge q on the
electrodes by Eq. (31).The quantities U,~ there
are identical with the approxirriate solution used
here. Because of the linear character of all the
equations, we can determine separately the
contribution to q of the applied voltage V and
those of the zero-order modes I;&».

The contribution of the voltage V alone, dis-

regarding the crystal motion, to the surface
charge density is the same as for a non-piezo-
electric crystal plate in a condenser:

one of ihe high frequency shear modes is excited,
i.e., when ~ is close to one of the values given by
Eq. (35). When the index p in Eq. (42) refers
to one of the "lateral" modes, then the quantity
n in Eq. (33) is of the order of 1/b so that ii
changes its sign many times between x = —a
and x= +a. Therefore, most of the integral (42)
mill cancel out, and these quantities Ji~ will be
very small. The "lateral" modes are only slightly
"driven" by the exciting held, These values I'„
will be disregarded.

In general, F„vanishes for each mode u~ which
is an even function of y or an uneven function of
x or s, as can be seen from Eq. (42). Therefore,
the thickness-shear modes I& with m even, ac-
cording to Eq. (34), are not "driven. "

For the thickness modes with m and e odci,
we lind by Eqs. (34) and (42):

is the dielectric constant of the plate in the y
direction.

The separate contribution of each zero-order
mode is determined by putting V=0 on both
electrodes. The "lateral" modes will give a negli-
gible contribution to the charge Q because the
integration over x cancels most of the half-waves
against each other, just as for the excitation.

For the thickness modes, the displacements
are slowly variable functions of x. We may
expect, therefore, that the x and s-derivatives of
the electric field will also be small. In the fol-
lowing, all terms proportional to b/a will be
disregarded when they are in addition to terms
of the order of unity. Under these conditions,
we can write for Eqs. (22) and (24):

div D =BD„/By = 0,

BB,/By =0,

BB./By =0,

(48)

(49)

for the contribution of one single zero-order
mode of the shear type. From Eq. (34) it is clear
that of the derivatives Buz/Bx& only Bu/By is
large; all others are smaller by a factor of order
b/a and can be omitted. Integrating Eq. (50)
we have:

Bu&»
D„=4~e„+a,aZ„=4(x, z),

By
(51)

so that D„, E„and 8 are constant. Since, by
Eq. (27) E, and E, vanish at the boundaries,
they must vanish everywhere.

From Eqs. (31) and (47) we obtain

BD„B-
Buk, &»

=—4irsg&2 + (1+4'&&2')E„=0 (50)
By By Bx&

&I, = (1+4wi&22)
8xh

(44)

where p is a function of x and s only. We inte-
grate Eq. (51) over the thickness remembering
that

whe. re

ac
t

Q. = &Idxds = e~ V,
J 2'

on the plane y=b and the opposite at y= —b.
The total charge due to the applied voltage is

for this calculation:

4seg, E~«'&(b) —u&i'( —b) j= 2b&. (52)

e;2 ——1+ 4~ad (46) Eliminating &I from Eqs. (51) and (52) and
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Fi(-.. 1. I'&equivalent network.

inserting D„ into Eq. (28) we have

Q(» —,t (l(n)deeds

4me62
~Lu(»(b) —u")(—b) jdxds. (53)

4~2b J

8acee~
(m odd),

myra
(54)

Q(» ——

Q(» =0 (m even).

The total charge will be the sum of Q, and
of the contribution of each mode, Q'», multiplied
by their respective coefFicients A~:

ac~22 V SaCe6o
Q= Zn ~. —

2mb mph
(55)

The subscript p stands for any combination of
odd integers m and e. The current flowing
through the crystal is

The minus sign in the third member is caused by
the fact that at the electrode y=b, the normal
n has the (—y) direction.

Inserting the functions ee(» from Eq. (34) into
Eq. (53) we can carry out the integration:

case of electric excitation. Giebe and Scheibe, v

and Giebe and Blechschmidt' used a semi-

empirical equivalence to derive vibrational fre-
quencies which could not be calculated. They
replaced the crystal by a number of coupled
linear oscillators to which they attributed certain
characteristic frequencies and coupling constants
which were partly surmised and partly deter-
mined empirically.

Lack' found that the variation of resonant
frequencies of a quartz crysta1 subjected to
temperature change can be represented quali-
tatively if it is assumed that the crystal is
equivalent to a system of two coupled resonant
circuits, one of which is being driven by an
external force. A great number of papers dealing
with crystal vibrations have used this empirical
analogy, but none of them has derived the
equivalent network from the equations of elas-
ticity.

The following network analogy is based upon
the approximate solution of the piezoelectric
equations.

The individual terms of Eq. (56) can be
considered as partial currents fIowing through
impedances which are all connected in parallel.

The first term

paceee V Saceee ~
I=i(oQ=ee)l —P A„l. (56)

L. 2sb mob )
V. ELECTRIC NET%'ORE ANALOGY

In most cases of piezoelectric excitation, the
reaction of the crystal upon the input voltage is
measured. Therefore, it seems convenient to
substitute for the crystal an analogous electric
network.

However, the representation of crystal vibra-
tions by equivalent networks has played a role
in the recent research which is not limited to the

js equlvalcllt to the CUI lellt thlougll a condense1"

of capacity

Co =aceee/2wb (57)

~ E. Giebe and rX. Scheibe, Ann. d. f'hysil I 5j 9, 93
I', 1931).

8 E. Giebe and E. Blechschmidt, Ann. d. Physik 18, 417
41933).

'F, R, I.ack, Bell Sys. Tech. J. 8, 515 (1929),

which is the static capacity of the quartz plate.
The other terms are equivalent to partial
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Fio. 2. Simplified equivalent circuit.

currents I„flowing through a number of parallel
branches, each of which represents an uncoupled
thickness mode.

It follows that
e~68cc

(58)

if ns refers to any parallel branch.
The general network representing the crystal

has the equation

(59)

Ke take V~= V for all subscripts referring to
thickness modes (m odd) and V, =0 for all other
equivalent meshes. In Eq. (59) M„, is the mutual
inductance and C„, the mutual capacitance of
two meshes.

In particular

(61)

y =8@~ac/msb

If energy dissipation is to be taken into
account, each mesh can be assigned a resistance

Cq, =C,

are the self-inductance and the capacity of a
single mesh. If the Eqs. (15) which determine
the values A~ are to be identical with Eq. (59)
then it follows from Eqs. (43) and (58) that

R~. As pointed out in the introduction, these
resistance values are not determined by crystal
constants, but mainly by small irregularities
variable from one crystal to another.

Figure 1 illustrates the network.
If a suitable analytical form for the lateral

zero-order modes were known then Eqs. (61)
in conjunction with the definitions (11) and (12)
would allow a determination of the reactive
components of the equivalent network. As this
is not the case, we limit ourselves to a qualitative
d tscussron.

If the exciting frequency co is dose to the
natural frequency of one of the thickness modes
so that

pre' —H„/X„= p/I. ,C,

then the other parallel branches will oHer a
very high impedance and can be disregarded.

In general, one or several lateral zero-order
modes will have values II«/X«which are close
to p~'. This corresponds to a state where one or
several coupled circuits are tuned to the parallel
branch which is at near-resonance. In this case,
even small values of the corresponding constants
II~, and N„, will give rise to a considerable
effective coupling. The resonance curve will

exhibit the familiar "double-hump" shape.
However, it will be possible to 6nd crystal

dimensions such that the quasi-degeneracy de-
scribed above does not appear. In this case, the
coupled circuits may be disregarded, and the
whole equivalent system reduces to the well-

known simplified circuit (Fig. 2).
If it is desired, as in most practical applica-

tions, to have a resonator with the least possible
energy dissipation, then the crystal dimensions
will be chosen so as to avoid the coupling as far
as possible. This circumstance was empirically
recognized by Sykes" who also measured a
number of desirable crystal dimensions.

"R. A. Sykes, Bell Sys. Tech. J. 28, 52 (f 944).


