
P 8 YS ICAL REVI E%' VOLUME 70, NUM BERS 1 AND 2 JULY 1 AND 15, 1/46

Schwarxschild Interior Solution in an Isotroyic Coordinate System
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The relativistic equations for the case of a sphere of perfect Quid of constant density are
solved when an isotropic coordinate system is used. It is again found that a sphere of given
density has upper bounds on its mass and radius but that these upper bounds are smaller than
those given by the ordinary Schwarzschild solution.

INTRODUCTION

" 'N determining the gravitational potentials for
~ ~ a spherical mass by means of relativity theory
it is customary to use a coordinate system for
which the line element takes the form

e"=e "=1 2rrz/r—

If the density of the sphere is p and the radius is
a then it is also well known' that the interior
solution is

e" =-,'[3h(a) —h(r)]'-', e "=Lh(r)]', (3)

where h(r) =(1 r'/R')' a—nd R'=3/8zrp The.
gravitational potentials (3) are valid everywhere
inside the sphere. This solution is based on the
following physical assumptions: (1) the density
is constant; (2) the pressure is zero at the surface
of the sphere and is 6nite and positive inside the
sphere; (3) the matter comprises a perfect fluid
at rest; (4) the gravitational potentials of the
exterior and interior solutions are continuous at
the boundary of the sphere; (5) de"/dr is con-
tinuous at the boundary.

When one uses an isotropic coordinate system'
the line element takes the form

ds'=e"dz' ev(drz+r'd8'+rz s—in' Hdp') (4)

ds' =e"dt' —e"dr' —r'd8' —r' sin' ed@"-,

where v, t are functions of r alone. If we denote
by m the gravitational mass of the body as
measured by its external gravitational field, it
is well known that the Schwarzschild exterior
solution is

to be
e" = [g —nz/r]z/q'-', ev =g',

where g = (1+zrz/2r) Ho. wever as far as the
author knows the corresponding interior solu-
tion has never been derived. It is the object of
this paper to obtain this solution on the same
physical bases as given above.

s~p e
i +—+ i, (12)
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8 p=e-"I p"+—+ r) (1.3)

In the above equations the prime notation
means differentiation with respect to r. If we
substitute

p =4 log m —2 log r, x = log r,

Eq. (1.3) becomes

d' /dwx = —,'zw —2zrpw'.

(1 4)

I. SOLUTION OF THE FIELD EQUATIONS

Since the matter in the sphere comprises a
a perfect fluid at rest, the components of the
energy-momentum tensor T,' satisfy the follow-

ing equations: Ti' = Tz"- = Tz' = —p, Tz =0, z Wj,
where p is the proper pressure of the Huid. Since
the matter is also of constant proper density we
have T4' p=constan——t. For the line element (4)
the field equations imply

fzz zzv zz+v )'p=' "I —+ +
&4 2 r i

fdw ) w 'zrp
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~ R- C. Tolman, Relatieky, Thermodynamics and Cos-
mology (Clarendon Press, Oxford, 1934},pp. 245-247.

~ A. S. Eddington, Matkemat ical Theory of Relativity
(Cambridge University Press. New York, 1923},pp. 93-95. ' R. C. Tolman, reference 1, pp. 242-243.

This can be integrated to giveand the corresponding exterior solution is known

(1.6)
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e" = 4R2/'(e'r"-+e ')"-. (1 8)

In order to determine v, we note that the equality
of (1.1) and (1.2) implies

v"+v"/2 v',/r p'v'—+p" ——p"/2 p'/r =—0. (1.9)

By use of (1.8) Eq. (1.9) can be reduced to

fn order to avoid a singularity at the origin it is
not dif6cult to show that k=0. An infinite
singularity in this case implies the pressure
would be infinite at the origin. Taking 4=0 we

can integrate (1.6) to obtain

w = [R/cosh (x+c) ]&, (l.7)

where R2=3/82rp and "c" is an arbitrary con-
stant. The corresponding solution for p is given
by

and since this pressure is positive, we must have

e-' —e"a'& 0. (2.8)

Equation (2.4) can be written in the form

e'a'+e '= 2R/(1+x)"-, (2.9)

where x=m/2a. By squaring both sides of (2.9)
and subtracting 4a-"we obtain

(e-' —e'a') ' =4R-'(1 —y(1+x) ') /(1+x) 4, (2.10)

where y= a'/R'. Taking the positive square root
of both sides we have, because of (2.8), that

e ' —e'-a-' = 2R[1 —y(1+x)"]lj(1+x)' (2.11)

I'he final boundary condition to be satisfied is
the continuity of de"/dr at r=a. This leads to
the equation

v".'v'+v'/2 —1/r —p' =0.

This can be integrated to give

Ar'-'+8 '-

e'r'-+e '

(1.10)

(1.11)

2a' (Ae ' Be') -'(e'a—'-+—e ')-'= 2x/(1+x)-"; (2.12)

by means of (2.5), (2.6), (2.9), (2.11) this last
equation can hc put into the form

y/[1 —y(1+x)4]'=4x/(1+x)'(1 —x). (2.13)

where A, 8 are both arbitrary constants.
Thus, three arbitrary constants remain in our

solution which are evaluated by means of the
boundary conditions.

A(e " 2a')+—B(e"a' 2) =0. —(2.2)

Further if we let v = (1—m/2a) (1+m/2a), then
the continuity of e", e& at r =a implies

Aa'+B = (e'a'+e ') (2.3)

2R = (1+m/2a) '(e'a-"+e '). (2.4)

Solving (2.2), (2.3) for A, B, we obtain

A =v(2 e"a')/(e ' a'e'), — —

B—s(e—2c 2a2)/(e aa2ec)-
Since the pressure at r = 0 is given by

(p) -2 = 3a2/82rR2(e "—2a'),

(2.5)

(2.6)

(2.7)

II. THE BOUNDARY CONDITIONS

By means of (1.1), (1.8) (1.11) the pressure is
determined by

82rp=[A(e "-' —2r-')

+B(e"r' 2)]/R'(Ar—'+B). (2.1)

Thus p=0 at r =a implies

P=
42ra2 (1+m/2a) 2

(2.15)

Solving this for y we obtain

y =4x/(1+x) ' (2.14)

Equation (2.14) represents the determination
of the mass "ns" in terms of the density p and
radius a of the sphere. If x is small we have as
an approximate equation y=4x. This implies
m=42rpa2/3, which is of course the ordinary
Newtonian expression. Physically we require
that m be uniquely determined if a and p are
specified. This means that x must be a single
valued function of y. By finding the maximum
value of y we find that this condition implies
x ~& 0.2, y ~& 0.27. This means m ~& 0.4a, a'~& 0.21'R'.

Hence we find, as was found in the Schwarzs-
child solution, that a sphere of given density
has an upper bound on its size and mass. More
will be said on this point in the conclusion of
this paper.

Because it is not easy to express x in terms of

y we find it better to consider m and c as the
known constants for the sphere. We can then
explicitly express all other constants in terms of
these two. The density p is given by (2.14) to be
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From (2.9), (2.11), (2.14) we find e'=(m/2a')&.
Similarly the values of A and 8 can be found to
be

A = (m/2a')&(4a —m)/(2a+m), (2.16)

8= (2a'/m)&(2a —2m)/(2a+m). (2.17)

As our final solution for the gravitational po-
tentials we obtain

e&= (1+m/2a)~/(1+mr'/2a')' (2.18)

e"= L2a —2m+m(4a —m) r'/2 a']"-/

((2a+m)(1+mr'-/2a') j'. (2.19)

GI. CONCLUSION

In the Schwarzschild solution it was found4

that a sphere of given density is bounded in

mass and size by m ~& 4a/9, a'- ~&8P/9. In our
solution these bounds are smaller and are given
by m »&0.4a, a'- &» 0.278"-. Thus an observer using
an isotropic coordinate system would find smaller

4 A. S. Eddingtnn, reference 2, p. 170.

upper bounds than an observer using a coordin-
ate system in which the line element takes the
form (1). This shows that these upper bounds
are definitely a property of the coordinate sys-
tem used by the observer, and it is conceivable
that coordinate systems may exist in which these
upper bounds may be infinite.

Having obtained the interior solution it is
easy to show that the complete solution is
mathematically equivalent to the Schwarzschild
solution. It is already known that the trans-
formation

r = (1+m/2r) 'r, r & a

takes the isotropic exterior solution into the
Schwarzschild exterior solution. The trans-
formation

i' = (1+m/2a)'r, '(1+mr" /2a'), 0&~r &~-a

does the same for the interior solution. 3'Iore-
over the two transformations piece together con-
tinuously at the boundary r =a.
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The vibrations of anisotropic bodies under the inAuence of sinusoidally variable volume
forces and boundary stresses are investigated. The displacement components are represented
as sums of a system of "zero-order" solutions which solve approximately the free-vibration
problem. By using Betti's theorem, the problem is reduced to a system of inhomogeneous linear
equations which, for the free-body case, further reduces to the homogeneous system derived
in an earlier paper (reference 2}.If the external forces are piezoelectric, the forces are no longer
given explicitly because the electrical field distribution is known only if Maxwell's equations
are solved simultaneously. However, if the pertinent piezoelectric constants are small, the field

can he calculated approximately as if the crystal were not vibrating. The solutions can then
be obtained by the above method, and the electric reaction of the crystal upon the driving sys-
tem can be determined. As an example, forced vibrations of thin quartz plates between parallel
electrodes are discussed.

L INTRODUCTION

HE rigorous solution of vibration problems
meets such great mathematical difhculties

that even in comparatively simple cases only
approximation methods can be used. The analogy
with scalar vibration problems of the Schrodinger

type suggests that the solution U, might be
represented as a linear combination of "zero-
order" functions I;{&. This method is straight-
forward if the u, {"& satisfy the boundary condi-
tions of the problem. But in most cases, the
convenient system I;& & does not satisfy the


