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respectively, those numbering beyond n being unsigned. Considered in terms of various dimensions n, we may set up the
following matrix correspondences.

initial representative{x}:,const.
&x~'

I )
&x,'x, 'I)

resultant representative
&xI)

v2(xxx'I )
vS&xxg'xs'

I )

Q(x)Q(x ): const. ~

(xg'I)
(x,'xg'I ),

(2 1}&(xx'I)
(3 2)&(xx'xg'I )

(4 3)~(xx'xi'x, 'I) ,

etc.
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In this article a general theory of transport processes in fluids, developed from equations of
hydrodynamics and thermodynamics which have been generalized for application to multi-
component systems, is presented. The equations for the flow of entropy and masses of com-
ponents of the fluid, obtained from the local entropy dissipation, are used to treat the processes
of viscosity, mobility, diffusion, electrical and thermal conductance, thermal transpiration,
thermal diffusion, and the homogeneous thermoelectric eEect. Reciprocal relations and other
properties of the coefFicients associated with each process are obtained and also inter-relation-
ships between the coe%cients of the various processes. The special conditions for the steady
state, the state of pure thermal conduction, and the state of equilibrium are considered. In-
vestigation of the steady state in thermal diffusion indicates that mass flow may persist, con-
trary to the usual assumption in treatment of experimental data.

ARIOUS attempts have been made to pro-

~

~

~

vide a phenomenological theory of specihc,
irreversible processes in Auids. One of the most
recent appears in the thesis of S. R. de Groot. '
The method there employed appeared susceptible
to generalization into an inclusive theory of
transport phenomena in fluids. Such a theory is
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Kansas.' S. R. de Groot, I'Eeet Soret. Diggsion Thernuque dans
Les 2'buses Condensees {N.V. Noord-Hollandsche Uitgevers
Maatschappij, Amsterdam, Holland, 1945).

presented here. In its development will be found
results di6'ering materially from those of de Groot.

DERIVATION OF THE EXPRESSION FOR
ENTROPY DISSIPATION

Let us consider the hydrodynamic motion of a
fluid composed of several constituents. The equa-
tion of continuity for the ith constituent is

~p&l~t++ p&v&

or
dp~/dt+p;V v, =0,
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where
d/dt=8/Bt+v; V

is the "mobile operator" or time derivative
following the motion of the ith constituent, which
has a density p, and velocity v; relative to the
containing vessel.

In order to write the equation of motion we
shall need the expression for the partial stress
tensor for the ith constituent. This will be
obtained by a generalization of the method for
determining the stress tensor for a one-component
fluid. ' The total stress tensor %' is given by the
sum of the partial stress tensors %'; for the vari-
ous constituents in the fluid. Also for each
constituent we write down a rate-of-pure-strain
tensor 4;.

axes, all the symmetrical tensors %'; and W; can
be diagonalized simultaneously. We define the
partial mean hydrostatic pressure for the ith
constituent as

3p;—=P;+Q,+R;,
so that p, p;= p, the total hydrostatic pressure.
The natural generalization for a system of several
constituents of the relationships between the
components of the stress tensor and the com-
ponents of the rate-of-pure-strain tensor is

p~+ E—r ~'~(ar+»+cr)+ Z~ 2v *;a,,
Q, = —p;+p, X;;(a;+b;+cr)+p;2rt;;b;, (6)
R'= P'+—Er l *&(a~+b~+c~)+Z~ 2v'&c~

since motion imparted to constituent i will be
accompanied by motion of the other constituents
in the same direction. Therefore

and

where

a, =Bv;./Bx, b, =Bv;„/By, c;=Bv;,/Bz,
b, =Bv;./By+ Bv;„/Bx,
g; = Bv;./Bz+ Bv;./Bx,
f; = Bv 'p/Bz+Bv ' /8$.

so that

%';= —p,I++ 2v; (N —-', I~ v)

where I is the unit tensor. Let us write

%';= —p,I+x;,
where the tensor X; is given by

x;=P;2v, ;(e;—-', Iy v,).
For an isotropic fluid, by proper orientation of It can readily be shown that

(X; v) v, =Q;2v;;{(a,—-,'y v;)(a, —-', ~ v;)+(b,. ', ~ v,)(b;—-', ~ v,)

+(c, ', y v,)(c,—-,'v. v,)+—', (-b,&,+g,g,-+f;f;) I (1O)

which reduces in the case of a one-component Quid to twice the Rayleigh dissipation function for
viscosity. '

The equation of motion for the ith constituent can now be written:

p;dv;/dt=pg;+v e;,
from which we obtain the energy equation,

dv '/2
p; =F; p;v, +v; (V %'~)=F,"p~v, +V ~ (%'; v,) —(%',"V) v, .

d$
(12)

ln these equations %'; is the partial stress tensor of Eqs. (7) and (8) and F, is the external force acting
on unit mass of substance i in the fluid.

Consider now the three terms on the right of Eq. (12) contributing to the increase of the kinetic

See L. Page, Introduction to Theoretic al Physics {D.Van Nostrand Company, Inc. , New York, 1935), second edition,
p. 254.

Lord Rayleigh, The Theory of Sound (Dover Publications, New York, 1896), second revised edition, Vol. II, p. 315.
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energy of the Quid element. The 6rst, F; p;v;, gives the rate at which external forces perform work on
the element. If F; is derivable from a potential f'unction, then this term gives simply the rate of de-
crease of potential energy. For an element of volume 7, the second term can be written

V (e'; v;)dr= v,"e',"de. (13)

But %';.de is the force acting on surface do. as a result of the partial stress %';, so that v;. %',"de is the
work done per unit time on do moving with the Quid, without change in size or shape of the ffuid
element. On the other hand, the third term, (%'; V) v;, represents work done on the element in a
thermodynamic sense, tending to increase the internal energy P; by changing size and shape. If we
consider as a thermodynamic system a unit mass of constituent i in the quid, we may therefore write

p;dE„/dt+y Q;=(e, v) v";, (14)

where E; is the internal energy per unit mass of substance i in the fluid and Q, is the heat flow vector
for this thermodynamic system. According to Eq. (8)

(e'"v) v;= —P,v v;+(x,"g) v,

where the second term on the right is given by Eq. (10). Thus,

p,dE;/dt+v Q;= —p,v v;+(x,"v) v, .

Using Eqs. (14), (12), and (8), we obtain

p;dE;/dt+p' Q;=F; p;v; —p' (P,v;)+v (x; v,) —p;
dt

At this point it is necessary to introduce partial pressures as thermodynamic functions and to de-

velop the relations for the individual constituents of a multi-component system using these convenient
functions. The energy 8 and entropy 5 per unit mass of system can be written as

p~=Z p*~, (18)

where E; is the energy; 5;, the entropy, per unit mass of substance f; and p =g; p; is the total density.
But

dE = TdS Pd(1/p)+g; —p;d(p;/p),

where p, ; is the chemical. potential or free energy per unit mass of substance i. Therefore,

d(Z p E'/p) = Td(Z ' p ~ /p) Pd(1/p)+'2* p'~(p~/p)

Define partial pressure p; so that
E;= T5,—P,(1/p, )+p, .

(20)

(21)

2 pE!P=T K*PA/p Z*P*(1/p)+2 —p p*/p (22)

d(Z' p'«/p) = Td(Z' p'~'/p) —2' P*d(1!p)+2' u'd(p*/p)
+(2' p ~*/p)dT 1/p 2'dP*+2'(p*—/p)dp* (2 )

It is, therefore, consistent to let

so that from Eqs. (20), (23), and (18),

~d'1 (1/p)dP+2* (p /p)~p—'=0' (23)

which is the well-known Gibbs-Duhem equation. Ke sha11 identify the thermodynamic partial pres-
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sures defined by Eq. (21) with the hydrostatic partial pressures of Eq. (5). Differentiation of Eq. (21)
gives

But
dE;= TdS; p;d—(1/p, )+5;dT (1/—p;)dp, +dp, . (26)

so that

From Eqs. (2) and (27) we obtain

dE, = TdS; p;d—(1/p;)

S;dT (1 p—;)dp;+dp;=0.

p,dE,/dt=p;TdS;/dt p, V —v;.

(28)

(29)

II;=E„+p;/p; =p;+ TS;,
A, =E;—TS;=p; p;/p;, —
F,=E, TS,+p;—/p;= p;,

(30)

where Eg, , A;, and F; are the partial enthalpy, work function, and free energy, respectively, per unit

mass of substance i in the system Acc. ording to Eq. (27)

dH; = TdS, +(1/p~)dp;,
dA, = S;dT p—;d(1/p, )—,
dF; = S;dT+—(1/p, )dp,

The conditions for exactness of the diflerentials in Eqs. (27) and (31) require that

(85 /Bp;) „=1/p (8p;/8 T)s;,

(85 (~p )n ='1/p '(~p'/itT) ~'

(~5 /~P~) r = 1/P' (~p~/~T)

(~5*/~p ) r =1/P (~p /~T). ''

(31)

(32)

so that a set, of Maxwell's relations holds for each substance i in the system.
Returning now to consideration of motion of a fluid we combine Eqs. (16) and (17) with Eq. (29).

dt, 2/2
p;TdS~/dt+V Q;=(X;.V).v;=F;.p,v, —v,"Vp.;+V (X; v,) —p;

dt
so that

Tl p'dS;/«+V (Q/T) I =-(Q'/T) VT+(X' V) v

(Q/T) VT —v' (VP* p*F—')+V (X*—v') —p'

(33)

Jv~ /2
(34)

But the entropy How vector is defined by
S,= Q,/T.

Therefore, if 28; is the local entropy dissipation per unit mass,

2p;TS, = T(p;dS;/dt+V S;)

According to the second law of thermodynamics, 8; cannot assume negative values. Hence,

2p~Te;= —8; VT+(X,"V) v;)0,
dvP/2

2p~T8, = —S,"VT v,"(Vp,—p~F,)+—V (X; v;) —p, )0.
dt

Subtraction of Eq. (37b) from Eq. (37a) gives

v,"(Vp; —pp', —V. X;+p;dv~/dt) =0,

(35)

(36)

(37a)

(38)
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a result which can also be obtained by combination of Eq. (8) with Eqs. (11)or (12). Summing over
the index i we obtain the general relations for local entropy dissipation for hydrodynamic flow. The
total dissipation per unit mass of solution at a given point in time and space is the sum of the dissi-
pations for the individual flowing constituents whose motions are confluent at that point. Thus,

p8= Z' p*8'.

Therefore
2pT8=T(g; p;dS;/dr+ V S) &0

= —S VT+g, (X; V) v;&0
dv, '/2

SVT— g;v—; (vp; p;P;)—+g; V (x; v;) —g; p, &0
dt

(40a)

(40b)

(40c)

where we have written g, S;=S, the total entropy How vector. According to Eq. (35), the total heat
Row vector is given by Q = TS.

We shall use the term "energy dissipation" to indicate the function 18.The total energy dissipation
for an element of fluid of volume r is obtained from Eq. (40c):

dv /2
~IS VT+Qv,"(vp, —pF) Idr+p; v x de g; —p, dr)0

J dt
(41)

It can be considered as arising out of three processes. The 6rst volume integral represents dissipation
related to transport of heat and mass in the fluid. The other volume integral expresses dissipation
associated with deceleration of the fluid element —distribution of its kinetic energy of macroscopic
motion among the molecules of the fluid. Finally, the surface integral gives the work done by the
viscous forces, acting on the fIuid element as though it were a rigid body, i.e. , without change in size or
shape. (See the interpretation of the surface integral in Eq. (13).)

We now restrict our further discussion by the and the energy dissipation of Eq. (40c) becomes

2pT8= SVT p;—v; (Vp, +—pwca;))0. (45)
ds;2/2

V; 'Xs 'do' =
~ Pg

dt
(42 ) Define

J'=pivot and IIj=jk +pi. (46)

dvP/2
V (X, v,)=p;

dt

Then, using Eq. (28) we obtain
(42b)

2pT8= —(S+Q;5;J;) VT

F = —vy

Equation (38) now becomes

(43)

Ke are assuming here essentially that the entire
acceleration of any fluid element is produced by
viscous forces alone, acting on the element as
though it were rigid. Thus, we shall not consider
the phenomena of "pressure How" or bulk motion
of the fluid, but rather those associated with
dift'usion of the fluid constituents, generally re-
ferred to as transport processes.

(2) The external force is derivable from a
potential.

J;= g; s,;,VII; b,v—T, —

S+Q; S,J;= —Q; b~vII; cvT, —
(48)

(49)

where we employ the same coefFicients b; in both
equations in conformity with Onsager's reciprocal
relations. According to these relations, fur-
thermore,

—P; J; VII;&0. (47)

This expression appears in the form of Onsager's
dissipation function for the case of interacting,
simultaneous transport processes. ' Let

—v; (VP;+p;VP;) = g; V) v; (44) ' L. Onsager, Phys. Rev. N', 405 (j.93I);38, 2265 (1931).
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+11 +12

+12 +22

a1„b1
C2„b2

(52)

~ ~ ~

and each of its principal minors must likewise be
non-negative. Let

Substitution into Eq. (47) gives

Q;ta;;V11; V1I,+2 Q;b;V11; VT
+c(VT)') 0, (51)

so that, since the relation must hold for any
choice of VG; and VT, the determinant

We perceive that
(60)

where U;; is the mobility of the ith constituent
when the jth constituent is subject to unit force
per unit mass. The force on a unit mass of
constituent j arising from its presence in a tem-
perature gradient is —(S,+St*)VT when II; is
uniform. According to Eq. (52), the determinant

I V,yI
= Ia;fI/pyp2 ~ p &0 and any of its princi-

pal minors are likewise non-negative. From
Eq (5o) p'f/'~=prf/r'

From Eqs. (47), (55), and (54) we find

2,T8= —P,.J,"{VII,+(S;+S;*)VT }

Then
f,=g, a;;o;. (53) +) /T(v T)'& 0,

J;= —Q;a;;(VII;+o,VT),
S= Z' (o' —S')J'—(c—Z't a*to'o~) VT (54)
Q=Q; TS;*J; XVT, —

where 5;*=o;—5; is the entropy of transport per
unit mass of substance i and X = T(c g;; a,pr—;o;)
is the coefficient of thermal conductivity. We may
easily show by Eq. (52) that X)0. Expansion of
the determinant in terms of the elements of its
last rom and last column gives

where the asterisk denotes the co-factor of the
element a;; in the determinant

I
a~~ I. But from

Eq. (53),
o'= Z~ f ~a't*/I a-

I

so that c& Q; b;o, =P;;a;,o;o, and therefore
P &0. Elimination of the coefFicients a; and c gives

2pT8=+;; J; J,u;;*/Ia I+&/T(VT)'&0

where a;;* is the co-factor of a;; in the determi-
nant Ia „I. The elements of the adjoint de-
terminant

r't=a' /I a--I (61)

are coefficients of flow resistance. The determi-
nant Ir,;I and each of its principal minors are
non-negative. Also r;; = r;;.

2pT8=+;; r;;J; J;+X/T(VT) &0. (62)

SPECIAL STATES OF THE SYSTEM

An important condition of a flowing fluid is the
so-called steady state. From Eqs. (40a) and (47),

T(Q, p,dS~/dt+v S)

=-(S+Z'S'J') VT-2'J' Vii' (63)

so that, acording to Eqs. (3) and (30),
J;= —g;a;;{VII;+(S;+S;)VT},
Q= Tg; a; S;ovI—I

—{T P,;a,;S,*(S;+S;o)+X}VT.

Alternatively, using Eq. (28) we may write

J'= 2a' {(VP)-/p+Ve+S*V T}
Q= T2' a~ S''{—(Vf ~)/p, +V~, }

(T Z;;a;,S'*Sr*+—&)V T.

(55)
T 2' p'»'/»= —v Q —2' J' V(II'+0*) (64)

Also from Eq. (1),
(56)

Bp;/»= —V J;. (65)

ln the steady state 8S~/Bt=0 and Bp~/»=0.
(57) These conditions defining the steady state are

sufticient to require that every property at a
given point in the system be independent of

(58) time. Therefore

s apparent if we write
In the case of a closed system the components of

v; = —gy agy/p; {V11;+(S;+S;*)V T}. (59) J; normal to the surface of the fiuid must vanish

The physical interpretation of the coefficients v ~ J;=0 and v {Q+P; J;(II;+&~)}=0. (66)
0

a~) 1
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at the surface, so that

v Qdr =0 (67)

which is Fourier s law of heat conduction. From
Eq. (63),

T(p; pa 5~8/f+tVS) = —S VT)0, (71)

But

T Q, p,85,/Bt = —v Q = v (XVT). (72)

85;/Bt = (Cp,/T) BT/at

+&/p"(~p'/~T)s'~p*/» (73)

~here Cy; is the partial specific heat at constant
partial pressure.

v (XVT) =g; p,Cr;BT/Bt

+2; &Ip" (&p*/»). '~p'/»
In the steady state V (XVT) =0. If VT is small, X

when integrated over the entire fluid. However,
it is important to note that flow of mass in the
interior of the fluid and tangential to the surface
is not excluded and, moreover, there may even
be sources and sinks of heat flow, whose total
contribution must, however, vanish. If the sys-
tem is also adiabatically insulated only tangential
components of Q as well as of J; are possible at
the surface. The energy dissipation, of course,
need not vanish in the steady state but continues
to be given by Eqs. (40b), (47), or (62). Equation
(40a) becomes

2p TH = T(Q, J,"VS,+v S))0. (68)

The condition J,=O throughout the Huid will
occur, according to Eqs. (55) and (57) only when

vtI,+(5,+5,*)VT

=(vp;)/p;+v~, +S,*VT=O (69)

f«every J such that a;,WO. When e~ery J,=O,
Eq. (69) must hold for all values of j.The system
is then in a state of pure thermal conduction.
According to Eq. (54),

(70)

can be considered constant so that in the steady
state the temperature must satisfy Laplace's
equation. The state of pure thermal conduction
is analogous to the condition of a solid in a
temperature gradient but must be relatively rare
in a fluid.

It is instructive to consider the case of a pure
gas in a temperature gradient in the absence of
external forces. If J=O, according to Eq. (69),

vP = pS*VT—.
If we assume the relation p =pRT, we And

v In p = —(5*/R) v ln T.

(75)

clearly the density gradient should depend only
on the coeKcient of thermal expansion in the
case of Vp=Q. For a liquid we would likewise
expect a difference between S~ in the surface and

Let us suppose the gas is contained in a straight
cylindrical tube along whose length is the temper-
ature gradient. Then, as is well known, the
phenomenon of thermal transpiration occurs if
pressure is sufficiently low so that the mean free
path of the molecules is greater than the diameter
of the tube. A pressure gradient is established so
that

d(ln p)/d(ln T) =-,'.
Therefore at this low pressure 5*=—R/2. (R is
the gas constant per unit mass. ) Furthermore, 5*
will be constant along the radius of the tube since
the properties of the gas are determined through-
out by collisions with the wall and not by the
infrequent collisions between gas molecules. Now
if we increase the pressure of gas in the tube, the
wal1 wi11 affect only a small surface layer of the
gas and we can no longer expect S*to be constant
along the radius. KVith the increase in pressure
the thermal transpiration effect disappears. In
such a situation Eq. (75) cannot be satisfied and

J does not vanish. Instead, a circulation of the
gas occurs with the surface layer flowing toward
the hot end of the tube and a return Row in the
interior. All stages between the extremes of maxi-
mum pressure gradient with no flow and maximum
flow with no pressure gradient are possible de-

pending on the radial variation of S*.Since we
may write

v p = (&p/~p)vp+(»/») v T
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in the interior and the consequent circulation.
However, for a liquid we may not be justified in

neglecting external forces, particularly in the
surface.

The condition of a Auid in which no energy
dissipation occurs at any point is the state of
equilibrium. According to Eq. (51) this requires
that everywhere, for each species i

QIIi=o and QT=O.

The temperature and each potential II; must be
constant throughout the system. This of course
implies that Q and J; vanish everywhere. Equi-
librium is a special case of the steady state.
Equation (79) requires

p,.=p;.RT/M;

and for ideal liquids

(87)

p =p',.xg, (Raoult's law), (88)

where R is the gas constant per mole; 3II;, the
molecular weight of substance i; x~, its mole
fraction in the liquid phase; and p;„ its vapor
pressure in the pure state. From Eqs. (86)
and (88)

forces
(1/p;, )dp;, = (1/p;b) dp„. (86)

The general equations of state relating partial
pressures and densities are not known. For ideal
gases we write

V'p, i = —QP; or VP; = —pig@;. dp~ ——(p,g/p, ,)p' dxg, (89)

I f, for example, Vpi =gk where k is the unit
vector in the upward Z direction and g is the
acceleration of gravity, there results the well-
known formula

dp;/dz = —p,g or dp/de = —pg. (81)

Similarly if catt, =e;LP where e; is the electrical
charge per unit mass of substance i and P, the
electrostatic potential

&p = —(1/e;) &p, = —(1/e; p;) ~p„

(1/e p) &p —(82)

where e= Q; e~p~/p is the total electrical charge
per unit mass of Auid.

As is well known, a thermodynamically re-
versible process is one which occurs without
energy dissipation, i.e., the system is in equi-
librium throughout the process. Therefore, if we
consider two points in the system, A and 8, at
each moment

II;,= II~ and T =Tb

dIIia =dIIib and de =dTb

so that

~*'d T+(I/p'. )dp'. +A;.
~&T+(I/p~)dp~+d4~ (85)

Thus, consider an isothermal system of two quid
phases A and 8 where A is the vapor in equi-
librium with liquid B. ln the absence of external

g, =e;P. (91)

In the Debye-Hiickel theory for dilute electrolytes
the identification

e;dP = (RT/M;)d(ln p~)

is made, so that

dp; = (RT/M;)d(ln p;),

i.e. , apart from interionic attractions and re-
pulsions the solution is considered as ideal. It
would appear that the use of Eq. (90) for ex-
pressing experimental data with an arbitrarily
defined "activity coefficient" does much toward
obscuring the nature of the quantities measured.
A more direct method would be to seek equations
of state of the form

II;=II,(pg, p2, p„, T), (92)

which relates the partial pressure of a component
of an ideal liquid solution to its mole fraction in
the liquid.

Data obtained for non-ideal solutions are
generally expressed in the form

dII, = (RT/M~)d(ln p,y,), (90)

where p; is an appropriate activity coefficient
chosen so that under those conditions for which
the solution approaches ideality, y; approaches
unity. Lumped into the factor y; may be the
effect of external forces, as in the treatment of
electrolytes, for example, In this case
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which in the absence of external forces is equiva-
lent to

4~(pi~ p'ii ' pns 2 )

pi=pi(pig p2&
' 'pa~ 7)i (93)

and in the presence of external forces requires
also knowledge of

4'i=4'i(pb p2»
' ' ' pni I) ~

APPLICATION TO PARTICULAR
TRANSPORT PROCESSES

Let us now turn to consideration of particular
transport processes. We start with isothermal
processes. For an isothermal Quid, according to
Eqs. (40b) and (10) the energy dissipation is
given by

E,, 2v, ;{(a,—-', V v;)(a,—&V.v,)

+(b; 3v v;)(b-; Sv v;)-
+(c,—-', v v,)(c;—-', v.v;)

+ l (I '»+g'g;+f*f, ) I & 0, (95)

negative. In particular, for a one-component Quid
the viscosity coeScient is non-negative.

Following Onsager' we write the generalized
form of Fick's law of diR'usion for a system of
several components as

J;= —p a; VII. (101)

so that, using a relation of the type of Eq. (92),
we obtain

Therefore,

D;;=pi a;iBII&/Bp;. (102)

att&/ap;=P;r&;D;;=+ 2v „u„iw„;D,, (103)
St@ts

It is interesting to consider this result for the case
of self-diffusion of a single perfect gas in the
absence of external forces. We find from Eq. (87)

BII/Bp = 2vm'D =ET/Mp,

J'= Z—
~ D'~v p,

where D,, are the coeScients of diffusion. Ac-
cording to Eq. (55) for an isothermal system

or, if we write B;=+;—~IV v;, the dissipation so that
becomes D =RT/23IIpw-'rI. (105)

Q;; 2v, ;3;:8;&0, (96)
The similarity in form of this equation to the
equations of Stokes-Einstein' and Eyring' is at
once apparent. From Eqs. (50) and (102) we
obtain the reciprocal relations

where 8;:3, is the double product of the two
tensors, i.e., the sum of the principal diagonal
elements of the tensor which is the product of B;
and 8;. Therefore, if we use Eqs. (51) and (62), P,(BII;/Bp )D;;=P,(BII,/Bp;)D; . (106)
g;;r;;J; J;=g;;a;;VII; VII;

The dissipation function for isothermal How may
=2 'I 2vrt8i:&g= Z~i 2rl P"bi&0~ (97) be written

where b; is the vector formed from the three
principal diagonal components of B; when the
coordinate axes are oriented so as to diagonalize
8;. Thus, b; is the vector whose components are
a;—+3V v; b; —3V v; and c;—~3V v;referred to a
properly oriented set of coordinate axes. Let

;aD;ivpi vpi&0 (107)

Closely related to Buid Bow is electrolytic con-
duction. If species i carries an electrical charge e;
per unit mass, then the current density associated
with Bow of that species is

hi = Q i 'aia Ji = —P im re@aimv ttm, (98) I;=e;J;= —Q;e,e~;,V(II;/e;)
where m;& is a quantity with dimensions of
(length)'/mass. Then

= —Q; I.,;v (II;/e;) . (108)

rim = Qij 2 gii'ai~iuip'
The coeScients I.,; are the coeScients of con-

99

Since r;;=r;;, it follows that g;, =g;;. Further-
more, we see from Eq. (97) that the determinant

and each of its principal minors are non-

~ L. Onsager, Ann. N. Y. Acad. Sci. 46, 241 (1945).' A. Einstein, Ann. d. Physik 19, 289 (1906),
7 S. Glasstone, K. J. Laidler, and H. Eyring, Theory o,

RcAe Processes (McGraw-Hill Book Company, Inc. , 1941},
first edition, p. 519.
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ductance. The dissipation function becomes

P;,(r,,/s, e;)I,"I;=P;,(r,);;I,"I;&0, (109)

which is a generalization of the Joule heat. The
coeScients (r,);; are the coefficients of electrical
I eslstance. Now

allow the possibility that existence of a gradient
of electrostatic potential in a solution will be
accompanied by concentration gradients in neu-
tral as well as charged species.

Let us now consider transport phenomena in
non-isothermal systems. Using Eq. (92) we write
the mass flow vector of Eq. (55) as

'II~/e, = g;(r,),;I,, (110)
J'= 2«—' (» /Ba) &ui

sothatifwe let&;=eyP where f is the electrostatic
potential,

—Q;o,;(BII;/BT+S;+S;»)VT (11.6)

which is the generalized form of Ohm's law for
fluid solutions. Obviously the determinants ~I.;; ~

and ~(r,);;~ as well as each of their principal
minors must be non-negative. Also I.;;=I;; and
(r.) ' =(r.) '. D,'= g, ~„(Bn,/BT+S, +S,*)

"[(1/ )(Bp/BT)+By;/BT+S;*j (118)
tained under the assumption that every diffusing
species carried an electrical charge. More gener- and
ally, if electrically neutral species are also
diffusing„ for a charged species i,

J;= P;D,—,gp, DvT—.

D Kin iBI'I—i/Bp'

as in the isothermal case (Eq. (102)), or

+(~./'+p) —(+p,)/" ++p Q,(r ), I (I]I) We may define the thermal diflusion coefficients
D;~ by the equation

I, = g; I.,;p'1—Ig/eg gg e;a,»'—II», (112)

where Q; indicates summation over charged
species and g», over neutral. The dissipation
function becomes

Z, ,(r,);P,"I;+g;»(r;»/e, )I,"J,
+P»ir„iJ» Ji&0. (11')

a;;=Pi D;iBpi/BII;

pi ——pi(IIi, II2, II„, T).

(119)

Substituting Eq. (119) into Eq. (118) we obtain

D,r = gii D;i(Bpi/BII;) (BII;/BT+S;+S,*)

= Xi D'i { (Bpi/BT) u—

+Xi(BPi/B"/)(S''+SJ") I (120)

Air ———(Bpi/BT)ii;+P, (Bpi/BII, )(S+S;*) (121)
&(p;/e,+p) =(&p,)/p;e;+&g

(122)D,'= Pi'i'D, i

J;= —gi D;i(v pi+&i'&T)

=Xi(~)~s»+Z»(r'»/") J» (114)
and

(123)The condition for cessation of current was given
in Eq. (82). If the fluid is electrically neutral, we
see that although there may be gradients in the
chemical potentials and partial pressures of indi-
vidual species there can be no total pressure
gradient. VA may write

Under conditions such that mass How vanishes,
i.e. , J,=O for all species i, in the presence of a
temperature gradient (the state described as pure
thermal conduction in Eq. (70)), we find the
simple relation

The motion of uncharged constituents as well as
that of charged constituents may inAuence the
conduction of electricityinfluids. thus Fq (111) Ifwe defin the thermal diflusionratiosas

becomes

&= —I/" 2 (B"'/B';)&u;, (115) k;r = dp,/dT—
where index j is summed over all components, so that the thermal diffusion ratios can be de-
charged or neutral. Thus in general, we must termined directly from the observed density
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gradients, or knowing the ratios one may calcu-
late the density gradients and thus the extent of
separation of the components in a temperature
gradient. It has been assumed by some authors'
that in the steady state of gas mixtures subject to
a temperature gradient the condition J,=O will

hold. But, as we have seen, the steady state need
not be a state of pure thermal conduction, so
that the J;need not vanish. Hence, measurements
made on the steady state and interpreted by the
theory for the state of pure thermal conduction
may well lead to erroneous conclusions. We con-
sidered earlier the behavior of a single gas in a
temperature gradient in the absence of external
forces and found that at normal pressures a
circulation of the gas occurs in the steady state so
that no pressure gradient is established as in the
case of thermal transpiration. As an extreme
possibility for a gas mixture we may suppose a
similar circulation of each component occurs
with the result that the gradients of the individual
partial pressures vanish in the steady state. In
such an event

v p'= Er(~p /~p )vp+(~p /~T)vT

=(Bp~/BT)vT,

and the density gradient of each component
would depend only on its thermal expansion in
the fluid. More likely, a steady-state condition
intermediate between the extremes of no flow and
of no partial pressure gradients occurs for the
various components. The question requires ex-
perimental investigation. The general expression
for the density gradients, from which the thermal

'S. Chapman and T. G. Cowling, The Mathematical
Theory of Non- Uniform Gases {Cambridge University
Press, London, 1939), p. 252.

diffusion separation can be calculated, is

vp;= p,—d,,J, k—vT, (125)

where d, ,=D:,;*/
~

D ~~ ~, the asterisk denoting the
adjoint of the element D;; in the determi-

Another transport process which may appear
in non-isothermal fluids is the homogeneous
thermoelectric effect. From Eq. (57) we find

pevp= —Q;; p g,;J, vp pS—*vT,—(128)

where e is the total electric charge and 5*, the
total entropy of transport per unit mass of
solution. If the solution is electrically neutral
then

vp= pS*v T—2*; p*r—*~J, (129)

Under conditions for which J;=0 this result
reduces to Eq. (75); we would expect a total
pressure gradient to be evident. However, here
again we point out that the steady-state con-
dition is v J;=0 and not necessarily J;=0.
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VO'= Er'—J (1/P—)Vp S' VT (126)

For @,= e.&, where f is the electrostatic potential,

v0= —2 (r'/&*) J
—(vp, )/p, e;—(S;*/e~) v T (127)

so that


