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Properties of MonocUnic Crystals
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Two crystals of the monoclinic sphenoidal class have been found which have modes of vibra-
tion with zero temperature coefFicients of frequency, and this property together with the high
electromechanical coupling and the high Q's make it appear probable that these crystals may
have considerable use as a substitute for quartz which is difFicult to obtain in large sizes. These
crystals are ethylene diamine tartrate C,'CsHi4N206) and dipotassium tartrate (K~C4H40s,
qH~O). Complete measurements of the elastic, piezoelectric, and dielectric constants of the
dipotassium tartrate (DKT) crystal are given in this paper. The crystal has 4 dielectric con-
stants, 8 piezoelectric constants, and 13 elastic constants. A discussion is given in the appendix
of the method of measuring these constants by the use of 18 properly oriented crystals.

I. INTRODUCTION

S part of the program for investigating
promising piezoelectric crystals, measure-

ments have been made of a number of piezoelec-
tric crystals occurring in the various crystal-
lographic classes. It has been found that the
less symmetric classes give greater possibilities
in obtaining low temperature coeScients be-
cause with the larger number of elastic constants
a greater possibility exists of balancing tempera-
ture coef6cients between the various constants
and obtaining zero temperature coef6cient crys-
taIs. In particular two crystals of the monoclinic
sphenoidal class have been found which have
modes of vibration with zero temperature co-
efficients of frequency, and this property together
with the high electromechanical coupling and
the high Q's (or low internal dissipation) make it
appear likely that these crystals may have con-
siderable use as substitutes for quartz, which is
dificult to obtain in large sizes. These two crys-

tais are ethylene diamine tartrate* (which has
been given the designation EDT) and dipotas-
sium tartrate (which has been given the desig-
nation DKT).

It is the purpose of this paper to derive the
fundamental constants for a monoclinic crystal
and to show how they are measured. This
process is illustrated completely for one of these
crystals, dipotassium tartrate (KIC4H406, ~ H20).
This crystal forms in the monoclinic sphenoidal
class which has as its only element of symmetry
the b or F crystallographic axis, which is an axis
of binary symmetry. As a consequence there are
four dielectric constants, eight piezoelectric
constants, and thirteen elastic constants. To
obtain all of these constants requires measuring
the properties of eighteen carefully oriented
crystal cuts. Since this is the hrst time that all
of the properties of a monoclinic crystal have
been measured by dynamic methods, a complete
description of the process is given in the appendix.
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II. MONOCLINIC CRYSTALS AND THEIR RE-
SULTING PIEZOELECTMC EQUATIONS

Monoclinic crystals are characterized by hav-
ing two crystallographic axes 5 and c at right
angles to each other, and a third axis u which
makes an angle different from 90' with the other
two. The c axis lies along the shortest direction
of the unit cell while the b axis is the axis of
twofold symmetry. In measuring the properties
of a crystal, the ca,lculation comes out much more

FIG. 1. Method of relating rectangular X, Y, Z axes to
a, b, c crystallographic axes of a monoclinic crystal.

A paper on the properties of this crystal is in course of
preparation.
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FIg. 2. Relation of +X and +Z axes to plane of optic axes.

simply for a right-angled system of coordinates.
As shown by Fig. j., the method chosen' for
relating the right-angled X, V, Z system of axes
to the a, b, c crystallographic axes of the crystal-
lographer is to make Z coincide with c, Y with b,
and to have the X axis lie in the plane of the b

axis and at an angle of 51' above u for DKT.
The X, F, Z axes form a right-angled system

of axes. Since b is the binary axis, it is necessary
to have a convention for specifying which end of
the axis is positive. As shown in a companion
paper by %'. L. Bond' this can be done by
locating the optic axis of the crystal. A mono-
clinic crystal is a biaxial crystal and the plane
that contains these axes is found to be parallel
to the b or Y crystallographic axis. As shown by
Fig. 2, the plane of the optic axes lies at a
clockwise direction of 2 j.' from the c or Z
crystallographic axis. Since X lies at a counter-
cIockwise angle of 90' from c and (+0 + I)
makes a right-angle system of coordinates with
the X and Z axes, the measurement determines
the positive directional of all three axes. Ori-
ented crystal cuts are usually specified by x-ray
orientation procedures as discussed in the above
paper.

These crystals were grown from a supersatu-
rated solution by A. N. Holden. Holden finds
that the water of crystallization in DKT is quite
tightly bound and experimentally it has been
found that no noticeable dehydration takes place
at 80'C over a week's time. At about 150'C the
vapor pressure of DKT reaches atmospheric and
mill cause bubbling in an oil bath. The usual

' This system of relating rectangular axes to crystallo-
graphic axes has been standardized by a committee on
piezoelectric crystals of the Institute of Radio Engineers,
under the chairmanship of Professor W. G. Cady. They
have also standardized the symbols and nomenclature
used in this paper.' Paper in course of preparation.

FK'. 3. Crystal habit for DKT crystals.

crystal habit is that shown by Fig. 3. The
crystal has two cleavage planes lying along
planes determined by the three crystallographic
axes. However, these cleavages are not suffi-

ciently bad to cause much trouble in processing
these crystals.

The Voigt form of writing the piezoelectric
equations for a monoclinic sphenoidal crystal is
as shown in Eq. (1). In this equation Tl to T6
represent the six stresses and S1 to S6, the six
strains. 0. represents the electric displacement
D/42r in the interior of the crystal and the
normal component of 0 is the surface charge.

51=$11 Tl+$12 T2+$13 T8+$15 T5+d21~81

~2 =$12 Tl+$22 T2+$28 T8+$25 T5+d22+yy

S3 =S13 Tl+$23 T2+$88 T3+S35 T5+d28E6y

S4=$44 T4+$46 T6+d14E.+d3&gi

S5 =$15'T,+$25 T2+$35 T3+$55 T5+d2+»

~6 = $46 T4+$66 T6+d16E +d8IS

611 Ex 613 +z
+ +d14T4+d16T6

4m 4x

2Tg
+d21 Tl +d22 T2 +d23 T3+d25 T5&

&13', e33TE,
+ +d34T4+d36T6,

4x 4m

where the superscripts E over the elastic com-
pliances indicate that they are to be measured
with the applied fields held constant or zero.
When there are two applied fields both of these
fields have to be held constant or zero to obtain
the Voigt elastic compliances. The superscripts
T for the dielectric constants indicate that they
are to be measured for no stresses applied, i.e.,
that they are the "free" dielectric constants.
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TABLE I. X cut crystals of DKT.

Temper-
ature in

degrees C

Shear mode

Length along Z
L ~20.20 mm
W= 4.25 mm
T ~ 0.91 mm

Length 22.5' from F
L =20.01 mm
W~ 3.21 mm
T= 0.896 mm

Longitudinal modes

Length 4$o from Y
L =19.65 mm
W= 3.2 mm
T= 0.90 mm

fz hf

Length 67.50 from F
L =21 0 mm
W= 3.23 mm
T 0.912 mm

+80
+70

+60
+50

+40
+30

+20
+10

0—10

—20—30

—40—50

—60—70
-80

235300
236350

237500
238600

239600
240650

241750
242750

243800
244700

245600
246500

247400
248250

249100
249950
250700

1000

1000

1000

975

930

930

89160
89560

89980
90380

90800
91240

91690
92100

92440
92770

93100
93400

93690
93960

94270
94570
94860

180

170

1/0

160

160

150

150

130

140

85100
85500

85980
86340

86760
87210

87670
88030

88390
88690

89030
89350

89630
89940

90240
90610
90910

270

260

250

240

220

220

210

210

81000
81370

81750
82120

82480
82860

83260
83610

83940
84280

84520
84850

85120
85420

85700
85980
86260

150

150

140

140

130

130

120

110

110

Tsar.E II. Z cut crystals of DKT.

Temper-
ature in

degrees C

Shear mode

Length along F
L =19.84 mm

W 4.27 mrn
T= 0.90 mm

Length 22.50 from Y
L =19.61 mm
W= 3.21 mm
T = 0.863 mm

Longitudinal modes

Length 45' from F
L =19.96 mm
W~ 313 mm
T = 0.910 mm

Length 67.5' from Y
L =19.96 mm
W= 332 mm
T 0.886 mm

+60
+50

+40
+30

+20
+10

0—10

—20—30

—40—50

—60—70—80

257500
257600

257600
257500

257400
25/200

257000
256/00

2S6450
256150

255850
255500

255100
254700

254250
253800
253300

5600

5750

5900

6400

7000

7900

8400

8900

91030
91290

91520
91/60

92000
92200

92420
92620

92810
92990

93150
93310

934SO
93600

93720
93840
93960

920

980

1020

1100

1200

1300

1400

1500

1600

88225
88300

88375
88450

88500
88550

88600
88630

88660
88660

88650
88640

88610
88560

88490
88425
88350

1600

1775

1900

2000

2125

2275

2450

2650

2875

101840
102040

102180
102280

102380
102450

102540
102620

102680
102720

102740
102760

102780
102800

102800
102770
102740

1110
1130

1200

1400

1600

1720

1880

2000

2150

2200
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TABLE III. Y cut crystals of DKT.

Temper-
ature in

degrees C

Shear mode

Length along Z
L =14.52 mm
W= 2.95 mm
T = 1.05 mm

Length 22.5 from X
L =19.95 mm
W= 3.71 mm
T = 1.03 mm

fz hf

Longitudinal modes

Length 45' from X
L =20.32 mm
W= 4.03 mm
T = 1.05 mm

fR

Length 67.5' from X
L =12.75 mm
W= 2.51 mm
T = 1.02 mm

—60—70
-80

401500
402850

404000
405000

406100
407100

408200
409200

410100
411100

412050
413000

4139SO
414950

415900
416900
417850

1000

1000

1000

1000

950

950

950

950

950

123760
124000

124210
124440

124650
124860

125100
125300

12S510
125730

125950
126160

126370
126600

126810
127040
127250

780

750

730

710

700

680

670

640

620

101460
101660

101880
102080

102300
102500

102700
102900

103120
103320

103530
103720

103940
104140

104340
104650
104750

1030

101Q

990

980

970

960

960

930

910

13S950
136550

137150
137700

138200
138710

139240
139770

140350
140820

141220
141610

142000
142400

142800
143220
143650

950

940

930

920

910

900

880

870

850

TABLE IV. Oblique cuts of DKT.

Temper-
ature in

degrees C

Width parallel to Z -length
and thickness 45' from
X and Y. Shear mode

L =20.28 mm
W= 3.18 rnm
T ~ 0.895 mm

V/idth parallel to X-length
45 from Y and Z.
Longitudinal mode

L =11.13 mm
W= 3.20 mm
T = 0.90 mm

Orientation.
See Fig. 9

L =20.09 mm
W= 3.195 mm
T 0.90 mm

Length along Y width 45
from X and Y.

Face shear mode
L =20.29 mm
W= 32 mm
T= 0.89 mm

+80
+70

+60
+50

+40
+30

+20
+10

0—10

—20—30

—4Q—50

—60—70—80

328100
329500

330700
331800

332950
334000

3349SQ
335900

336850
337800

338250
339700

340600
341550

342500
343400
344400

900

900

930

930

950

1000

1060

1120

149900
150810

151600
152400

153100
153800

154500
155200

155800
15640Q

156950
157510

158050
158550

159050
159500
159900

365

370

380

430

435

4SO

86220
86440

86650
86870

87100
S7350

87575
87800

88000
88200

88390
88575

88750
88925

89050
89175
89300

280

310

350

385

420

490

335000
336100

336600
337900

338500
339500

340500
341200

341900
342600

343300
344000

344600
345000

345520
346000
346400

7350

6800

7100

7350

8000

8470

9000

10200
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TABLE V. Frree dielect
'nc constastants of DKT.

Dielectric
constant

normal to
a plane

making 45'
angle with
X and Z

&13

Dielectric
constant

normal to Z

Dielectric
constant

normal to Y

Temperature
d constant

normal to X 8 o38 o )613 ~II ~33

Z plane.
fo

where the con sta nts are th
a 1 1tles w

e ree" d'ielectric
reated to the

co e,; y the equ t'uatlons
e dl-

+80
+70

+40
+30

+20
+10

0—10

—40—50

—80—90—100

6.64
6.61

6.57
6.54

6.51
6.48

6.44
6.41

6.38
6.35

6.31
6.28

6.25
6.22

6.19
6.15

6.12
6.09
6.05

5.97
5.94

5.91
5.89

5.86
5.83

5.80
5.78

5.75
5.72

5.69
5.66

5.64
5.61

5.58
5.55

5.52
5.49
5.47

6.53
6.52

6.51
6.51

6.50
6.49

6.49
6.48

6.47
6.47

6.46
6.45

6.45
6.46

6.47
6.48

6.50
6.52
6.54

6.57
6.55

6.53
6.52

6.50
6.48

6.47
6.45

6.43

6.39
6.38

6.36
6.34

6.34
6.33

6.32
6.31
6.31

422 = Pg3
622 &11 &3~ &1
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4/l RO~
I-
Vlz0
L7 p

4xI-
U
4$-j -20
4J0
4l
CL

t -40o

d I4,

d34

the coefficient of coupling k is equal to

~ (hf~ i ~ f 250 y
i

i
=O.O84.

2 k fs) 2 (87670)
(4)

The frequency constant for the plated crystal is

f is=172.1 kc cm =f4rs Sin. ce the density is
1.988, &his gives a value for the elastic compliance
at constant field along the X axis equal to

~0-80 -60 -40 "20 0 20 40
TEMPEAATUAE IN QEGREES CENTIGRADE

8P

FIG. 5. Piezoelectric constants of DKT crystals as a
function of temperature.

~ The temperature expansion coefficients of DKT crys-
tals have been measured by Miss E. J. Armstrong.

ured for all crystal cuts over a temperature range
from —80'C to +80'C.

The first series of cuts is a set of four crystals
cut normal to X with their lengths along the Z
axis and at 22.5', 45', and 67.5' from Z. Table I
shows the measured resonance frequencies, and
the separation of the resonant and anti-resonant
frequencies all made in a holder which is shielded
so that no stray capacity has to be allowed for.
Table II shows similar data for Z cut crystals
and Table III for Y cut crystals. In order to
complete the measurements several double ori-
entation crystals have to be used and the ori-
entations and data are given by Table IV.
Finally Table V shows a measurement of the
dielectric constants of four crystals. These are
measured at 1000 cycles and represent the "free"
dielectric constants. From these data and the
data of the temperature' expansion coefficients
shown by Fig. 4 all of the properties of the
crystal can be determined.

In order to illustrate the method, calculations
are made at room temperature of all of the
constants. From Table I we find that the reso-
nant frequency and the separation of resonant
and anti-resonant frequency for a crystal cut
normal to the X axis, with its length 45' from
the Y and Z axes and with the dimension
I.= 19.65 mm; S'=3.2 mm; T=0.90 fnm, are at
20'C, fr=87670, (f& fz) =250 cycle—s. From
Table V the free dielectric constant for this
crystal is 6.44. From Eq. (50) of the appendix

$~~45
~' —— =4.24X10» cms jdyne. (5)

(2f~')'I

From this value and the free dielectric constant
(6.44) we have from Eq. (17) of the appendix

(en
d»' ——

~

$22s
~

k=&12.35X10 sc.g.s. unit. (6)
&4~

Since from Eq. (84) in the appendix, the elastic
constant s» ' satisfies the equation

$22
' ——$22 cos' lI+ (2$24 +$44 ) sin' II cos' II

+S,ss sin' II, (8)

these three values are enough to determine the
fundamental constants $22, $44, (2$24 +$44 ).
The formulae are

$~2 = 1.707$2222. g
—$2245 +0.293$226z, g

Sss
——0.293$2222.4

—$2244 +1.707$224r. s ', (9)

(2$24 +$44 ) = 6$2244 —2($2222. 4 +s22g. s ) ~

From these formulae and the values of Eq. (7)
we obtain

$22@=3.395y j 0 ' . $33@=3.907 X y0 —&&

(2$24$+$44s) =9.684X10 " (10)

The first crystal of Table I is a face shear
vibrating crystal whose frequency is determined

But from Eq. (91) of the appendix dts'=dt4/2
so that the fundamental constant d~4 ——~24.7

X10 '. As will be shown later this sign is posi-

tive, and the value of d~4 calculated over a
temperature range is shown plotted by Fig. 5.
Performing the same operations on the crystals
cut at 22.5' from Pand 67.5' from Y, we find

$2222.4$=3.73X10 ' ' $22sr.ss=4 09X10 42 (7)
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and the fundamental elastic constant s44~ by
the equation

$44 1/c44 ' (12)

by the width of the crystal. From Eqs. (105)
and (106) of the appendix, the frequency is
determined by

(g~ c,E)
2lE p )

44XIO I2

Z

Q 4.0
X
Ll

Z

~ 3.e,

3 2 XIIII

LI

e 2.8

0
4I 24 E

From the measured values of Table I,

c44"s=8.35)&10"dynes/cm',

& =0.100; ejc~ =6 44
Hence

s44s=11.9X10 "cm'/dyne;

dg4=24. 7+10 '.

This checks the value of d~4 obtained from the
45' X cut crystal. It also shows that the shear
mode driven by a shear elastic constant has a
higher coupling than a 45' longitudinal cut
driven by the same shear constant.

VVhen these constants are measured over a
wide temperature range, it is necessary to take
account of the coefficients of temperature ex-
pansion. This changes not only the length of
the frequency determining direction, but also
changes the density p since the total volume of
the crystal changes with temperature. The aver-
age of the temperature coeScients measured
from —40' to +80'C are shown by Fig. 4. In
the XZ plane, the coefficient follows the dumb-
bell shape with its major axis at an angle of
about —26 degrees from the Z axis. This shape
represents the difference between a circle at
25'C' and the ellipse that the circle expands into
at difterent temperatures. The temperature co-
efficient along the F axis is 44.8 parts per million
per degree centigrade. When it is desired to
obtain the temperature expansion coeScient for
any other angle, say in a plane containing the

axis and making an angle 8 with the Z axis,
with the direction making an angle q with the
Y axis, the coefhcient is obtained by reading the
coefticient Ty for the angle 8 in the XY plane
and substituting in the formula

l~= Ty s1n2 p+T„cos2y,

'-80 -eo -40 -20 0 20 40
TEMPKRATVRE IN OEGRKES CENTIGRAOK

80 80

Frc. 6. Three extensional moduli of compliance measured
as a function of temperature.
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FK'. 8. Seven cross coupling moduli of compliances
measured as a function of temperature.

Fr@. 7. Three shearing moduli of compliance for DKT
measured as a function of temperature.
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where 1„is the temperature coefficient along the temperature coefticient of density is
I' axis. The total increase in volume is

'1, = —87.8 X 10 ' per 'C. (17)
l'= Vo[1+T,EO j[1+T„DOj[1+T,AO]

From the frequency equation for a longitudinal
= 1+(T,+T„+T.)2,8, (16) mode

where 68 is the increment in temperature meas-
ured from 25'C. The sum of the three tempera-
ture coefhcients is 87.8X10—'. Hence since the
total mass of the crystal remains constant the

1 (1q '*

2l (ps)

the correction to the elastic compliance s is

(18)

p(2lf)' po[1 —87.8X10 o40j[2flo(1+TiAO)]'

1+(87.8 —2T() X10 'AO~

po(2flo)

where AO+ is the change in temperature from
25'C, po the density measured at 25'C, and 10

the length measured at 25'C. With this correc-
tion for temperature coefhcient, the elastic con-
stants s22, s33~, s44E, and s23~ are shown plotted
on Figs. 6—8.

From the data of Table II for Z cut crystaJs
a similar process determines the constants s~~,
soo (2$1P+soo ) and soo . At room temperature
these become

s~jE=2.218X1.0 " s22~ ——3.404X10 ' '

2sg2~+s668 ——9.64; s668 ——9.81;

sg2~ = —0.085.

(20)

This provides a check for s22~ measured for Z
cuts and checks within less than one percent.
Over a temperature range the values of s~~, s~2,
s~2~, and s66~ are shown plotted on Figs. 6—8.
The value of d36 obtained for the Z cut is the
largest piezoelectric constant for the crystal and
reaches a value of 66.4X10 ' c.g.s. unit. As
shown by the measurement of oblique cuts, its
sign is negative compared to d~4. d36 increases
very considerably as the temperature decreases
and may indicate the presence of hydrogen
bonds. The large value of d36 coupled with the
low temperature coefhcients for crystals cut
normal to the Z axis (particularly the 45' Z cut)
make such crystals very useful in hlters and in
the control of low frequency oscillators.

For crystals cut normal to the Y axis of a
monoclinic crystal, the longitudinal elastic con-

stant varies with angle according to the equation

soo's ——soos cos' P+2sooE cos' P sin f
+(2s~os+sooE) sin' P cos' P

+2$&o sin' P cos P+s» sin' P. (21)

The derivation of this equation is given in the
appendix, Eq. (86). The values of soos and s»
are given in Fig. 6 so that the data for the three
longitudinal crystals are sufhcient to determine
$3o (2s J 3 +soo ) and s~o which are shown
plotted on Figs. 7 and 8. The equation for the
piezoelectric constants of longitudinal crystals
cut normal to the I' axis is

d~o' =do~ sin' f+doo cos' P+—sin 2P. (22)
2

From the values of coupling and the dielectric
constants for the three crystals, we hnd

dms = +2.2 X 10 8; d23 = +10.4 X 10 8'

(23)
d25=+22.4X10 '.

All constants have the same sign. The sign of
d23 was determined by squeeze tests on the
crystal to be a positive charge delivered along
the positive V axis for an extension along the
Z axis.

The two remaining elastic cross constants s~~

and s46~ have to be evaluated by employing
oblique cuts that do not lie along or normal to
any of the three crystallographic axes. s46~ can
be determined by using the face shear mode of a
crystal cut with its length along Y and its width
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where

sss —ig[s41 +sss +(sss +2$&s )1

+X[S44 +ass +$44 +(S44 +2Sss )

+(~ss +2~4s )]+4[ass +&ss ].
Since all the values are known except s~~~, the
data for the third crystal of Table IV yield the
value

s2~~= —0.12X10 '. (30)

Fit-. 9. Doubly oriented DKT crystal.

at 45' between the positive X and Z axes, for as
shown by Eqs. (105)—(107) of the appendix, the
frequency of the unplated crystal determines
the elastic constant d4s' ——0.3535[dss+dss ds4]. (31)

The second crystal of Table IV provides a
check on the elastic constant for a direction in
the FZ plane halfway between the two axes.
The value found is 4.19X10 " dyne/cms which
checks the value for a 45' X cut crystal shown

by Table I. The piezoelectric constant driving
this mode is from Eq. (97) of the appendix

S66
gl

~ss 2&44 +&44 From the data of Table IV, dJs —11.1&(10 s

and since d23 is known, we have

(d14+dls ds4 dss)
d14 = (26)

and the dielectric constant from Table V is 6.47,
we find

d14'=52.6X10 '. (27)

Since d14 and d36 have been found equal to
24.7X10 ' and —66.4X10 ' we find

d16 —d34=14X10 ' (28)

The constant s2P was determined by meas-
uring the resonant frequency of a crystal ori-
ented as shown by Fig. 9. It is shown in the
appendix, Eq. (87), that the frequency of a
plated crystal is given by

1( 1
(29)

2l & pssssJ

From the data of the last cryst. al of Table IV,
we find s46 =0.74X10 " at 20'C. The electro-
mechanical coupling factor as calculated from
the resonant and anti-resonant frequencies is

k =0.225. (25)

Since from Eq. (108) the piezoelectric constant
driving this mode is

d22 —d34=21.0X10 '. (32)

This value together with the data of Eq. (28)
gives

F2 —des= 1'.OX10 '. (33)

The first crystal of Table IV should have a
longitudinal mode driven by the piezoelectric
constant (from Eq. (99) of appendix)

du'= —0 3535[ds4+dss —As].

From the data of Table IV, the measured value
is about 20X10 ' which verifies the sign of d~4

with respect to d25.

Finally the driving constant of the double
oriented crystal, Number 3 of Table IV should

From the values given above this should result
in a value of 3.2X10 ' which should give a very
low coupling. This was verified for no resonance
was found for this mode. Driven in a face shear
mode this crystal should have a piezoelectric
shear constant equal to

(d14+dss)
d14 = 23.5 X10-'.
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be according to Eq. (102) of the appendix

diam
=0.1768[gq+d23+d%+2d22

(d14+d16+d34+dM) j. (36)

From the values and signs assigned, we find
di2'=18.5X10 '. The measured value from Table
IV is 15 X10 ', which verifies the sign of d36.

All of the elastic constants are determined
except s55~ and all the piezoelectric constants
except d22 (or d~6 or d34). To determine s~P we
make use of the data of Table III on the face
shear mode of a P cut crystal. As shown in the
appendix the elastic constant controlling this
mode is a "coupled" constant and the frequency
is given by

2p
(37)

s55~=8.15X10 ". (38)

The values over a temperature range are shown

by Fig. 7. With this value si3 can be determined
and all the elastic constants are given by Figs.
5-8.

To determine the remaining piezoelectric con-

stants, requires measuring the properties of a
thickness mode. Either of the two shears S6 or

C p

Toi

ITQ x
OOI

OTO r j ~E& I

&TT~ ' v

l

TOT

100

4S Z CUT

37fZ. CU

AT SHEAR CU

Fio. 10. Orientations of three zero temperature coeS-
cient crystals with respect to the mother crystal. 45' Z
cut and 37.5' Z cut are longitudinal modes. A T shear cut
is a face shear mode.

The method of calculating ss~~ from the meas-
ured value of the shear mode and the other
elastic constants is explained in the appendix.
The resultant obtained from the data is

S4 can be used or the thickness longitudinal
mode. Of these the mode with the largest
coupling is the S4 mode, which is obtained by
measuring a Z cut crystal, dimensioned so that
it has a single mode. This crystal had a coupling
of 4.9 percent giving a value of 434 ———12.1X10-.
Hence the remaining values are

d22 8.9X10—8. di6= 1.9X10

Both of these constants are too small to drive
modes appreciably, and none were observed.
The complete values of the piezoelectric con-
stants over a range of temperature are plotted
on Fig. 5.

XV. DISCUSSION OF PROPERTIES OF
DKT CRYSTALS

This crystal has properties that make it a
possible substitute for quartz for a number of
applications. Three cuts have been found for
which large electromechanical couplings are as-
sociated with zero temperature coefFicients of
frequency. These cuts are all perpendicular or
nearly perpendicular to the Z axis and two of
the modes are longitudinal and one a face shear
mode. While the coeScient can be made zero at
a specified temperature, the deviation from the
frequency at the zero temperature coefFicient is
parabolic as in most zero coefficient quartz
crystals. The curvature is several times larger
than for quartz crystals. Figure 10 shows these
three cuts in relation to the natural crystal.

This crystal shows some evidence of hydrogen
bond type of coupling at low temperatures.
Figure 11 shows a plot of the inverse of d36 for
dipotassium tartrate, and indicates only a uni-
form increase in dec as the temperature is lowered.
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Such a curve might be accounted for by a
hydrogen bond type of dipole at low tempera-
tures such as occurs for potassium dihydrogen
phosphate, 4 and a frozen dipole liberated at a
high temperature such as occurs in sodium
chlorate and sodium bromate. ' However, the
range in temperature is too small to make this
interpretation certain. All the other piezoelectric
constants vary less than does d36. The contribu-
tions of the diferent types of dipoles to the
dielectric constant is too uncertain to test out
the relation found for ammonium dihydrogen
phosphate, potassium dihydrogen phosphate,
sodium chlorate and sodium bromate, that the
piezoelectric stress was proportional to the dipole
polarization.

APPENDIX. CALCULATION OF THE RESONANT
FREQUENCIES OF A MONOCLINIC CRYSTAL

I. Introduction

For monoclinic or triclinic crystals, the applied
fields and the resulting charge displacements are
usually not in the same direction and hence a
somewhat extended discussion has to be given
for them. It turns out that the piezoelectric
constants that are directly measured are the
d;~ piezoelectric constants which relate strains
to the applied fields. This follows from the fact
that the electrical boundary conditions are that
the tangential components of the fields of a
plated crystal are zero.

It is the purpose of this appendix to investigate
the frequencies of longitudinal modes and limit-
ing cases of face shear modes for the purpose of
relating the measured frequencies and capacities
to the elastic, piezoelectric, and dielectric con-
stants of the crystal. In order to facilitate the
calculation ihe piezoelectric equations are ex-
pressed in tensor form, since by doing so, long
summation terms are avoided. A short discussion
is given of the tensor method of writing the
piezoelectric equations.

II. Piezoelectric Equations in Tensor Form

The stress components acting on a unit cube
of a solid body are symmetrical and can be

'%. P. Mason, Phys. Rev. 69, 173-194 {1946).
~W. P. Mason, "Elastic, piezoelectric, and dielectric

properties of sodium chlorate and sodium bromate, "Phys.
Rev. T0, 529 {1946).
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Fio. 11.Inverse of der plotted over a temperature range.

written in the form

Tl T6 T5

T6 T2 T4 ~

Ts T4 T3

These are the three longitudinal stresses and the
three shearing stresses. These components form
a tensor of the second rank as will be shown.
To conform to the usual tensor notation we
shall write these components as

T11 T12 T13 T1 T6 TS

Tg( ——T,m T22 T2, = T6 Tm 'r4 . (2)

T13 T23 T33 Ts T4 T3

xg Bxg
T~j = Tkl.

In this equation

/
+1 ) X2 ) X3

are the coordinates of the rotated set of axes and

Xjg
—X]) X2 p X3

are the coordinates of the original axes. The

These nine terms form a symmetrical tensor of
the second rank for, if we transform them to a
rotated system of axes, this transformation takes
place according to the tensor transformation
formula
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partial derivates
X1 X2 X3

AX] BX1 8X]

BX1 8X2 BX3

X1' l1 m1 n1

8X1 BX2 BX2 BX2
/ 7=X2 l2 m2

BXy BX1 BX2 BX3 8$
S11 Sl

BX1

l9g
S22 ——S2 ——

BX2

0|
S33=S3=

BX3
BX3 BX3 BX3

BX1 8X2 BX3

X3' l3 m3 n3

Sg 1(as 8$$
S»=Su= ——

( +
2 2 &ax, ax2i

are the direction cosines between the rotated
and the non-rotated systems of axes. In Eq. (3)
another tensor convention is used, namely that
when an index is repeated on one side of an
equation, a summation with respect to the
indices I, 2, 3 is indicated. Both k and l are
repeated in Eq. (3). For example in expanded
form, letting i' and j' each equal 1, Fq. (3) will

expand into

(axe') "-(axe' axe')
Tu =I I Tu+21 lT»

& ax, & ax) axm )

s5 1(8$ al )+
2 2 Cax3 axe)

S4 1(a|' aq)S„=S„=—=-i
2 2 kax2 axe]

the symmetrical nine components

S11 S12 S13

S12 S22 S23

S23 S33
(axe axe ) (axe 3 "

+21 lT»+I
( ax( ax3 ) ( ax2)

will form a tensor of the second rank.
The generalized Hooke law between the

stresses and the strains can be written

axe axe (axe ) 2

+2 T»+
~ ( T» (3).

ax, ax, ( ax, )

where P, s, I' are, respectively, the displacements
of the body along the x1, x2, x3 axes, respectively.
This set of 9 quantities, however, is not a tensor
for it does not satisfy the tensor transformation
equation. If, however, we define new strain
components as

n2

In ordinary elastic terminology this would be
expressed as

T,' = l~'T, +21~m, Tg+2l~n, Tg+mi'Tg

+2m, n)T4+ng'Tg (6)

which is the expression given by Love for the
transformations of stress from one system of axes
to another system. Hence since the stress system
is a collection of' nine quantities which transfer
from one system of axes to another system by
the tensor transformation equation, the stress
system is a tensor of the second order.

The strain components are usually defined as

Sij sij, kl Tkl p

since s;j ~~ or sijI, ~ is a tensor of the fourth rank.
The right-hand side of the equation being the
product of a fourth rank tensor by a second rank
tensor is a sixth rank tensor, but since it is
contracted twice by having 0 and l in both terms,
the resultant of the right-hand side is a second
rank tensor. A tensor of the fourth rank will
ordinarily have 81 terms, but since 5;j and TI,&

are both symmetrical, only 21 independent terms
exist in s, ;q~. If we examine this expression and
compare term by term with the usual way of
writing Hooke's law, given by Eq. (11)

8$ as
S —— S—

7 t

I9X1 8X2
S3-

BX3
S,=S„=S„T,+s,2T2+$,3T3

(as 8$ ) (8$ af )S,=i + I; S,=
(axe axm) (ax3 axe J

(al as p
S4 ——

(
4 axe ax82

+$14T4+ $15T6+$16T6,
~ ~ (11)

S6 ——2S12 ——$16T1+s26T2+s36T3

+$46 T4+$56T5+$66T6

and noting that S6=2S12, etc. , the usual two
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index compliances correspond to the four index
symbol s;;kl provided we replace

1by11, 2 by 22, 3by 33,
4by23, Sby13, 6by12.

However, for any number 4, 5, or 6 the elastic
constant $;; has to be divided by two to equal
the corresponding $;jkl constant, and if 4, 5, or 6
occurs twice, the diviser has to be 4.

The adiabatic form of Voigt's piezoelectric
equations can thus be written in tensor form

K1'=3~i'ki Tkl+dml@m,

+rk. +dnkl Tkl)

where 8 are the three applied fields, 0„the
surface charges normal to the three axes, d;;
the third rank piezoelectric tensor relating the
strains to the applied fields or the electric dis-
placement to the applied stresses. In a similar
way to the elasticities, the two index piezoelectric
symbols are related to the three index symbols if
we replace the ij terms

of Eq. (13) by 42rP„rgiving

4' .ro. =E fp „rk„rg+4xp „rdnklTkl. (17)

But by virtue of the definition of P„„rgiven by
Eq. (15) it is obvious that the value of each
term is unity so that Eq. (17) can be written

&m=42rPmn lan 42rPm—n dnklTkl

=42rp „rlr„g„klTkl,—(19)

where the new piezoelectric constants g kl re-
lating the fields to the applied forces or the strains
to the electric displacement is given in terms
of the d„klpiezoelectric constants and the "free"
dielectric impermeability by the tensor equation

gkakl 42rPma dakl (20)

If we take the product 2 „rP„rfor the three
values of m, we have as the multipliers of Ei, EI,
E3, respectively,

211' Pll +212 P12 + 213 P13

221 P21 + 222 P22 + 223 P23

331 P'll'1 +332 P32 +233 P33

1by11, 2by22, 3by33,
4by 23, 5 by 13 and 6by12.

Introducing the value of 8 into the first of
(14) Eqs. (13) we find

For any number 4, 5, or 6, the piezoelectric
constant d;„has to be divided by 2 to equal the
corresponding di~ constant.

To find the form of the piezoelectric equations
for which the electric displacement D/42r is the
independent variable, the following derivation
can be used. Let us first consider the dielectric
"impermeability" tensor p„which is formed
from the dielectric constant tensor e „Tby means
of the relation

p r ( 1) (m+nlgk 2'/3 r

where e is the dielectric constant tensor

C. . . . DVSij Sijkl & kl+gmij+n& (21)

Sijkl —Sijkl drni jg3nkl.
D g (22)

Hence the complete piezoelectric equation can
be written

C. . . . DV'Sij=Sijkl Tkl+g~igon,

+m =4XPmn &n gmkl Tkl
(23)

III. Equations of Motion of a
Piezoelectric Crystal

where the open circuit or zero charge elastic
compliances are given by

&13 ~ 623 3 633

&ll 3 &12 2 &13
T

612 3 A2 (16)

The equation of motion of a piezoelectric
crystal or any aeolotropic body can be derived
from Newton's laws of motion and the piezo-
electric Eqs. (13). Newton's law can be written
in the tensor form

and he „Tis the determinant formed from this
tensor by suppressing the mth rom and nth
column. We next multiply both sides of the last

&2&k

p dxkdxkdxk Fk, ——
BI2

(24)
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where g2 are the displacements of the elementary
cube dx1dxgx3 in the x1, x2, x3 directions, F2
are the components of force in these directions
exerted on the elementary cube, and p is the
density of the material within the cube. From
elastic theory we have that the total resultant
force along the x~ direction is the partial deriva-
tives of the stresses in this direction or

~Tyy 8Tj2 ~ Ty3
F1 + ——+ + dx1dx2dx3

8xj 8Ã2 Bxe

~T 1l= + dx1. (25)
Bx~

For the forces in any direction we can write the
general tensor relations

F3 = + dx1.
~Xl

(26)

Hence the equations of motion become

~ $3 ~T21
r =+

Bt2 BXl
(27)

Ta Till1+T12f2+ T143 T1jfj

T3 = T21f1+T22l2+ T234 = T2jI'j =
02&

Ts T31f1+T32f2+ T33t3 T3jfj 0 y

(28)

where T„T„,and T, are the stresses along the
Xj,, Xg, X3 axes. If we denote these by T;, the
boundary conditions can be abbreviated into

T; = T~g; =0. (29)

Into this equation we can insert expressions for
the strains in terms of the stresses and applied
charges and obtain the partial differential equa-
tions for any mode of motion. However, before
doing this it is desirable to discuss the boundary
condition that such crystals have to satisfy.

The elastic conditions for a crystal free to
vibrate are that the stresses normal to the free
edges are zero. For a surface whose normal has
the direction cosines l~, lg, l3 with respect to the
X~, X2, X3 axes, respectively, the conditions
reduce to

of the crystal or not. If any plating is a Iong
distance from the crystal, then the surface charge
0.; is necessarily zero since no path exists for
conducting charge to this surface. If, on the
other hand, a plating is integral with the surface
normal to the x& axis, the surface charge Oj, will

not be zero but will be a function of the other
two directions x2 and xe. In the interior of the
crystal, the electrical condition is expressed by
determining the electrical induction D. At every
point of the interior the divergence of the electric
induction vector is equal to zero, or

DDg DDT ~Dg BD;
+ +

t9xy Bxg Bxa Bx '
(30)

At the surface of the crystal the normal compo-
nent of the electric induction divided by 4m is
equal to the surface charge. At the plated surface
the electric field starts out normal to the surface
since the tangential components of the field on
crossing a boundary are continuous, and for a
plated surface the tangential component of the
field is zero. These equations are suf6cient to
determine the electrical as well as the mechanical
reactions of the crystal.

IV. Equation for Simple Longitudinal Vibrations

In obtaining the elastic and piezoelectric con-
stants of a crystal, it is necessary to vibrate the
crystal in a simple mode of motion and determine
the constants from the measured resonant and
anti-resonant frequencies, and the capacities of
the crystal. The simplest mode of motion and
the one most easily related to the elastic con-
stants is the simple longitudinal mode of motion.
If we take x& as the thickness direction and apply
plating to these surfaces of the crystal, the only
value of surface charge diferent from zero will

be 0~ since no electrical connection is made to
the other surfaces. Since xj. is assumed small, the
voltage gradient BE1/Bx1 will be a constant
throughout the thickness of the crystal. Also,
since the plating is an equipotential surface

&JET BE/
=0.

8xm Bxs

The electrical boundary conditions are deter-
mined by whether plating is placed on the surface

%'e take the length along the xg axis and the
width along the x3 axis. For sides normal to the
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thickness, the boundary conditions are

T11 T12 T18

The only charge of interest is the one in the xl
direction which is the direction of the applied
field. Hence

Tll T12 T13 (32)

for all elements of the crystal. Similarly since
the width is considered very small, the stresses

Since the thickness is taken as small and all the
stresses are zero on the two surfaces normal to
xl, these stresses cannot differ appreciably from
zero in the interior and hence we can set

d122 d 122
0'1 = 42r&ll +I+ ~22.

S2222 - S2222

Finally we call the expression

d122
4% 611 41i 611 4&&11

S2222

(39)

(40)

T31= T32 ——T33 =0. (33)

For the length, the only finite dimension, the
stresses on the surface are

T21) T22$ T23 (34)

Of these T21=T12 and T23=T32 have already
been found to be zero so that the only stress
di8'erent from zero in the interior is T22.

Inserting this condition in Eq. (27) the only
equation of motion resulting is

8 $2 8T22
p =+

Bt2 BX2
(35)

+ij=sil22 T22+dlilF l. (36)

In particular the stress T22 can be specifmd by a
single strain, all the other strains being related
dependently to this one. Taking the strain 5»
since it is simply related to the displacement $2,
we can write

~22 = $2222 T22+d122E1

Since T22 is the only stress, the corresponding
strains are given by Eq. (13), first part. For the
case of interest here, k =1=2 and since a charge
is developed only in the xl direction, n = 1. Hence
we have

d12 ~$2
01=4m all El—

$22 8X2

(41)

To solve this equation we note that El is a
constant independent of x2 since the plating
forms an equipotential surface. Hence the equa-
tion of motion becomes

82)2 1 82)2
P

Bt2 S22~ BX22
(42)

The equations of motion (41) and (42) have
been solved several times in published papers'
so that only the 6nal results will be given. From
this analysis it can be shown that the admittance
of the free crystal is

1 i
Z 8 Ellg

indicating that it is the longitudinally clamped
dielectric constant which relates the potential
and surface charge when the crystal is clamped
so that 522 disappears.

In terms of the more usual two index symbols,
the two piezoelectric and elastic relations can be
written

~'b 1 ~'6
P

Bt $22 BX2 S22 BX2

d122E1
222 +

$2222 $2222
(3&)

j(A l211 42rd12' (tan &vl/2V)
1+

~ ~
. (43)

42rli elpvs22s & o)l/2v

At very low frequencies this admittance reducesThe electrical relations of j13j reduce to the form
to the capacitance reactance

4&&eg +1+da22T22

t' d 22d122i
)Z, —

" S„.(38)
$2222 ) $2222

j4~&11~ =g(elCp
4mlg

~ See %'. P. Mason, Phys. Rev. 59, i73 {f946).

(44)
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so that the low frequency measurement of the
capacitance Co determines the "free" dielectric
constant &~I~. When the tangent

o)l col x
tan —= ~ or

2v 2v 2

2l 2l(ps2P) &

A resonant frequency is obtained whose value is
determined by the elastic compliance s»~, the
density p, and the length of the crystal.

The anti-resonance occurs when the expres-
sions in brackets in Eq. (43) equals zero or when

4irdim' (tan a&~l j2s)
1+ I

I=0
S22 E ldll/2V

or
+pl

cot
4xdig'

~n
(46)

Defining the coefficient of electromechanical
coupling as

k=
(&ii

4 4m. )
and substituting the value of eia~c from Eq. (40)
in Eq. (46) this becomes

cot
k-'

&1 —u2)
(48)

Ke wish now to obtain an expression for evalu-
ating the coupling factor k in terms of the
measured resonant and anti-resonant frequencies

fs and f~. Their difference is usually small so that
we can write

Hence when the frequency difference between
resonance and anti-resonance is measured, the
coupling coefFicient k can be obtained by substi-
tuting in the above formula. Usually the first
term is sufFicient. Having the coupling, the
elastic constant s228, which can be calculated
from the resonant frequency, and ~»~ which is
obtained by low frequency capacity measure-
ments, the piezoelectric constant di~ can be
evaluated. By using these constants for rotated
cuts, all the independent elastic constants not
involving pure shear, most of the piezoelectric
constants, and all of the dielectric constants can
be evaluated.

V. Evaluation of Shearing Constants from Face
Shear Vibrations

Tn= ~32= T33=0 (51)

A measurement of various orientations of the
crystal in longitudinal vibration will evaluate
all of the elastic constants except the shearing
constants. To measure the shearing elastic con-
stants requires setting up a vibration in which a
pure shear is the predominant motion. A choice
can be made of a thickness shear mode or a face
shear mode and the latter was chosen since the
mode is simpler and is more easily dimensioned
and because the fundamental constants can be
directly measured by a single orientation. It is
the purpose of this section to derive the resonant
frequencies of a face shear mode.

This is a more general contour mode than the
longitudinal mode considered and involves satis-
fying boundary conditions along four edges. We
consider a crystal cut normal to the Z or X3 axis
and assume that the thickness is so small that
the stresses determined by the X3 direction can
be set equal to zero. Hence

f~=fs+&f; ~~=~s+2s&f (49) The remaining stresses

inserting this expression in (48) and expanding
by the multiple angle formula, we have after
solving for k'

s' hf p4 —s."-q Af

4 fs 4 4 )fs
t's. —4& t' 'q

t ~fq+
I I I

—
I I
—

I + (5o)
&C4) Ef)

(52)

are all finite throughout the crystal but vanish
at the edges. The vanishing of the stresses in

Eq. (51) simplifies the equations of motion for
it results in only three independent strains, i.e. ,
the other three strains have a definite ratio to
the independent strains. Since the field E is
parallel to the Z axis at the surface, and the
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thickness is assumed small, the only component ances at constant field by the formula
of the field will be ZS. Then Eq. (13) can be
written (55)

Sll =51=$11 Tl+$12 T2+$18 TS +d31E3,

2512 56 $18 Tl+ $26 T2 +$66 TS+d35E3i

+22 = 52 —$12 Tl+$22 T2+ $26 TS+d$2$3i

~33~&3
03 = +d3] r1+d32T2+d36T6.

(53)
$11 $12 8 $16

$12 y $22 ~ $26

$16 s $26 2 $66

~here 6 is the determinant

All the other stresses disappear by virtue of (51)
For inserting in the equations of motion it is

desirable to express the stress in terms of the
strain. This can be done by solving Eq. (53)
simultaneously, giving

Tl Cll ' ~ +C12 ' ~2+C16 ' ~6 C31 +3

12 = c12 ' 51+c22 S2+C26 ' S6 e32 E3

~6=c16 ' Sl+c26 ' S2+c66 ' S6 &36 +3

8$1 =d31Cll +d3'2C12 +d3'8C16 '

~32 d31c12 ' +d32c22 ' +d36c26

s36 d31C16 ' +d$2c26 ' +d$6c66

(56)

while the contour clamped dielectric constant is
given by the equation

833 ' = 533 (Cf31831 +d328$2 +d36838 )4W. (57)

and A~~ is the minor obtained by suppressing the
kth rom and 1th column. The piezoelectric moduli

applying to a contour mode of motion are given
by

&33

(1E31c31 +d32s32 +d$6c38 )

+C31 +1+'~32 +2+C35 ~5.

(54)
The superscripts c,S indicate that this is the
dielectric constant if the crystal is free from
contour strains, but not for thickness modes.

Inserting Eqs. (54) in the equations of motion
(27) noting that

In these equations c; ~ designate the field con-
tour elastic constants that apply when a contour
mode occurs for a very thin crystal. These con-
stants are given in terms of the elastic compli-

BE$/Bx, =BE$/Bx2 0, ——

since the plating is an equipotential surface, the
equations of motion become

$2$
p

BI,2

r3-(
c,E +2C c~g

BX1 BX18X2

~'4 ~'b 82b 82b
+C ' +C 8 ' +(C12 ' +C66 ' ) +C26

BX2 BX1 BX18X2 BX2

(58)
6t2) g2t g2g g2g cl2b ~2b g2b

p =c ' +(c 2' +c ' ) +c28' +c56' +2c28' +c22'
aX12 aX18X2 BX2' aX1' BX18X2 BX2

For simple harmonic motion, Eqs. (58) reduce to the form

b ~ 1'1

C11 +2C16
BX1 BX18X2

8'b 8'b
+C22 +58pb = 0i

l9X2 8X2

g2p 6I'b ~'b
C15 +(C12+CSS) +C28 +CSS +2C28

BX1 BX18X2 8X2 BX1 BX1

6I'f $I'$2 g2$ (j2$
+C66 +C16 +(C12+C66) +C25 +55 pb 0~

8X2 8/1 8X18X2 8X2

(59)

where the elastic constants are understood to be the contour, potential constants.
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For experimental purposes it is found that the best measurements are obtained when the crystal
is long compared to its width or thickness. This is further accentuated by taking a high harmonic
of this mode which in efIIect makes the unit cell longer compared to its width. Hence the solution
of interest is one where the crystal is infinitely long in the xi, direction and with a finite width in
the x2 direction. For the infinitely long crystal, there should be no variation of the displacements
(1 or (2 along the length of the crystal and hence

this leaves only the terms

'(1 ~'~l ~'$2 ~'k2
=0

~X1 ~X1~XQ ~X1 Xl~X2
(60)

'6 'b '$1 'b
c66 +c26 +"PL=0, c26 +c22 +GPP$2 0.

BX2 t9X2 8X2 BX2
(6&)

The solution of these equations represents two coupled motions controlled by the x2 dimension.
If c&6=0 these two motions are a shear vibration and a longitudinal vibration existing independently,
but with eye finite, the shear and the longitudinal motions are coupled so that there is no pure shear
or pure longitudinal motion. To show this we can eliminate b from the above equation and obtain
one fourth-order equation

g4p
+40 P

BX24

"PklC22+C66 8 k2

+ =0
C22C66 C66 8Xg C22C66 —C26

A solution of this equation is

where

If cate ——0

$1=2 cos nx2+8 sill nx2+C cos Px2+D sill Px2,

( (C22+C68)P ~ ( (C22 C68) +4C26
n=cv] ~l'+

'2(C22C66 —C26')~ & - (C22+C86)'

C (c»+c88)p &86 (c» C86)'+4c26' 8)'
((C22C66 C26)) ( (C22+C66) )

n=co(p/c66)&; P=o)(p/C22)&,

(63)

and the two vibrations would exist independently.
The value of b is obtained by a substitution of the value of pl in the last of Eq. (61) and is

( n2C26 O'C26

~[A cos nx2+a sm nx2&+I ILccos PX2+D sm PX2j.
(a)2P —n2C22J i"'P —P'C22)

(64)

The boundary conditions to be satisfied are

8)2 8/1
T2=c22 +c26 881E6=0 whe»2 ——0»d X2 4,

BX2 BX2

8/2 8/1
T8=c26 +c66 —e68E2 ——0 when x2 ——0 and x2=4,

8X2 8X2

(65)

where l~ is the width of the crystal. These conditions determine the four independent constants A,
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8, C, and D. In terms of E3 these constants are

(562p —aRCRR) tan nl„/2 ~ pcgg —P'(cRRcgg —cgg')
e36'E3 —em'E3

-a[p a j[c22cgg cR6 j- — - gd pc26

(Cd P —a c22)
~36'+3 —~32'+3

n[P —n j[c2RC66 —C26 j
gd PC66 P (C22C66 C26 )

GO pC26

(562p —p'c22) tan pl /2
C= e36'E3 —e32'E3

-p(p' — ')( —
~ ')-

ld PC66 a (C22C66 C26 )
(66)

(dl P P c22) ~ pCgg —n (CRRCgg
—

Cgg )
e36'E3 —e~'E3

-p(p —a )(C22C66 C26 )-- co pcqe

To obtain the eIectrical admittance of the crystal, we make use of the last of Fqs. (54) which
for this limiting case becomes

8363'e 8/2 citl
ng= +e„' +e„'

4x 8xg Bxg

Integrating this equation over the length and width, noting that E3 does not vary over the surface
and $2 and $1 are not functions of xl, we have

Eal„le,c,s
Q= +e82 i[$22 bl]+e36 i[$12—$1lj (68)

where the displacements are the dispiacements at the two edges, and Q is the tota1 charge on the
surface. Introducing the displacements from Eq. (63), (64), and (66) and noting that the current
to enter the crystal is jcdQ, the admittance of the crystal becomes

Jgdllm638 ' e32~47I n [cd pcgg p (C22C66 C26 )j (tan alar/2 )
42rl 8 688' e (p' —a') (cggcgg —cgg') 662p ( al„/2 )

(tan al /2)
(gd p —n c22

p [gd pcgg n (CRRC66 C26 )] —tall plgl/2 - 42re36 ( ni~/2 )
X +

[(P a )(c22c66 c26 )gg p] Plw/2 - 688 ' c ' (P —n )(c22c66 c26 )

f'tan pl /2q

pl. /2 )
(p a ) (c22c66 c26 )

4«gge36 Cgg{& P n C22)(& P P C22) n P CRRC26

638 -- '(p a ) (C22C66 C26 )&Rpcgg

At low frequencies

tan al /2 tan pl /2 t' cgg ) tan nl„/2 tan pl /2
X — + i + . (69)

al„/2 Pl~/2 (cggc« —c26') nl /2 Pl /2

tan al tan Pl /2
r rf

al /2 Pl /2
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and the admittance is a capacity

1/„&33'~ 4~e~' c66 4mee~' c22
C= 1+ — +

4''l g 633 ' - c22c66 —c26 &33 ' C22c66 —c26

4sr&66866 ( 2css

666 ' (C22C66 Css )
(71)

This capacitance is the "free" dielectric capacitance.
If c~~ =0, the impedance reduces to that for two uncoupled modes, and is

i ja)ll„~33'8 ' 4xe32'
1+

E 4~i) cg2

(p)6l„l
tan ~l —

! —"~
E css) 2

!(' p'! ~4

&c22) 2

4me32'
+

633

(P l'I-
tan ~! —!—

cess) 2

(p)&I
(css) 2

For the general case where css is not zero, Eq. (69) is the admittance of two coupled modes. The
resonant frequencies occur when the admittance is infinite (impedance zero) and hence occur when

tan nl„/2= ~ or tan Pl /2= ~.
These are satisfied for the first modes when

1 ((css+css) —L(css —css) +4css ]
2l E. 2p

2p2l

1 ((Css+Css)+L(C66 —Css) +4C66 j ) '

)

(74)

Since the frequency f is equal to the velocity of propagation si/2/, , we find that the two values of
the velocity satisfy the determinant

pV —c22, Cq6

pv —c66

=0 (75)

VI. Elastic, Piezoelectric, and Dielectric Con-
stants of Rotated Crystals

We have so far calculated the resonant and
anti-resonant frequencies of longitudinal crystals
cut normal to the X or Xj axis of the crystal and
with the length along the Y or X2 axis, and the
frequencies of a face shear mode cut normal to
tile Z or Xs axis with the width (frequency
controlling dimension) along the Y or Xs axis.
To measure all the properties of a crystal requires
a number of diHferent orientations for both longi-
tudinal and shear vibrations. To make the solu-
tions given previously hold for any of these
oriented crystals, we use a system of rotated
axes which are rotated from the reference axes
by three rotations for the most general case.

Starting with the reference axes, the elastic
constants for any rotated cuts are given by the

general tensor formula

BX~ BX& l9XIi; BX2
I

~t~a2 =
limno p)

Bx~ Bx~ Bxp Bxy
(76)

where the partial derivatives are the direction
cosines defined by Eq. (4). In a similar manner,
the peizoelectric and dielectric tensors are given

by the formulae

Bx'

BX2

Dxg

OXIDE,

Bx& Ox'
d 2fAfL f

BXsr6 BX~

BXp
~k2

BX2
(78)

For a monoclinic crystal, with the Y axis taken
as the axis of twofold symmetry, the three
tensors have the form shown below when the
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&11) 0) &13

&kl 0) &22) 0 )

&13, 0, &33

(79)

axes chosen are the X, Y, and Z axes as de6ned
in the text

$1111) $1122) $1133) 0) $1118)

$1122) $2222) $2233) 0) $2218)

$1133) $2288) Sssss) 0) $3813)

0, 0, 0) $2323) 0) $2312

$1113) $2213) $3313) 0) $13]3) 0)

(81)

0, 0, d123) 0) d112
0, 0, 0, s2312) 0, s1212

dbms d311y d223) d333& 0, d313y 0 . (80) For longitudinal crystals the rotated elastic
constant of interest is the s2222' constant since

ds2s) o, ds12, this is the inverse of Young's modulus along the
length V' or X2'. The piezoelectric constant

Here the first number denotes the direction of driving this mode is d122. Introducing the tensor
the field and the last two numbers the resulting terms is the tensor Eq. (76), the rotated constant
strain. The elastic tensor has the form becomes

BX2 BX2 BX2 BX2
$2222 oy l3 s»»+l3 m3 (2$1122+4$»») +l3 'n3'(2s1133+4s1313) +4l3 n3s1113

BXn) BX)), t9XO BXp

+m3 $3233+m2 n3 (2$2333+4$3333)+4n3 l3$3313+n3 $3333+m3 l3n3L4$33»+4$33»j (82)

In terms of the equivalent two index symbols the equation becomes

$33 ——l3 $11+l3 m3 (2S13+S55)+l3 n3" (2$13+$55)+2l3 n3$»+m3 $33+m3 n3'(2s33+$44) +2n3 l3$35

+n3's33+m3'l)n3L2$35+$43j. (83)

Hence by cutting nine oriented longitudinally vibrating crystals 6ve elastic constants can be deter-
mined and four relations obtained between the other eight elastic constants. Eight of these cuts
can be obtained by having the length in the VZ, ZX, and XI' planes. For a crystal cut with its
length in the FZ plane, with the angle measured from V equal to 8, we have

hence
l2 ——0, m2 ——cos 8, n2=sin 8,

s33' = s33 cos' 8+(2s33+s44) sin' 8 cos' t)+$33 sin' 0( YZ plane). (84)

For the XY plane, measuring the length from Y

l2=sin y, m2=cos y, n2=0,

$33 —$39 cos' )1+(2$»+$35) sin' rp cos' 33+s» sin' 33(XF plane). (85)

For the ZX plane with f measured from positive Z in the direction of positive X, as defined in the
text, l3 ——sin f, n3 ——cos p, m) =0, and

$33 $33 cos' /+2 cos' 1l sin 1l $35+sin' P cos' 1l (2$»+$55) +2 sin' P cos P s»+sin' P s». (86)

Three crystals each in the FZ plane and XY plane and five in the XZ plane will determine eight
relations and give three checks between the constants s11, s22, and sss. To determine the ninth relation
requires a crystal with a double orientation and for this purpose the crystal shown by Fig. 9 was
used. In this case l2=0.5, m2= —0.707; n2=0. 5 and

$33 = ~&t S»+S»+$33j+ii)S»+S»+ $44+$35+$33+$43j+4 Ls»+$33+$33+$»i. (87)

The piezoelectric constant for driving these longitudinal crystals, 8122 is given in terms of the
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developed tensor equation

Bx1' Bx2' Bx2' Bx1' Bx2' Bx2' Bx1' Bx2' Bx2' Bx1' (Bx2') ' Bx1' pBx2') '
d122' = d1 .= 2 d123+2 d112+

I ~
d211+ ( ~

dm
Bxg Bx Bx Bx1 Bx2 Bx3 Bx1 Bx1 Bx2 Bx2 EBx1 ) Bx2 EBx2 ]

Bx1 (Bx2 ) Bx1 Bx2 Bx2 Bx1 Bx2 Bx2 Bx1 Bx2 Bx2
+

I I d»3+2 d»3+2 d»3+2 d»2 (88)
Bx2 (Bx3 ) ~&2 &l ~X3 ~&3 ~&2 ~&3

In terms of the two index symbols and the direction cosines this equation becomes

For crystals cut in the FZ plane with the thick-
ness in the Xl direction, the direction cosines are

ll =1, ml=0,

l2= 0, m2 ——cos 0,

nl =0

@2=sin 8

le=0, m3= —81n 8, 03=cos 8

de = llmRS2d14+ ll/2mmd16+ mllm dpi+ mimi d2%

+m1n2'd23+ m1l2n2d23+n1m2n2d33

+n1l2m2d33. (89)

and the piezoelectric constant driving this mode
1S

d12 d21 Sln lp+d23 cos' p+—sin 21l (95).
2

Two more single angle orientations, which will

give information on the piezoelectric constants
but not on the elastic constants are orientatioos
for which the length and thickness axes both lie
in the VZ and XZ planes, respectively. For the
first case with the angle 8 measured between the
length and the Y axis, the direction cosines are

dl4
dim'=dl4 sin 8 cos 8=—sin 28.

2
(91)

and the piezoelectric constants driving this mode
are

/, =i; m, =o; n3=0

ii=0; ml ——sin 8; nl= —cos 8

I =0; m =cos e; n =sin tI (96)

l1=0;

lm=cos p',

ml ——0;

m2=sin p,

n1 ——1

(92)

l3 ———sin y, m3=+cos y,' F3=0

and the piezoelectric constant driving this mode
1S

Hence a measurement of the 45' X cut crystal
will determine the piezoelectric constant dl4. Its
sign can be determined from polarity tests. For
the XI plane with the thickness along Z=X3,
the direction cosines become

and the piezoelectric constant dig' is

d12' = sin 8[(d22 —d34) cos' 8+d23 sin' 87. (9'/)

Hence if a crystal is cut with its length 45'
between the Y and Z axis and its width along
the I axis, the piezoelectric constants (d22 —d34)

can be evaluated and compared in sign with d~3,

which has already been determined from Eq.
(95). The second orientation with the length
and thickness in the XY plane and with the
width along the Z axis, the direction cosines are

)i =sin p,' ml= —cos p', n1=0
d36

d,2' ———d32 sin s cos 22= ——sin 222. (93)
2

(98)lm=cos q, m~ ——sin y,. n2=0

n3 —1l3 ——0; mg ——0;
In the XZ plane with the thickness along the V
axis, the direction cosines are and the piezoelectric constant d»' is given by

d12 = —COS 22[d21 cos 22+(d22 —d13) Sln 227. (99)el=0
n2=cos P

n3 —sin P-—

ii=0;
l2= 8111 $;
l3 =cos f;

ml= 1;

me=0;

m3= 0;

(94)
Hence a crystal cut at 45' between the X and V
axes and with its width along the Z axis will
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determine the value of (dss —d14) since d11 is
already known.

A check on the piezoelectric constants and
their signs is obtained by using one double

orientation crystal. The one selected on account
of the ease of cutting is the one shown by Fig. 9.
From the figure it is readily shown that the
direction cosines are

l~=0.707 sin 8; m~=cos 8; n~=0.707 sin 8

12=0.707 cos 8; m2= —sin 8; n~ ——0.707 cos 8 . (100)

13=0.707; m3=0; n, = —0.707

VA'th these values the piezoelectric constant for
driving this mode is

(dn+d14+ds4)
du = cos' 8

2

(d14+d14+d44+dse)
+ d22- sin' 8 cos 8. (101)

2

Hence by taking 8=45' this becomes

d11 = 0.1768Ld41+ds4+d44]

+0.1768L2d21 —(d14+d14+d34+d34) j. (102)

To separate d» from dj.e and d34 requires the
measurement of one thickness vibration crystal.
The one chosen for DKT was a crystal cut nor-

mal to Z, which gave an 54 shear. This deter-
mined the constant d34. From this all the values

can be calculated.
To evaluate the shear elastic constants, four

crystal cuts are made all of which vibrate in the
face shear mode. Three of these are cut normal

to the X, F, and Z axes, respectively, with their
width (the frequency . determining dimension)

along the Z, X, and V axes, respectively. The
fourth cut is made with the thickness direction

halfway between the X and Z axes and the
width along the Y axis. The frequency of a Z
cut crystal has been discussed at some length in

Section V and since s26 is zero for a monoclinic

crystal the shear vibration frequency is deter-
mined by

1 pc«'~q &

2$„E p )
Then since

' sjy sing 0

the fundamental elastic constant s66~ can be
evaluated from the measurements.

The frequency of an X cut crystal with its
width along Z can in a similar manner be deter-
mined since it can be shown that the mode of
motion is a simple shear, and the frequency is
given by

1 t'C44'

24K p
(105)

and
s = 1/c44 ' (106)

An oriented cut is necessary to evaluate s46~.

If we cut a crystal with the width and thickness
both in the ZX plane and the length of the
crystal along the Y axis, it can be shown that
the shearing modulus s66'~ is equal to

Hence for a crystal cut with its thickness direc-
tion 45' from X, the elastic constant

=c44's'. (109)
s66 (s66 2s44 +s44 )

The dielectric constants e~~, ~~g, ~33 can be
evaluated by measuring the capacities at low
frequencies along the X, F, and Z axes, respec-
tively, while the dielectric constant e»~ can be
evaluated by measuring the capacity of the above
crystal which as shown involves the values

s44's = s44s cos' 8—s44s sin 28+s44s sin' 8. (107)

At the same time s26'~ is equal to zero so that the
resonant frequency of such a plate is determined

by c66~~'. The driving piezoelectric constant d~4

is equal to
(d14 d44)

=d14 cos 8+ sin 28—dm sin' 8. (108)

c,E
sll s SlR

Sgg, S22

1
sos ss1s 0 =, (104)

ses~
0 0 s66~

(&11 +2&14 +&48 )
(110)
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Hence all of the constants can be evaluated as
explained above except the shear elastic constant
$55E. This is more complicated since it involves
measuring a coupled mode. For a Y cut crystal

vvith its width or frequency determining direction
along X, the shear coupling coefFicient cannot be
neglected and the shear resonant frequency is
given by the equation

f (&»' +&»' ) [(&»' &»' )'+4&15' '] 5

2l I

c

2p i
1

~» ' +c»' [(c»' —c»' )'+4(g»' )']&
= (2f*.f) 'I

Finally we have from Eq. (55) transformed to
the P axis

$11 $13 7 $15

$13, S33 ) S35

$15, S36, $55

where 6 is the determinant

( 1)k+lg„
c Since all the s;;E values have been determined

but s55E, the two relations can be solved simul-
taneously for s»E and all the elastic constants
can be determined.
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The formalism of the second quantization is developed entirely within the framework of
the Dirac-Jordan representation theory. The equivalence of this formalism and the methods of
ordinary coordinate-spin space is shown, and the equations of "connection" are fully developed.
It is shown that the "creation" and "annihilation" operators, and indeed all operators which
do not commute with the quantized Hamiltonian and hence whose representatives cannot be
explicitly given in a configuration space of a Axed number of dimensions are easily treated in
terms of the general representation theory and arise quite naturally. Both types of statistics
are considered, and the Fock-Dirac density matrix and self-consistent 6eld are treated as a
simple illustration.

E consider the general properties of a system of n-indistinguishable particles, and compare
the description of the system by two diferent operator sets x, and E„associated with the

rth particle (r = 1, 2, I) The oper.ators x, and E„will in general stand for a complete commuting
set of observables for each particle; thus for electrons for example we may take x, = (x„y„,z„,s„);
e, =e,„and E,=(H„,m„',m„,e„);m„=m,„.However, for our general calculations we need only
consider that the operators E„have discrete spectra, without specifying their specific form beyond
the condition that the operators (both x„and E„)of any one particle commute with those of any
other. All the x's together form a complete x-representation and likewise the E's form an
E-representation.

Now any arbitrary physical state !;{)can be expanded in terms of the eigen-! ) of either of these


