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Two crystals of the monoclinic sphenoidal class have been found which have modes of vibra-
tion with zero temperature coefficients of frequency, and this property together with the high
electromechanical coupling and the high Q's make it appear probable that these crystals may
have considerable use as a substitute for quartz which is difficult to obtain in large sizes. These
crystals are ethylene diamine tartrate (CsHiN:0s) and dipotassium tartrate (K,C(H,Os,
$H.0). Complete measurements of the elastic, piezoelectric, and dielectric constants of the
dipotassium tartrate (DKT) crystal are given in this paper. The crystal has 4 dielectric con-
stants, 8 piezoelectric constants, and 13 elastic constants. A discussion is given in the appendix
of the method of measuring these constants by the use of 18 properly oriented crystals.

I. INTRODUCTION

S part of the program for investigating

promising piezoelectric crystals, measure-
ments have been made of a number of piezoelec-
tric crystals occurring in the various crystal-
lographic classes. It has been found that the
less symmetric classes give greater possibilities
in obtaining low temperature coefficients be-
cause with the larger number of elastic constants
a greater possibility exists of balancing tempera-
ture coefficients between the various constants
and obtaining zero temperature coefficient crys-
tals. In particular two crystals of the monoclinic
sphenoidal class have been found which have
modes of vibration with zero temperature co-
efficients of frequency, and this property together
with the high electromechanical coupling and
the high Q’s (or low internal dissipation) make it
appear likely that these crystals may have con-
siderable use as substitutes for quartz, which is
difficult to obtain in large sizes. These two crys-

F1G. 1. Method of relating rectangular X, ¥, Z axes to
a, b, ¢ crystallographic axes of a monoclinic crystal.

tals are ethylene diamine tartrate* (which has
been given the designation EDT) and dipotas-
sium tartrate (which has been given the desig-
nation DKT).

It is the purpose of this paper to derive the
fundamental constants for a monoclinic crystal
and to show how they are measured. This
process is illustrated completely for one of these
crystals, dipotassium tartrate (K,C4H4Os, $H20).
This crystal forms in the monoclinic sphenoidal
class which has as its only element of symmetry
the b or Y crystallographic axis, which is an axis
of binary symmetry. As a consequence there are
four dielectric constants, eight piezoelectric
constants, and thirteen elastic constants. To
obtain all of these constants requires measuring
the properties of eighteen carefully orierited
crystal cuts. Since this is the first time that all
of the properties of a monoclinic crystal have
been measured by dynamic methods, a complete
description of the process is given in the appendix.

II. MONOCLINIC CRYSTALS AND THEIR RE-
SULTING PIEZOELECTRIC EQUATIONS

Monoclinic crystals are characterized by hav-
ing two crystallographic axes b and ¢ at right
angles to each other, and a third axis @ which
makes an angle different from 90° with the other
two. The ¢ axis lies along the shortest direction
of the unit cell while the b axis is the axis of
twofold symmetry. In measuring the properties
of a crystal, the calculation comes out much more

* A paper on the properties of this crystal is in course of
preparation.
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F1G. 2. Relation of +X and +Z axes to plane of optic axes.

simply for a right-angled system of coordinates.
As shown by Fig. 1, the method chosen! for
relating the right-angled X, V, Z system of axes
to the a, b, ¢ crystallographic axes of the crystal-
lographer is to make Z coincide with ¢, ¥ with b,
and to have the X axis lie in the plane of the &
axis and at an angle of 51’ above a for DKT.

The X, ¥, Z axes form a right-angled system
of axes. Since b is the binary axis, it is necessary
to have a convention for specifying which end of
the axis is positive. As shown in a companion
paper by W. L. Bond? this can be done by
locating the optic axis of the crystal. A mono-
clinic crystal is a biaxial crystal and the plane
that contains these axes is found to be parallel
to the b or Y crystallographic axis. As shown by
Fig. 2, the plane of the optic axes lies at a
clockwise direction of 21° from the ¢ or Z
crystallographic axis. Since X lies at a counter-
clockwise angle of 90° from ¢ and (+b=+7)
makes a right-angle system of coordinates with
the X and Z axes, the measurement determines
the positive directional of all three axes. Ori-
ented crystal cuts are usually specified by x-ray
orientation procedures as discussed in the above
paper.?

These crystals were grown from a supersatu-
rated solution by A. N. Holden. Holden finds
that the water of crystallization in DKT is quite
tightly bound and experimentally it has been
found that no noticeable dehydration takes place
at 80°C over a week’s time. At about 150°C the
vapor pressure of DKT reaches atmospheric and
will cause bubbling in an oil bath. The usual

1 This system of relating rectangular axes to crystallo-
graphic axes has been standardized by a committee on
piezoelectric crystals of the Institute of Radio Engineers,
under the chairmanship of Professor W. G. Cady. They
have also standardized the symbols and nomenclature
used in this paper.

2 Paper in course of preparation.
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F1G. 3. Crystal habit for DKT crystals.

crystal habit is that shown by Fig. 3. The
crystal has two cleavage planes lying along
planes determined by the three crystallographic
axes. However, these cleavages are not suffi-
ciently bad to cause much trouble in processing
these crystals.

The Voigt form of writing the piezoelectric
equations for a monoclinic sphenoidal crystal is
as shown in Eq. (1). In this equation T to T
represent the six stresses and S; to Ss, the six
strains. o represents the electric displacement
D/4r in the interior of the crystal and the
normal component of ¢ is the surface charge.

S1=5uFT1+52F T+ s15E T+ 515 Ts+dnEy,
So=512F 1+ 500F T+ 5955 T3+ 5955 T5+doo E,,
Ss=513ET1+ 5035 To+-535E T3+ 5355 T5+dosEy,
Si=54PTs+ 546" Ts+duE,+dsE,,
Ss=516F T 145265 To+ 5358 T3+ 5555 Ts+dos Ey,
Se =546 T4+ 56" T+ d16Es+dsE.,

(1)
€11 TE.; €13 TE,
o= +duTs+diTs,
47 47
€22 TE:/
oy = FdauT1+deeTo+des Ts+dos T,
T
€13 TE: €33 TE:
0,= FdsuTs+dssTs,
47 4r

where the superscripts E over the elastic com-
pliances indicate that they are to be measured
with the applied fields held constant or zero.
When there are two applied fields both of these
fields have to be held constant or zero to obtain
the Voigt elastic compliances. The superscripts
T for the dielectric constants indicate that they
are to be measured for no stresses applied, i.e.,
that they are the ‘‘free” dielectric constants.
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TaBLE I. X cut crystals of DKT.

Shear mode Longitudinal modes
Length along Z Length 22.5° from ¥ Length 45° from ¥V Length 67.5° from ¥
L =20.20 mm L =20.01 mm L =19.65 mm L=21.0 mm
W= 4.25 mm W= 321 mm W= 3.2 mm W= 3.23 mm
Temper- T= 0.91 mm T = 0.896 mm T= 0.90 mm T= 0912 mm
t
degrees C I af fr af fr of Ir af
+80 235300 1000 89160 180 85100 280 81000 150
+70 236350 89560 85500 81370
+60 237500 1000 89980 170 85980 270 81750 150
+50 238600 90380 86340 82120
+40 239600 1000 90800 170 86760 260 82480 140
+30 240650 91240 87210 82860
+20 241750 975 91690 160 87670 250 83260 140
+10 242750 92100 88030 83610
0 243800 975 92440 160 88390 240 83940 130
—10 244700 92770 88690 84280
-20 245600 960 93100 150 89030 220 84520 130
—30 246500 93400 89350 84850
—40 247400 930 93690 150 89630 220 85120 120
—-50 248250 93960 89940 85420
—60 249100 930 94270 130 90240 210 85700 110
—=70 249950 94570 90610 85980
—-80 250700 930 94860 140 90910 210 86260 110

TaBLE II. Z cut crystals of DKT.

Shear mode Longitudinal modes
Length along ¥ Length 22.5° from ¥ Length 45° from ¥ Length 67.5° from ¥
L =19.84 mm L =19.61 mm L=19.96 mm L=19.96 mm
W= 427 mm W= 321 mm W= 3.13 mm W= 332 mm
Téampgr- T = 0.90 mm T = 0.863 mm T = 0910 mm T = 0.886 mm
ature in
degrees C IR Af iR Af IR Af R Af
+80 257500 5600 91030 920 88225 1600 101840 1110
+70 257600 91290 88300 102040 1130
+60 257600 5750 91520 980 88375 1775 102180 1200
+50 257500 91760 88450 102280
+40 257400 5900 92000 1020 88500 1900 102380 1400
+30 257200 92200 88550 102450
+20 257000 6400 92420 1100 88600 2000 102540 1600
+10 256700 92620 88630 102620
0 256450 7000 92810 1200 88660 2125 102680 1720
—10 256150 92990 88660 102720
—20 255850 7400 93150 1300 88650 2275 102740 1880
—30 255500 93310 88640 102760
—40 255100 7900 93450 1400 88610 2450 102780 2000
—50 254700 93600 88560 102800
—60 254250 8400 93720 1500 88490 2650 102800 2150
—-70 253800 93840 88425 102770

—80 253300 8900 93960 1600 88350 2875 102740 2200
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TasBLE III. Y cut crystals of DKT.

Shear mode Longitudinal modes
Length along Z Length 22.5° from X Length 45° from X Length 67.5° from X
L =14.52 mm L =19.95 mm L =20.32 mm L =12.75 mm
W= 295 mm W= 3.71 mm W= 4.03 mm W= 251 mm
T::mpe;— T= 1.05 mm T= 1.03 mm T= 1.05 mm T = 1.02 mm
ature in
degrees C fr Af Ir Af fr Af IR Af
+80 401500 1000 123760 780 101460 1030 135950 950
+70 402850 124000 101660 136550
+60 404000 1000 124210 750 101880 1010 137150 940
+50 405000 124440 102080 137700
+40 406100 1000 124650 730 102300 990 138200 930
+30 407100 124860 102500 138710
+20 408200 1000 125100 710 102700 980 139240 920
+10 409200 125300 102900 139770
0 410100 950 125510 700 103120 970 140350 910
—10 411100 125730 103320 140820
—20 412050 950 125950 680 103530 960 141220 900
—-30 413000 126160 103720 141610
—40 413950 950 126370 670 103940 960 142000 880
—-50 414950 126600 104140 142400
—60 415900 950 126810 640 104340 930 142800 870
—-70 416900 127040 104650 143220
—80 417850 950 127250 620 104750 910 143650 850
TaBLE IV. Oblique cuts of DKT.
Width parallel to Z —length Width parallel to X —length Length along ¥ width 45°
and thickness 45° from 45° from ¥ and Z. Orientation. from X and Y.
X and Y. Shear mode Longitudinal mode See Fig. 9 Face shear mode
L =20.28 mm L=11.13 mm L =20.09 mm L =20.29 mm
W= 3.18 mm W= 3.20 mm W= 3.195 mm W= 32 mm
Temper- T = 0.895 mm T'= 0.90 mm T= 090 mm T= 0.89 mm
ature in
degrees C I Af IR Af Ir Af IR Af
+80 328100 900 149900 365 86220 280 335000 7350
+70 329500 150810 86440 336100
+60 330700 900 151600 365 86650 310 336600 6800
+50 331800 152400 86870 337900
+40 332950 930 153100 370 87100 350 338500 7100
+30 334000 153800 87350 339500
+20 334950 930 154500 380 87575 350 340500 7350
+10 335900 155200 87800 341200
0 336850 950 155800 385 88000 385 341900 8000
—10 337800 156400 88200 342600
—20 338250 1000 156950 415 88390 385 343300 8470
—-30 339700 157510 88575 344000
—40 340600 1050 158050 430 88750 420 344600 9000
—50 341550 158550 88925 345000
—60 342500 1060 159050 435 89050 490 345520 9640
-70 343400 159500 89175 346000

—80 344400 1120 159900 450 89300 525 346400 10200
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For ferroelectric type crystals it has been found
that equations which relate the piezoelectric
effect to the electrical displacement or the surface
charge (the normal component displacement
D/4r equals the surface charge at the crystal
surface) are more fundamental than those based
on the field. By eliminating the fields from the
first six equations of (1), by substituting in the
displacements from the last three equations we
have

S1=s0PT 14512 T+ 51 T3+ 5152 T 5+ gar0y,

So =512 T 1+ 522 To+ 5052 T3+ 5252 T+ gaz0y,
S3=s5132T 145232 To+ 5352 T3+ 5352 T5+ gasoy,
Si=54PTs+54PT5 +guo.+guuo.,

Ss =512 11+ 5952 To+ 5352 T3+ 5552 T 5+ gasoy, (2)
So =542 T4+ 5662 T 6+ 1602+ 360 21
E.=4mBn"0.+4mB1T0.— guTs— g16Ts,
E,=47B2T0y—gaT1—ge2To—gosT5—gos T,
E.=4nB1 0, +4nBss 0. — gl —gss T,

TABLE V. Free dielectric constants of DKT.

Dielectric
constant

normal to
a plane

Temperature Dielectric Dielectric Dielectric making 45°

in degrees constant constant constant angle with

C normal to X normal to ¥ normal to Z X and Z
+80 6.64 5.97 6.53 6.57
+70 6.61 5.94 6.52 6.55
+60 6.57 5.91 6.51 6.53
+50 6.54 5.89 6.51 6.52
+40 6.51 5.86 6.50 6.50
+30 6.48 5.83 6.49 6.48
+20 6.44 5.80 6.49 6.47
+10 6.41 5.78 6.48 6.45
0 6.38 5.75 6.47 6.43
—10 6.35 5.72 6.47 6.41
~20 6.31 5.69 6.46 6.39
—30 6.28 5.66 6.45 6.38
—40 6.25 5.64 6.45 6.36
—50 6.22 5.61 6.46 6.34
—060 6.19 5.58 6.47 6.34
-70 6.15 5.55 6.48 6.33
—80 6.12 5.52 6.50 6.32
—-90 6.09 5.49 6.52 6.31
—100 6.05 5.47 6.54 6.31

140° 150° 160°  170° 180° 190° 200°  210° 220°

® EXPERIMENTAL VALUES.
© VALUES CALCULATED FROM THE EQUATION
ab

T= =1
VaZ sinZ(e-25) +b? cos? (e-25)

WHERE Q= 147.5 X 10°6 AND b=1+36.5 x10"6

Fi1G. 4. Average temperature expansion coefficient for
T crystals in the XZ plane.

where the B;;7 constants are the “free’’ dielectric
impermeabilities, which are related to the di-
electric constants €;;T by the equations

€337 —e”
Bul=——-—""-—; Bl =—————;
enTess? — (élsT)2 enTessT — (ElaT) 2
. 3
€11
522T=_‘: 5337'-_———'—“““_“-
€22 enTes, T — (6137')2

The relations between the displacement and field
elastic compliances and between the d and g
piezoelectric constants are discussed in detail in
the appendix.

III. MEASUREMENT OF THE PROPERTIES OF DKT

The preferred orientations for measuring crys-
tal properties and the elastic, piezoelectric, and
dielectric constants associated with each cut have
been discussed in detail in the appendix, Section
VI. It is the purpose of this section to record the
measured results for the cuts and to give the
final constants as calculated from the measure-
ments. The resonant and anti-resonant fre-
quencies, the resistance at resonance and the
capacitance at low frequencies have been meas-
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F16. 5. Piezoelectric constants of DKT crystals as a
function of temperature.

ured for all crystal cuts over a temperature range
from —80°C to +80°C.

The first series of cuts is a set of four crystals
cut normal to X with their lengths along the Z
axis and at 22.5° 45°, and 67.5° from Z. Table I
shows the measured resonance frequencies, and
the separation of the resonant and anti-resonant
frequencies all made in a holder which is shielded
so that no stray capacity has to be allowed for.
Table II shows similar data for Z cut crystals
and Table III for ¥ cut crystals. In order to
complete the measurements several double ori-
entation crystals have to be used and the ori-
entations and data are given by Table IV.
Finally Table V shows a measurement of the
dielectric constants of four crystals. These are
measured at 1000 cycles and represent the ‘‘free”
dielectric constants. From these data and the
data of the temperature® expansion coefficients
shown by Fig. 4 all of the properties of the
crystal can be determined.

In order to illustrate the method, calculations
are made at room temperature of all of the
constants. From Table I we find that the reso-
nant frequency and the separation of resonant
and anti-resonant frequency for a crystal cut
normal to the X axis, with its length 45° from
the Y and Z axes and with the dimension
L=19.65 mm; W=3.2 mm; T=0.90 mm, are at
20°C, fr=87670, (fa—fr)=250 cycles. From
Table V the free dielectric constant for this
crystal is 6.44. From Eq. (50) of the appendix

3 The temperature expansion coefficients of DKT crys-
tals have heen measured by Miss E. J. Armstrong.

MASON

the coefficient of coupling % is equal to
250

)5

The frequency constant for the plated crystal is
frl=172.1 kc cm=fyF. Since the density is
1.988, this gives a value for the elastic compliance
at constant field along the X axis equal to

4)

224505 = =4.24 X102 cm?/dyne. (5)

(2fm®)%p
From this value and the free dielectric constant
(6.44) we have from Eq. (17) of the appendix

T 3
dy' = f—mﬂ) E=4+12.35X10-5 c.g.s. unit. (6)
m

But from Eq. (91) of the appendix dis' =d14/2
so that the fundamental constant dis=424.7
X 1078, As will be shown later this sign is posi-
tive, and the value of dis calculated over a
temperature range is shown plotted by Fig. 5.
Performing the same operations on the crystals
cut at 22.5° from Y and 67.5° from Y, we find

Q)

Since from Eq. (84) in the appendix, the elastic
constant szo %’ satisfies the equation

$2299.5 E=3, 73X10 12 52267,5E=4.09X10_—12.

599F" = 522F cos? 0+ (2523F +s4F) sin? 0 cos? 6
+ 553F sin 6,

(8)

these three values are enough to determine the
fundamental constants szoF, s33%, (2s523F +544F).
The formulae are

520F = 1.707 52299 .5F — 52245F +0.293 5226757 ;
533% =0.29352200 5% — 52245F +1.707 52267.5% ;

(2523E +S44E) = 6S2245E -2 (82222,5E+S2257_5E) .

©)

From these formulae and the values of Eq. (7)
we obtain

822 =3.395X 10~ 12 333 =3.907 X 10—12 (10)
(2535E +504F) =9.684 X 107122,

The first crystal of Table I is a face shear
vibrating crystal whose frequency is determined
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by the width of the crystal. From Egs. (105)
and (106) of the appendix, the frequency is
determined by

CMC,E 3}

P 1

2L\ p
and the fundamental elastic constant sy f by
the equation

(11)

suF=1/cy>". (12)
From the measured values of Table I,
cu®F=8.35X10" dynes/cm?;
(13)
k=0100, 611T=6.44.
Hence
s4f=11.9X10"2 cm?/dyne;
(14)

d1u=24.7X1078.

This checks the value of di4 obtained from the
45° X cut crystal. It also shows that the shear
mode driven by a shear elastic constant has a
higher coupling than a 45° longitudinal cut
driven by the same shear constant.

When these constants are measured over a
wide temperature range, it is necessary to take
account of the coefficients of temperature ex-
pansion. This changes not only the length of
the frequency determining direction, but also
changes the density p since the total volume of
the crystal changes with temperature. The aver-
age of the temperature coefficients measured
from —40° to +80°C are shown by Fig. 4. In
the XZ plane, the coefficient follows the dumb-
bell shape with its major axis at an angle of
about —26 degrees from the Z axis. This shape
represents the difference between a circle at
25°C and the ellipse that the circle expands into
at different temperatures. The temperature co-
efficient along the Y axis is 44.8 parts per million
per degree centigrade. When it is desired to
obtain the temperature expansion coefficient for
any other angle, say in a plane containing the
Y axis and making an angle 6 with the Z axis,
with the direction making an angle ¢ with the
Y axis, the coefficient is obtained by reading the
coefficient T’y for the angle 6 in the XV plane
and substituting in the formula

T=Tysin? o+ T, cos? ¢,
v

(15)
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F1G. 6. Three extensional moduli of compliance measured
as a function of temperature.
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Fi1G. 7. Three shearing moduli of compliance for DKT
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where T, is the temperature coefficient along the
V axis. The total increase in volume is

V=V 1+ A0 [1+T,A0[1+7.40]

P. MASON

temperature coefficient of density is
T,=—87.8X107% per °C. (17)

From the frequency equation for a longitudinal

=1+(T.+T,+7T.)A0, (16) mode
where Af is the increment in temperature meas- f:i i )% (18)
ured from 25°C. The sum of the three tempera- 20\ ps ’
ture coefficients is 87.8X1075. Hence since the
total mass of the crystal remains constant the the correction to the elastic compliance s is
1 1 1+4(87.8—2T3) X10-°A0
= ) (19)

T o) po[1—87 8X10-A0[2flo(1+ TAO) Tt

where A® is the change in temperature from
25°C, po the density measured at 25°C, and I,
the length measured at 25°C. With this correc-
tion for temperature coefficient, the elastic con-
stants sao¥, 5337, s44F, and s93F are shown plotted
on Figs. 6-8.

From the data of Table II for Z cut crystals
a similar process determines the constants s;,%,
sa2®, (2512F +566%) and seef. At room temperature
these become

suf =2.218 X10712;  s5p2F=3.404X10712;

2512E+865E=9.64; 856E=9.81 ) (20)

s1e¥ = —0.085.

This provides a check for ss2f measured for Z
cuts and checks within less than one percent.
Over a temperature range the values of 5117, s22%,
s12Z, and s¢f are shown plotted on Figs. 6-8.
The value of ds obtained for the Z cut is the
largest piezoelectric constant for the crystal and
reaches a value of 66.4X107% c.g.s. unit. As
shown by the measurement of oblique cuts, its
sign is negative compared to dis. djs increases
very considerably as the temperature decreases
and may indicate the presence of hydrogen
bonds. The large value of d3s coupled with the
low temperature coefficients for crystals cut
normal to the Z axis (particularly the 45° Z cut)
make such crystals very useful in filters and in
the control of low frequency oscillators.

For crystals cut normal to the Y axis of a
monoclinic crystal, the longitudinal elastic con-

po(2fl0)*

stant varies with angle according to the equation
S33'E = 5337 cos* Y+ 2535F cos® ¢ sin ¢
+ (2513E +555F) sin? ¢ cos? ¥

425157 sin® ¢ cos ¢ +suf sint . (21)

The derivation of this equation is given in the
appendix, Eq. (86). The values of s33F and 51,
are given in Fig. 6 so that the data for the three
longitudinal crystals are sufficient to determine
s3sf, (2s13F+s55F) and s15F which are shown
plotted on Figs. 7 and 8. The equation for the
piezoelectric constants of longitudinal crystals
cut normal to the Y axis is

d
dr’ =dy sin? Y+-ds; cos? ‘//"‘; sin 2. (22)

From the values of coupling and the dielectric
constants for the three crystals, we find

doy=+2.2X1078; dyy=-410.4X10"5;

(23)
dy=+22.4X1075,

All constants have the same sign. The sign of
ds3 was determined by squeeze tests on the
crystal to be a positive charge delivered along
the positive Y axis for an extension along the
Z axis.

The two remaining elastic cross constants sgs%
and s4F have to be evaluated by employing
oblique cuts that do not lie along or normal to
any of the three crystallographic axes. s4% can
be determined by using the face shear mode of a
crystal cut with its length along Y and its width
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F1G. 9. Doubly oriented DKT crystal.

at 45° between the positive X and Z axes, for as
shown by Eqgs. (105)-(107) of the appendix, the
frequency of the unplated crystal determines
the elastic constant

Se6” — 25467 + 544"

2

4
SeeE’ =

(24)

From the data of the last crystal of Table IV,
we find s47=0.74X10712 at 20°C. The electro-
mechanical coupling factor as calculated from
the resonant and anti-resonant frequencies is

k=0.225. (25)

Since from Eq. (108) the piezoelectric constant
driving this mode is

(dratdis—dss—ds)
2

d14’ =

(26)

and the dielectric constant from Table V is 6.47,
we find

did =52.6 X108, 27)

Since dis and dss have been found equal to
24.7%X 1078 and —66.4X1078, we find

dm *d34 =14X1078. (28)

The constant s»# was determined by meas-
uring the resonant frequency of a crystal ori-
ented as shown by Fig. 9. It is shown in the
appendix, Eq. (87), that the frequency of a
plated crystal is given by

1 1 \}
-—(=)"
21 pSng

(29)
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where
s = f5[suf +535F + (ss57 + 25137) ]
+3[515F + 5355 +546F + (5447 + 2505%)
+ (s66% +2510F) ]+ [ 5227 + 5257 .

Since all the values are known except sz5%, the
data for the third crystal of Table IV yield the
value

E— _0.12X10-5. (30)

S25

The second crystal of Table IV provides a
check on the elastic constant for a direction in
the YZ plane halfway between the two axes.
The value found is 4.19X 1072 dyne/cm? which
checks the value for a 45° X cut crystal shown
by Table I. The piezoelectric constant driving
this mode is from Eq. (97) of the appendix

diy’ =0.3535[das+daa—dss ] (31)

From the data of Table IV, di’=11.1X10"8
and since da3 is known, we have

deo—d3=21.0 X105 (32)

This value together with the data of Eq. (28)
gives

d22—d13=7.0><10—8. (33)

The first crystal of Table IV should have a
longitudinal mode driven by the piezoelectric
constant (from Eq. (99) of appendix)

d' = —0.3535[do1 +da2 —dis]. (34)

From the values given above this should result
in a value of 3.2X10~8 which should give a very
low coupling. This was verified for no resonance
was found for this mode. Driven in a face shear
mode this crystal should have a piezoelectric
shear constant equal to

(dra+dss)
oy =

1 =23.5X10"%. (35)

From the data of Table IV, the measured value
is about 20X 10~8 which verifies the sign of di4
with respect to dss.

Finally the driving constant of the double
oriented crystal, Number 3 of Table IV should
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be according to Eq. (102) of the appendix
dlz’ = 0-1768[d21 +d23+d25+2d22
— (du+tdis+dsa+dse)].  (36)

From the values and signs assigned, we find
di2’ =18.5X 1078, The measured value from Table
1V is 15X 108, which verifies the sign of dse.

W. P. MASON

All of the elastic constants are determined
except sgF and all the piezoelectric constants
except daz (or di or das). To determine s5:F we
make use of the data of Table III on the face
shear mode of a ¥ cut crystal. As shown in the
appendix the elastic constant controlling this
mode is a “‘coupled’’ constant and the frequency
is given by

The method of calculating ssZ from the meas-
ured value of the shear mode and the other
elastic constants is explained in the appendix.
The resultant obtained from the data is

s =8.15X10712, (38)

The values over a temperature range are shown
by Fig. 7. With this value s;3 can be determined
and all the elastic constants are given by Figs.
6-8.

To determine the remaining piezoelectric con-
stants, requires measuring the properties of a
thickness mode. Either of the two shears Ss or

€y

48’z cut

37§’z cut

AT SHEAR CUT

F1G. 10. Orientations of three zero temperature coeffi-
cient crystals with respect to the mother crystal. 45° Z
cut and 37.5° Z cut are longitudinal modes. AT shear cut
is a face shear mode.

1 fen®F4css®f —[(en®? —c55°F) 40155 ] |
( ) : (37)

2p

Ss can be used or the thickness longitudinal
mode. Of these the mode with the largest
coupling is the Ss mode, which is obtained by
measuring a Z cut crystal, dimensioned so that
it has a single mode. This crystal had a coupling
of 4.9 percent giving a value of dgs= —12.1 X103,
Hence the remaining values are

dy2=8.9X1078; dis=1.9X1078.

Both of these constants are too small to drive
modes appreciably, and none were observed.
The complete values of the piezoelectric con-
stants over a range of temperature are plotted
on Fig. 5.

IV. DISCUSSION OF PROPERTIES OF
DKT CRYSTALS

This crystal has properties that make it a
possible substitute for quartz for a number of
applications. Three cuts have been found for
which large electromechanical couplings are as-
sociated with zero temperature coefficients of
frequency. These cuts are all perpendicular or
nearly perpendicular to the Z axis and two of
the modes are longitudinal and one a face shear
mode. While the coefficient can be made zero at
a specified temperature, the deviation from the
frequency at the zero temperature coefficient is
parabolic as in most zero coefficient quartz
crystals. The curvature is several times larger
than for quartz crystals. Figure 10 shows these
three cuts in relation to the natural crystal.

This crystal shows some evidence of hydrogen
bond type of coupling at low temperatures.
Figure 11 shows a plot of the inverse of dss for
dipotassium tartrate, and indicates only a uni-
form increase in dss as the temperature is lowered.
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Such a curve might be accounted for by a
hydrogen bond type of dipole at low tempera-
tures such as occurs for potassium dihydrogen
phosphate,* and a frozen dipole liberated at a
high temperature such as occurs in sodium
chlorate and sodium bromate.® However, the
range in temperature is too small to make this
interpretation certain. All the other piezoelectric
constants vary less than does dg. The contribu-
tions of the different types of dipoles to the
dielectric constant is too uncertain to test out
the relation found for ammonium dihydrogen
phosphate, potassium dihydrogen phosphate,
sodium chlorate and sodium bromate, that the
piezoelectric stress was proportional to the dipole
polarization.

APPENDIX. CALCULATION OF THE RESONANT
FREQUENCIES OF A MONOCLINIC CRYSTAL

I. Introduction

For monoclinic or triclinic crystals, the applied
fields and the resulting charge displacements are
usually not in the same direction and hence a
somewhat extended discussion has to be given
for them. It turns out that the piezoelectric
constants that are directly measured are the
dim piezoelectric constants which relate strains
to the applied fields. This follows from the fact
that the electrical boundary conditions are that
the tangential components of the fields of a
plated crystal are zero.

It is the purpose of this appendix to investigate
the frequencies of longitudinal modes and limit-
ing cases of face shear modes for the purpose of
relating the measured frequencies and capacities
to the elastic, piezoelectric, and dielectric con-
stants of the crystal. In order to facilitate the
calculation the piezoelectric equations are ex-
pressed in tensor form, since by doing so,long
summation terms are avoided. A short discussion
is given of the tensor method of writing the
piezoelectric equations.

II. Piezoelectric Equations in Tensor Form

The stress components acting on a unit cube
of a solid body are symmetrical and can be

*W. P. Mason, Phys. Rev. 69, 173-194 (1946).

5W. P. Mason, “Elastic, piezoelectric, and dielectric
properties of sodium chlorate and sodium bromate,”” Phys.
Rev. 70, 529 (1946).
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Fi1G. 11. Inverse of dss plotted over a temperature range.

written in the form

Ty Ts T
Ts Ty Ti|. 1)
Ts Ts T

These are the three longitudinal stresses and the
three shearing stresses. These components form
a tensor of the second rank as will be shown.
To conform to the usual tensor notation we
shall write these components as

Tu Tw Tw| |Ti Ts Ts
Tr=|Tw Te Twu|=|T¢ T, Ti. (2)
Tiw Tes Tus Ts T, T;

These nine terms form a symmetrical tensor of
the second rank for, if we transform them to a
rotated system of axes, this transformation takes
place according to the tensor transformation
formula

ax,-’ ax,-’
/= T 3)
axk ax;

ij

In this equation
x!=x, x/, x5’
are the coordinates of the rotated set of axes and
Xk =X1, X2, X3

are the coordinates of the original axes. The
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partial derivates
X1 X2 X3

dx’ 9x 9xy’

— — —| x|h om m

axl axz 6x3
dx’  |0xy  Oxy' Ay’
= — — —|=x s M2 m| (4)
6xk 6x1 aJC2 ax3

dxs’  Oxy’  Ixs

— — — x3|ly ms ms

axl ax2 axS

are the direction cosines between the rotated
and the non-rotated systems of axes. In Eq. (3)
another tensor convention is used, namely that
when an index is repeated on one side of an
equation, a summation with respect to the
indices 1, 2, 3 is indicated. Both %2 and ! are
repeated in Eq. (3). For example in expanded
form, letting ¢’ and j' each equal 1, Eq. (3) will
expand into

, axl' 2 é)xl' axl’
Tll =y Tll+2 - T12
axl axl ax2
(')x1 axl axl' 2
() ()
axl 6x3
6x1 6’(1 (9961 .
( ) T33 5

+ - 23
0xs 0X3

In ordinary elastic terminology this would be

expressed as

TV =0T+ 2l T e+ 20m T's+mi 2T,
+2'm1n1T4+n12T3 (6)

which is the expression given by Love for the
transformations of stress from one system of axes
to another system. Hence since the stress system
is a collection of nine quantities which transfer
from one system of axes to another system by
the tensor transformation equation, the stress
system is a tensor of the second order.

The strain components are usually defined as

o¢ an ac
Si=—; Si=—; Sy=—
6x1 axz 6x3
dn d¢& 9t a¢
si= (4, ss=(—+—— o
dx;  0xy 0x3 0x;
si= (X2
dxy Ox3
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where £, 9, { are, respectively, the displacements
of the body along the x1, x2, x3 axes, respectively.
This set of 9 quantities, however, is not a tensor
for it does not satisfy the tensor transformation
equation. If, however, we define new strain
components as

a¢ dn a¢
511=51=—"; 522=Sz=—‘“} Saz= 3=,
axl [ E2Y 6303
Se 1707 9¢
Sp=Sy=—=-{—+—);
2 2\0x; OJx
(8)
Ss 1708 9¢
Sy=Sa=—=— — —);
2 2\0x;3 dx;
54 1 af 677
st=532=—=—(— -
2 2\09x; Ox3
the symmetrical nine components
Sll Sl2 Sl3
S Saa Sas 9)
Sl3 S23 S33

will form a tensor of the second rank.
The generalized Hooke law between the
stresses and the strains can be written

Sii=Sijul ki, (10)

since S;jx1 OF S;jx: is a tensor of the fourth rank.
The right-hand side of the equation being the
product of a fourth rank tensor by a second rank
tensor is a sixth rank tensor, but since it is
contracted twice by having 2 and / in both terms,
the resultant of the right-hand side is a second
rank tensor. A tensor of the fourth rank will
ordinarily have 81 terms, but since S;; and Ty,
are both symmetrical, only 21 independent terms
exist in s If we examine this expression and
compare term by term with the usual way of
writing Hooke’s law, given by Eq. (11)

Si=Su=suli1+s1eTls+s137;
+sl4T4+s15T5+smT6,

Se= ZSu = 316T1+525 T +s36T3
F546T4+556T5+56616

and noting that Ss=238i,, etc., the usual two

(11)
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index compliances correspond to the four index
symbol s;j; provided we replace

1by 11, 2by 22, 3by 33,

4by23, Sby13, 6byi12 (12

However, for any number 4, 5, or 6 the elastic
constant s;; has to be divided by two to equal
the corresponding s;j; constant, and if 4, 5, or 6
occurs twice, the diviser has to be 4.

The adiabatic form of Voigt's piezoelectric
equations can thus be written in tensor form

Sii=5imP T+ dmiEm,
EmnT (13)
On= En+dnuT s,

™

where E, are the three applied fields, o, the
surface charges normal to the three axes, dim
the third rank piezoelectric tensor relating the
strains to the applied fields or the electric dis-
placement to the applied stresses. In a similar
way to the elasticities, the two index piezoelectric
symbols are related to the three index symbols if
we replace the 4j terms

1 by 11, 2 by 22,
4 by 23,

3 by 33,

Sby 13 and 6 by 12. (14)

For any number 4, 5, or 6, the piezoelectric
constant d;» has to be divided by 2 to equal the
corresponding d;;» constant.

To find the form of the piezoelectric equations
for which the electric displacement D/4x is the
independent variable, the following derivation
can be used. Let us first consider the dielectric
“impermeability” tensor B,.,” which is formed
from the dielectric constant tensor e,,7 by means
of the relation

BmaT=(—1) "™ A€, T/ €mnT, (15)
where en.7 is the dielectric constant tensor
en?, en?, es”
€12T, 622T, €37 (16)
€37, 623T, €ss”

and Aen,T is the determinant formed from this
tensor by suppressing the mth row and =th
column. We next multiply both sides of the last
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of Eq. (13) by 47Bn.T giving
47r,8mnT0'n =Em[ﬂmanmnT]+47rﬁmannlekl- (17)

If we take the product €.7Bm.T for the three
values of m, we have as the multipliers of E,, E,,
E;, respectively,

éu-TﬂuT + 612T512T+ 613T513T,
€178 7+ €227 B2T + €237 B2s7,

631T.31FlT+ 632Tﬁ32T+ 633T333T-

(18)

But by virtue of the definition of 8,.T given by
Eq. (15) it is obvious that the value of each
term is unity so that Eq. (17) can be written

E,.=41BmTor—4mBmnTdriiTr:

= 47rﬁmnT0'n - gmlekly

(19)

where the new piezoelectric constants gmw re-
lating the fields to the applied forces or the strains
to the electric displacement is given in terms
of the d.i; piezoelectric constants and the ‘“‘free”

dielectric impermeability by the tensor equation
mkl =47rﬁmannkl- (20)

Introducing the value of E, into the first of
Egs. (13) we find
Sii=5ip P Te1+gmijon, (21)

where the open circuit or zero charge elastic
compliances are given by

(22)

Hence the complete piezoelectric equation can'
be written

Sijle =SijklE_dmijgmkl~

Sii=8iixlPTri+gmijon, 23)
En=41BnTon— gmlekl-

III. Equations of Motion of a
Piezoelectric Crystal

The equation of motion of a piezoelectric
crystal or any aeolotropic body can be derived
from Newton’s laws of motion and the piezo-
electric Egs. (13). Newton’s law can be written
in the tensor form

3%E;
P;dxldxzdxa = Fy, (24)
12
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where & are the displacements of the elementary
cube dxidxdxs in the x;, x2, x; directions, Fj
are the components of force in these directions
exerted on the elementary cube, and p is the
density of the material within the cube. From
elastic theory we have that the total resultant
force along the x; direction is the partial deriva-
tives of the stresses in this direction or

T3
+ _]dxldx2dx8

9x2 axs

T,

0Ty
Fi= +[

axl

aTy

= + dxl.

(25)

X1

For the forces in any direction we can write the
general tensor relations

T
Fp=4—dx. (26)
9x
Hence the equations of motion become
9%&; 0T
p—=+—" (27)
at? 9x;

Into this equation we can insert expressions for
the strains in terms of the stresses and applied
charges and obtain the partial differential equa-
tions for any mode of motion. However, before
doing this it is desirable to discuss the boundary
condition that such crystals have to satisfy.

The elastic conditions for a crystal free to
vibrate are that the stresses normal to the free
edges are zero. For a surface whose normal has
the direction cosines /i, s, I3 with respect to the
X1, X, X axes, respectively, the conditions
reduce to

To=Tuh+ T+ Tisls=T17;=0,
T,, = T2ll1+ T22l2+ T2313 = T2ilf= 0'
T.=Tsli+ Tsls+ T33ls=T3;;=0,

(28)

where T,, T,, and T, are the stresses along the
X1, X2, X3 axes. If we denote these by T, the

boundary conditions can be abbreviated into
Ti=Til;=0. (29)

The electrical boundary conditions are deter-
mined by whether plating is placed on the surface

W. P. MASON

of the crystal or not. If any plating is a long
distance from the crystal, then the surface charge
o; is necessarily zero since no path exists for
conducting charge to this surface. If, on the
other hand, a plating is integral with the surface
normal to the x; axis, the surface charge ¢, will
not be zero but will be a function of the other
two directions x; and x;. In the interior of the
crystal, the electrical condition is expressed by
determining the electrical induction D. At every
point of the interior the divergence of the electric
induction vector is equal to zero, or

6D1 6D2 aDs aD,' 0
—ax;_ ’

6361

(30)

6x2 ax3

At the surface of the crystal the normal compo-
nent of the electric induction divided by 4~ is
equal to the surface charge. At the plated surface
the electric field starts out normal to the surface
since the tangential components of the field on
crossing a boundary are continuous, and for a
plated surface the tangential component of the
field is zero. These equations are sufficient to
determine the electrical as well as the mechanical
reactions of the crystal.

IV. Equation for Simple Longitudinal Vibrations

In obtaining the elastic and piezoelectric con-
stants of a crystal, it is necessary to vibrate the
crystal in a simple mode of motion and determine
the constants from the measured resonant and
anti-resonant frequencies, and the capacities of
the crystal. The simplest mode of motion and
the one most easily related to the elastic con-
stants is the simple longitudinal mode of motion.
If we take x; as the thickness direction and apply
plating to these surfaces of the crystal, the only
value of surface charge different from zero will
be ¢, since no electrical connection is made to
the other surfaces. Since x; is assumed small, the
voltage gradient 9E;/dx, will be a constant
throughout the thickness of the crystal. Also,
since the plating is an equipotential surface

dE, OE,
. (1)
axz 6x3

We take the length along the x; axis and the
width along the x; axis. For sides normal to the
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thickness, the boundary conditions are

Tu = T12 = Tl3 =0. (32)

Since the thickness is taken as small and all the
stresses are zero on the two surfaces normal to
x1, these stresses cannot differ appreciably from
zero in the interior and hence we can set

Tu=T1=T;3=0 (32)

for all elements of the crystal. Similarly since
the width is considered very small, the stresses

T31=T32=T33=0. (33)

For the length, the only finite dimension, the
stresses on the surface are

T21y T221 T23- (34)

Of these T91=T12 and T23=T3s have already
been found to be zero so that the only stress
different from zero in the interior is Tss.

Inserting this condition in Eq. (27) the only
equation of motion resulting is

%% T %,
= . (35)
a2 axz

Since T is the only stress, the corresponding
strains are given by Eq. (13), first part. For the
case of interest here, k=/=2 and since a charge
is developed only in the x, direction, = 1. Hence
we have

Sii=SipeT Toe+dii:E,.

In particular the stress Ts; can be specified by a
single strain, all the other strains being related
dependently to this one. Taking the strain S
since it is simply related to the displacement &,
we can write

(36)

Soz = 22057 T o9+ d 1o Fy
or
Se dinkE,
T22 = + - . (3 7)
S2220F  Some®

The electrical relations of (13) reduce to the form

0n =47, TE1+dposTe0

dm22d122 dﬂ22
=( 4rwen,T— )E,— —Su. (38)

Saz29% Sa222
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The only charge of interest is the one in the x,
direction which is the direction of the applied
field. Hence

dize? 122
g1 = 47r€nT - ]E1+ 522. (39)
Sa999% S2222
Finally we call the expression
dy?
4renT— =47e; LC =4me; 52, (40)
Sa900F

indicating that it is the longitudinally clamped
dielectric constant which relates the potential
and surface charge when the crystal is clamped
so that Sse disappears.

In terms of the more usual two index symbols,
the two piezoelectric and elastic relations can be
written

0% 1 0% dp OF,
==
012 590F Ox22  $2F Oy
(41)
diz 9%,
(31 =41I'E11LCE1 —_—
S22F 9y

To solve this equation we note that E; is a
constant independent of x; since the plating
forms an equipotential surface. Hence the equa-
tion of motion becomes

1 3%,

%k,

p— .
61:2 SzzE ax22

(42)

The equations of motion (41) and (42) have
been solved several times in published papers®
so that only the final results will be given. From
this analysis it can be shown that the admittance
of the free crystal is
1 <

Z E Ei

jwlwleul‘crl N 47dyy? (tan wl/Zv)] (43)

B 41rl¢ |. " 611L0322E ml/Zv

At very low frequencies this admittance reduces
to the capacitance reactance

JololenT

47rl‘
8 See W. P. Mason, Phys. Rev. 69, 173 (1946).

= jwCo (44)
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so that the low frequency measurement of the
capacitance C, determines the ‘‘free”’ dielectric
constant e;;7. When the tangent

wl w T
tan—=o© or —=-—;
2v 20 2
(45)
7 1
fR=_=

21 2l(p522E)§.

A resonant frequency is obtained whose value is
determined by the elastic compliance si.F, the
density p, and the length of the crystal.

The anti-resonance occurs when the expres-
sions in brackets in Eq. (43) equals zero or when

4mdy? ftan wal/2v
1+ ( ) =0
611L0522E wAl/ZZ,'

4—’ll'd122

or

(46)

Defining the coefficient of electromechanical

coupling as J
12
k= ,

en” }
()
4r
and substituting the value of €;2¢ from Eq. (40)
in Eq. (46) this becomes

w,ql wAl k2
2 ot 2 _( )
2v 20 1—k2

(47)

(48)

We wish now to obtain an expression for evalu-
ating the coupling factor k£ in terms of the
measured resonant and anti-resonant frequencies
frand f4. Their difference is usually small so that
we can write

fa=fr+Af;

Inserting this expression in (48) and expanding
by the multiple angle formula, we have after
solving for &2

w2 A 4 — 2
k2=_l[1+( ﬂ
4 fr 4 fr

(R oo

wis=wr+2wAf. (49)
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Hence when the frequency difference between
resonance and anti-resonance is measured, the
coupling coefficient k2 can be obtained by substi-
tuting in the above formula. Usually the first
term is sufficient. Having the coupling, the
elastic constant s92f, which can be calculated
from the resonant frequency, and €7 which is
obtained by low frequency capacity measure-
ments, the piezoelectric constant di» can be
evaluated. By using these constants for rotated
cuts, all the independent elastic constants not
involving pure shear, most of the piezoelectric
constants, and all of the dielectric constants can
be evaluated.

V. Evaluation of Shearing Constants from Face
Shear Vibrations

A measurement of various orientations of the
crystal in longitudinal vibration will evaluate
all of the elastic constants except the shearing
constants. To measure the shearing elastic con-
stants requires setting up a vibration in which a
pure shear is the predominant motion. A choice
can be made of a thickness shear mode or a face
shear mode and the latter was chosen since the
mode is simpler and is more easily dimensioned
and because the fundamental constants can be
directly measured by a single orientation. It is
the purpose of this section to derive the resonant
frequencies of a face shear mode.

This is a more general contour mode than the
longitudinal mode considered and involves satis-
fying boundary conditions along four edges. We
consider a crystal cut normal to the Z or X; axis
and assume that the thickness is so small that
the stresses determined by the X; direction can
be set equal to zero. Hence

Ty1=Ts=Tyn=0. (51)
The remaining stresses
Ty, Ty, and T (52)

are all finite throughout the crystal but vanish
at the edges. The vanishing of the stresses in
Eq. (51) simplifies the equations of motion for
it results in only three independent strains, i.e.,
the other three strains have a definite ratio to
the independent strains. Since the field E is
parallel to the Z axis at the surface, and the
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thickness is assumed small, the only component
of the field will be Es. Then Eq. (13) can be
written

Su=S1=suF 14518 To+516% T 6 +daEs,
2812 =Ss=s516"T14 526" T2 + 5667 T 6+ 36 s,
Sao =S =512FT 145008 To+ 526F T s +d o Es,

€33 TE

(83)

3
+d3l Tl +d32T2+d36T6-

g3 —
™

All the other stresses disappear by virtue of (51)

For inserting in the equations of motion it is
desirable to express the stress in terms of the
strain. This can be done by solving Eq. (53)
simultaneously, giving

1=cnES1F €195 ESs 41697 Ss — €31°E,
To=c12%ES14 0% ESs+ 26 ESs — €33°Fs,

To=c165ES14 26" ESe+ce6°FSs — €36°Es,
(54)
€337
g3 = Ea[;“ — (ds1€31°+d s +dseess °)]

™

+ 31251+ €525z +€36°Ss.

In these equations ¢;;*¥ designate the field con-
tour elastic constants that apply when a contour
mode occurs for a very thin crystal. These con-
stants are given in terms of the elastic compli-
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ances at constant field by the formula

(___ l)k-HA“

CijC'E=—~—_——(kY l= 1, 21 3)) (55)
A

where A is the determinant
suf,  sef, 516

A= (5128, 5$pF, S96E
s16%,  sa6®,  See”

and Ay, is the minor obtained by suppressing the
kth row and /th column. The piezoelectric moduli
applying to a contour mode of motion are given
by

€31° =d31011°F +d32012°F +d36c16° %,

32° =d51012° F +d32022°F +-d36C26°F,

e36° =d31016°F +dgac26®F +dseCes'F,

(56)

while the contour clamped dielectric constant is
given by the equation

€335 = €337 — (da1€31°+dne32° +d3ee36°) 4.

(87)

The superscripts ¢,S indicate that this is the
dielectric constant if the crystal is free from
contour strains, but not for thickness modes.

Inserting Eqgs. (54) in the equations of motion
(27) noting that

8E3/6x1 = 6E3/6x2 = 0,

since the plating is an equipotential surface, the
equations of motion become

%4 9%k 9%k 9%k 9%k, 0% K3
p—=cn®¥ +2¢165% +cesF +c16°F + (12 F +co6F) +co6c ¥ ,
6x12 6x16x2 0x22 6x12 axlaxg ax22
(58)
2%, 3% %, %4 &, & %%
p——=1¢16°F + (c12°E +c6°F) +co® +ce6F +2¢06F + a2 .
2 9x,? %102 0x22 0x;2 90192 9x2?
For simple harmonic motion, Egs. (58) reduce to the form
%% % %L %%, 9%% %%,
cu—+2¢s6 +coe——Fcre—— (c12+Ce6) +cee——+w?p =0,
9x,2 0x10x2 dx2? 9x,2 x10%2 0x,2
(59)
%% %4 % 9%t %& %%,
cie——+ (crz+ce6) + o+ Coe——+2¢26 +ceo—+twpba=0,
ax12 axlaxg 0Xs 8x12 6x16xz axJ

where the elastic constants are understood to be the contour, potential constants.
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For experimental purposes it is found that the best measurements are obtained when the crystal
is long compared to its width or thickness. This is further accentuated by taking a high harmonic
of this mode which in effect makes the unit cell longer compared to its width. Hence the solution
of interest is one where the crystal is infinitely long in the x; direction and with a finite width in
the x direction. For the infinitely long crystal, there should be no variation of the displacements
£ or &3 along the length of the crystal and hence

9%t 0% L 9%

—_— = =0 (60)
0x;  9x10x; 9x12  0x10%
this leaves only the terms
%% R 9%k 9%k
Cos——tCo——Tw?pt =0, Cos——+co—Fw?pb=0. (61)
9xp? ax22 6x22 ax22

The solution of these equations represents two coupled motions controlled by the x, dimension.
If c26=0 these two motions are a shear vibration and a longitudinal vibration existing independently,
but with ¢z finite, the shear and the longitudinal motions are coupled so that there is no pure shear
or pure longitudinal motion. To show this we can eliminate £; from the above equation and obtain
one fourth-order equation

—twlp

% 2[ CaetCes ]@i wiply —o. 62)
6x24

+
CoaCe6— Co6°d0%s?  CoaCe6— Cog?

A solution of this equation is

£1=A cos axy+ B sin axs+ C cos Bxe+D sin Bxs,

where
(catcoe)p \? (c22—co6) 2426271\
A s Y
2(casces— C267) (Caatce6)?
(63)
(622 +C66)P 3 (022_666)2+4C262 A
ey
(ca2c66 — €26?) (Ccoatc6)?
If Cog= 0
a=w(p/cee)t; B=w(p/c)},
and the two vibrations would exist independently.
The value of £; is obtained by a substitution of the value of £; in the last of Eq. (61) and is
a’ceg B2czs .
b= (————————) [4 cos ax;+ B sin ax2]+( )[C cos Bxz2+D sin Bxz . (64)
w?p—a’ey w?p—B%s
The boundary conditions to be satisfied are
23 9%
To=cor—+coe——e3°FE3=0 when x=0 and x:=1l,
dx2 dx2
(65)
233 &
Ts = 623——+655——€35”E3 =0 when Ko = 0 and X2 =lw,
axz 6x2

where J, is the width of the crystal. These conditions determine the four independent constants 4,
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B, C, and D. In terms of E; these constants are

A= _[ (‘*’2p—0£2622) tan al,,,/2 ][8366E3._eazcEa[wzl)C“_Bz(mC“_6282):”'

a[32 - az][czzcss - 6262] w?pCae

(w?p— aca) w?pces— B (CazCes — C26°)
[ ][836°E3 - eszcEs[ ]],

a[ B2 —a?][cesces — Cas%] w?pcag

(w2p—B%2) tan Bl,/2 w?pCes — a®(CaaCos — Cag?)
[ J[830°E3—832°E3 ]].

3(32-0&2) (622660"0262) w2p62s

D= ——[ (w2p —52622) ]I:eascEa—eszcEa[wzpC“_a2(622686—6282)]].

B(B2— a?)(cesces — C26%) w?pCag

I

(66)

To obtain the electrical admittance of the crystal, we make use of the last of Egs. (54) which
for this limiting case becomes

Eaésc’s 652 651
3= + ez ——+e36°—. (67)

v 9x2 0x2

Integrating this equation over the length and width, noting that E; does not vary over the surface
and §; and £; are not functions of x;, we have

Ealwle3c’s
="——4—“"+632°l(:522—521]"*‘835‘1[512—£11:| (68)

n

where the displacements are the displacements at the two edges, and Q is the total charge on the
surface. Introducing the displacements from Eq. (63), (64), and (66) and noting that the current
to enter the crystal is jwQ, the admittance of the crystal becomes

7 jwllw 633°'S|— 1 832247r|' a2[w2pcss - 32(622565 - 6262) ] {tan alw/Z)
E B 47rl¢ I. 633°'S l_ (62 - az) (622566 - 0262)(.02;) \ al,,/Z

@ \ )(tan alw/Z)
w’p— ac —_—
ﬂz[w2p665 - a2(622665 - 6262)] tan ﬁlw/z } 41r83(;2 ” alw/2
- X

[(B*—a?) (cncss—cot)w?p]  Blw/2 €335 (B?— @) (Caacos — C267)

tan Bl,/2
(Q’ZP _62522) (M)
Bl.,,/Z 4%832835[[655(&)2;) —_ O’.2622) (pr — ,32622) - a232(}n6252:|
(ﬂ 2 012) (622666 - 6262) 633"s |- (132 - a2) (622666 - 6262)w2p626

tan al,/2 tan Bl,/2 C26 tan al,/2 tan 8l,/2
X - J+( )| + ]]] (69)
aly,/2 Blw/2 C22Ce6 — Ca62 aly/2 Bl./2

At low frequencies
tan o, tan l,/2

alw/2 Blo/2

(70)
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and the admittance is a capacity

llwésac’s
c= [
41rl¢

471‘635

4mes’ Ce6 2
1+ S 2 + s
€33°° L CoaCes — Ca6 €33

wW. P. MASON

(71)

[ Ca2 ] 4mesess ( 2¢2 )]
CaaCe6 — Cas® €335\ CaaCes — Cag?

This capacitance is the “free’” dielectric capacitance.

If Copg =

0, the impedance reduces to that for two uncoupled modes, and is

( { ) v,
. | tan w( ) tan w( )
7 ]wllwegg" S | 41r8322 { 4meg? Co2

]
|

E 41rl;

3622 { ( )* l
C22

i + (72)
J

SEeE

For the general case where ¢y is not zero, Eq. (69) is the admittance of two coupled modes. The
resonant frequencies occur when the admittance is infinite (impedance zero) and hence occur when

tan of,/2=« or

These are satisfied for the first modes when

tan Bl,/2= . (73)

fi= ((622+Css) [(622*666)2'1"46262:]*)
1= 2l ’

2p

(74)

(622 + 666) + [(622 - Cee) 24 46262]*

g =—

21,

]
2p )

Since the frequency f is equal to the velocity of propagation v/2l,, we find that the two values of

the velocity satisfy the determinant

pvg — (22,

C26,

VI. Elastic, Piezoelectric, and Dielectric Con-
stants of Rotated Crystals

We have so far calculated the resonant and
anti-resonant frequencies of longitudinal crystals
cut normal to the X or X, axis of the crystal and
with the length along the ¥ or X axis, and the
frequencies of a face shear mode cut normal to
the Z or X; axis with the width (frequency
controlling dimension) along the Y or X, axis.
To measure all the properties of a crystal requires
a number of different orientations for both longi-
tudinal and shear vibrations. To make the solu-
tions given previously hold for any of these
oriented crystals, we use a system of rotated
axes which are rotated from the reference axes
by three rotations for the most general case.

Starting with the reference axes, the elastic
constants for any rotated cuts are given by the

pU2— Ces

Cog

Il
e

(75)

general tensor formula

ax,-’ ax,-’ 6xk’ 6xl’

Sisz' = Smnop) (76)

0%Xm 0x, 0X, 0Xp

where the partial derivatives are the direction
cosines defined by Eq. (4). In a similar manner,
the peizoelectric and dielectric tensors are given
by the formulae

ax.~’ ax,-’ axk’

gk = T Imn, (77)
0%1 0Xm OXn
ax‘-' ax,»’

€ij = —€kl. (78)
axk 0x

For a monoclinic crystal, with the Y axis taken
as the axis of twofold symmetry, the three
tensors have the form shown below when the
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axes chosen are the X, ¥, and Z axes as defined Suu, Suee, Suss, 0,  Sms, O,
in the text
Suge, Sage2, Sa2ss, 0,  Sems, O,
en, 0, e Suss, S2233, Sssss, 0, Sz, O, 81)
Smnop = 81
=10, e 0], (79) ’ 0, 0, 0, sass, 0, Soape
an 0, e Sius, Se213, Ssas, 0, S, O,
0, 0, 0, s O, s
01 0) 01 dl23) 0) dll2 e 1
Qimn=|dont, dam, dyss, 0, dys 0 (80) For longxt}ldmal c.rystals the, rotated ela:su(
constant of interest is the sgs2’ constant since
07 01 01 d323y 01 d31‘2

Here the first number denotes the direction of
the field and the last two numbers the resulting
strain. The elastic tensor has the form

this is the inverse of Young’s modulus along the
length Y’ or X.. The piezoelectric constant
driving this mode is dys2". Introducing the tensor
terms is the tensor Eq. (76), the rotated constant
Se220” becomes

3302’ 8x2’ ale axz’
Sozne’ =—— —— —— ——Spnop = la*S1u1 +1a2m22 (251192 + 451019) +12’n92 (251153 + 451313) + 41231251115
Xy 0%, 0x, 0%,
+m2432m+m22n22(252233+452323)+4n231253313+n2453333+m22l2n2[432213+432312:|. (82)
In terms of the equivalent two index symbols the equation becomes
soe’ = la*si 1 ma? (2512 + S65) + 12122 (2515+ 555) + 205319515+ M2+ m22122 (2593 + 544) + 2m03as35
+n'24533+m22l2n2[2825+S4e]-

Hence by cutting nine oriented longitudinally vibrating crystals five elastic constants can be deter-
mined and four relations obtained between the other eight elastic constants. Eight of these cuts
can be obtained by having the length in the YZ, ZX, and XY planes. For a crystal cut with its
length in the YZ plane, with the angle measured from ¥ equal to 6, we have

(83)

ly=0, my=cosf, mny=sin 4,
hence . )
S22" =532 cOs* 04 (25934 544) sin? 6 cos? §+s35 sint 8(VZ plane). (84)
For the XY plane, measuring the length from ¥V
Ly=sin ¢, my=cos ¢, ny=0,
and . .
S22’ = S22 cO8* o+ (2512+S66) sin? ¢ cos? p+sy; sin® ¢(X Y plane). (85)

For the ZX plane with ¢ measured from positive Z in the direction of positive X, as defined in the
text, ly=sin ¢, ny=cos ¢, m:=0, and

a3’ =33 cos* Y+2 cos® ¥ sin ¢ sz+-sin?  cos? ¥(2s13+555) +2 sin® ¢ cos ¢ sys+sint ¢ syy. (86)

Three crystals each in the YZ plane and X ¥ plane and five in the XZ plane will determine eight
relations and give three checks between the constants s11, 522, and s33. To determine the ninth relation
requires a crystal with a double orientation and for this purpose the crystal shown by Fig. 9 was
used. In this case /,=0.5, my= —0.707; #,=0.5 and
522'=i%[811+555+533:|+%[813+515+S44+335+Sss+54s]+%[312+322+823+525]- (87)

The piezoelectric constant for driving these longitudinal crystals, dyss’ is given in terms of the
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developed tensor equation

W. P. MASON

p 9%y’ 9xy’ 9xy' 9%y 9xp’ Axs’ dxy dxy’ ax2 6x1 (axz ) axl (axz )
122 =—— —— tmn = 2—— —— 98+ 2— ——d
0X; 0Xm 0Xn " dx; 9x2 0x3 dx; 0x; E)xg ax2 dx
axl dxs’ axl’ dxs’ 0xy’ 9xy’ 0x2’ Axo’ 0xy dxy’ dxy’
) 233 "_—- — —d213+2— — 323 - T ——d3l2' (88)
axa ax2 6x1 ax3 6x3 axz 6x3 6x3 6x1 axg

In terms of the two index symbols and the direction cosines this equation becomes

dyo’ =limansdia+lilsmeds+maledoy +mums®des
+mans®dos+malenades +nymenads,
+mlemiadss.

For crystals cut in the YZ plane with the thick-
ness in the X direction, the direction cosines are

(89)

l1=1, m1=0, n1=0
lp=0, my=cos0, 72 =sin 0 (90)
I3=0, m3=—sin b, mnz=cosf

and the piezoelectric constants driving this mode
are

. d14 .
di2’ =dys sin 6 cos 0=—2~ sin 26. 91)

Hence a measurement of the 45° X cut crystal
will determine the piezoelectric constant dq4. Its
sign can be determined from polarity tests. For
the XV plane with the thickness along Z=Xj3,
the direction cosines become

l]_=0 m1=0; n1=—1
le=cos ¢; Mma=sin @; ne=0 (92)
ly= —sin ¢; mz=+cos ¢; n3=0

and the piezoelectric constant driving this mode
is
. 36 .
diy’ = —dss sin g cos p=——sin 2¢. (93)

In the XZ plane with the thickness along the ¥V
axis, the direction cosines are

ll'—‘O; m1=1; n1=0
lh=siny; me=0; mny=cosy (94)
lza=cosy; m3=0; mng=—siny

and the piezoelectric constant driving this mode
is

d
dy’ =dg; sin? Y~+da3 cos? \0—1—725 sin 2¢. (95)

Two more single angle orientations, which will
give information on the piezoelectric constants
but not on the elastic constants are orientations
for which the length and thickness axes both lie
in the YZ and XZ planes, respectively. For the
first case with the angle § measured between the
length and the Y axis, the direction cosines are

L=0; my=sin@; n,=—coséb
lb=0; ma=cos; ny=sin 6 (96)
lz=1; m3=0; n3=0
and the piezoelectric constant dis’ is
d1y’ =sin 6 (daa—dss) cos? 0+dgs sin? 6].  (97)

Hence if a crystal is cut with its length 45°
between the ¥ and Z axis and its width along
the X axis, the piezoelectric constants (dzs—ds3s)
can be evaluated and compared in sign with dgs,
which has already been determined from Eq.
(95). The second orientation with the length
and thickness in the XV plane and with the
width along the Z axis, the direction cosines are

L=sin ¢; my=—cos ¢; 7,=0
lb=cos ¢; mg=sin gp; ne=0 (98)
l3=0; m3=0; n3=1

and the piezoelectric constant d,s is given by
diw' = —cos ¢[dy cos? o+ (dn—dis) sin? ¢].  (99)

Hence a crystal cut at 45° between the X and ¥V
axes and with its width along the Z axis will
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determine the
already known.

A check on
their signs is

value of (dss—dys) since ds is

the piezoelectric constants and
obtained by using one double

727

orientation crystal. The one selected on account
of the ease of cutting is the one shown by Fig. 9.
From the figure it is readily shown that the
direction cosines are

5, =0.707 sin 6; my=cos 0; 7;=0.707 sin 6
1,=0.707 cos 8; ma= —sin 0; n;=0.707 cos 8|. (100)
la=0707, m3=0; ny= —0.707

With these values the piezoelectric constant for
driving this mode is

(da1+das+das)
/= cos®
2
(dru+-dis+dss+dss)
R

12

sin?fcos 6. (101)

Hence by taking §=45° this becomes

di’ =0.1768[do1+d2s+das ]
+0.1768[ 2d2 — (d1a+dis+d3s+dss) 1.

To separate dye from dig and dss requires the
measurement of one thickness vibration crystal.
The one chosen for DKT was a crystal cut nor-
mal to Z, which gave an S, shear. This deter-
mined the constant dss. From this all the values
can be calculated.

To evaluate the shear elastic constants, four
crystal cuts are made all of which vibrate in the
face shear mode. Three of these are cut normal
to the X, Y, and Z axes, respectively, with their
width (the frequency  determining dimension)
along the Z, X, and Y axes, respectively. The
fourth cut is made with the thickness direction
halfway between the X and Z axes and the
width along the Y axis. The frequency of a Z
cut crystal has been discussed at some length in
Section V and since sg is zero for a monoclinic
crystal the shear vibration frequency is deter-

(102)

mined by
f : c“m)i (103)
—21,,, p )
Then since
suf spf 0
su?, suf 1
ces®f = sf suf 0 = (104)

s12F, $90F Se6
0 0 SME

the fundamental elastic constant sg? can be
evaluated from the measurements.

The frequency of an X cut crystal with its
width along Z can in a similar manner be deter-
mined since it can be shown that the mode of
motion is a simple shear, and the frequency is

given by
f 1 (C44°’E)*
B 20,\ p

suf= 1/644°'E.

(105)

and
(106)

An oriented cut is necessary to evaluate sy6F.
If we cut a crystal with the width and thickness
both in the ZX plane and the length of the
crystal along the Y axis, it can be shown that
the shearing modulus s¢'Z is equal to

ses’ £ = s6F cos? 0 —s4F sin 20+ s544F sin? 6.

(107)

At the same time s3¢'% is equal to zero so that the
resonant frequency of such a plate is determined
by ces*E’. The driving piezoelectric constant di4

is equal to

(dre—ds) |

d1s' =dq4 cos? 0+ sin 260 —dss sin? 6. (108)

Hence for a crystal cut with its thickness direc-
tion 45° from X, the elastic constant

1 2

See®’ (SssE—254eE+S44E)

c.E’

(109)

=Ce6

The dielectric constants €7, e2”, €337 can be
evaluated by measuring the capacities at low
frequencies along the X, Y, and Z axes, respec-
tively, while the dielectric constant €;37 can be
evaluated by measuring the capacity of the above
crystal which as shown involves the values

(éuT + 2657+ éssT)
2 .

(110)
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Hence all of the constants can be evaluated as
explained above except the shear elastic constant
sgsF. This is more complicated since it involves
measuring a coupled mode. For a ¥ cut crystal

E. M. CORSON

with its width or frequency determining direction
along X, the shear coupling coefficient cannot be
neglected and the shear resonant frequency is
given by the equation

1 s (eu*E+csF) —[(cu® —CBBC’E)2+4015°'EZJ*)*

2L, 2p
or ) ) ) (111)
en®FtcsF —[(cn? — 5 F) 2 +4 (15 F)
= (2L.f)%p.
2
Finally we have from Eq. (55) transformed to suf,  suf,  siF
the Y axis A= s, s, swE|.

. (__ 1)k+lAkl 515E1 SasE, 555E

Gt = A (k, 1, =1,2,3), (112) Since all the s;;# values have been determined

but sssZ, the two relations can be solved simul-
taneously for ssf and all the elastic constants

where A is the determinant can be determined.
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The formalism of the second quantization is developed entirely within the framework of
the Dirac-Jordan representation theory. The equivalence of this formalism and the methods of
ordinary coordinate-spin space is shown, and the equations of ‘‘connection’ are fully developed.
It is shown that the “creation’” and “‘annihilation” operators, and indeed all operators which
do not commute with the quantized Hamiltonian and hence whose representatives cannot be
explicitly given in a configuration space of a fixed number of dimensions are easily treated in
terms of the general representation theory and arise quite naturally. Both types of statistics
are considered, and the Fock-Dirac density matrix and self-consistent field are treated as a
simple illustration.

WE consider the general properties of a system of z-indistinguishable particles, and compare
the description of the system by two different operator sets x, and E, associated with the
rth particle (=1, 2, - - -n). The operators x, and E, will in general stand for a complete commuting
set of observables for each particle; thus for electrons for example we may take x,=(x,, ¥,, Z., 0,);
¢,=0; and E,=(H,, m/? m,, o,); m,=m,. However, for our general calculations we need only
consider that the operators E, have discrete spectra, without specifying their specific form beyond
the condition that the operators (both x, and E,) of any one particle commute with those of any
other. All the x’s together form a complete x-representation and likewise the E’s form an
E-representation.

Now any arbitrary physical state |; #) can be expanded in terms of the eigen-|) of either of these



