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The considerations of a previous note are extended to
include the possibility of several resonance levels. It is
shown, in the case of resonance scattering, that R, which is
the tangent of the phase shift divided by the wave number,
is the sum of the reciprocals of linear functions of the
energy (Eq. (12)), each term corresponding to one reso-
nance level. All the coefFicients in this expression for R are
real, energy independent constants. As a result, it appears
most natural to write the cross section (Eq. (12a)) as the
square of a ratio of two expressions which are themselves
fractional expressions of the energy. It is.possible to write
the cross section also as the square of a single fractional
expression of the energy {Eq. (13)). However, the coeffi-
cients of the fractional expression are then slowly varying
functions of the energy and are not real but subject to
other, more involved limitations. The results are quite
similar if, in addition to scattering, a reaction is possible
also. The cross sections can be represented, most naturally,
by means of the squares of the elements of a matrix (Eq.
(33)).However, this matrix is the quotient of two matrices
which involve the matrix % and only % is a simple function
(Eq. (33a)) of the energy. The cross sections can be
evaluated in a simple dosed form only if either there is

only one pair of reaction products possible (in addition to
the reacting pair) (Eqs. (35), (35a)},or if there are only two
resonances present. It is shown, however, that the cross
sections can be represented also in the usual form (Eq. (42))
but the "constants" of this form are not strictly inde-
pendent of energy and not real any more but subject to
more involved restrictions. It turns out that the cross
section becomes zero between consecutive resonances if only
elastic scattering is possible. The elastic scattering cross
section does not become zero in general for any value of the
energy if a nuclear reaction or inelastic scattering is also
possible. If the collision can yield, instead of the colliding
pair of particles, only another pair, the cross section for the
production of this pair will become zero between successive
resonances if the product of certain real quantities has the
same sign for both resonances. If the collision may result
in any of three or more pairs of particles (e.g. , H'+H'~
H'+H', or Hes+neutron, or He4+y) no cross section will
vanish, in general, for any value of the energy. The con-
siderations of the present paper are restricted to the case
in which the relative angular momenta of the reaction
products as well as of the reacting particles vanishes.

INTRODUCTION

" 'T was attempted, in a previous article, ' to give
~ - a derivation of the resonance formula using a
minimum of arbitrary assumptions. It was found
useful to consider the wave function in that
part of the configuration space in which all
particles of the two colliding nuclei are close
together. This part of the wave function may be
called internal wave function. A reasonable
generalization of the usual resonance formulae
could be obtained by assuming that the internal
wave function is, within the resonance region, in

6rst approximation independent of energy and
also the same, no matter whether the system
was formed by the collision of the two particles
appearing on the left side or of the two particles
appearing on the right side of the equation de-
scribing the nuclear reaction (thus, e.g. , that
the internal wave function is the same no matter
whether the compound state is obtained by the

~ E. P. Wigner, Phys. Rev. 7'0, 15, 1946. This paper will
be referred to as "previous note. "

collision of Li' with H', or of Li' with H' or of
He4 with He4). On the basis of this assumption,
which is supposed to be valid in the first approxi-
mation, the second approximation could be cal-
culated and gave the formulae for scattering and
collision cross sections in question. An a posteriori
justification of the procedure could be obtained
by estimating the third approximation. This was
found not to affect the results obtained in the
second approximation to any appreciable extent
if the constants appearing in the second approxi-
mation have values similar to those which seem
to be, on the present experimental evidence, the
usual ones and if the inaccuracy of the wave
function in the inside of the internal region is not
much greater than on the surface of it. This last
assumption restricts the validity of the formulae
obtained to a region which is limited by the
resonance levels nearest to the one considered.

The present note will deal with the case of
several resonance levels with a view, in par-
ticular, to obtaining the behavior of the cross
sections, etc. in the region between two resonance

06



RESONANCE REACTIONS

energies. ' The greater generality of the condi-
tions, from the physical point of view, will be
reflected, mathematically, in the assumption
that the internal wave function is, in the first
approximation, a linear combination, with energy
dependent coef6cients, of several energy inde-
pendent wave functions, corresponding to the
several resonance levels which play a role. In
order to simplify the analysis, it will be further
assumed that there are energy values, the so-
called resonance levels, for which the phase
shift is just x, i.e., for which the outgoing wave
has just opposite sign to what would be the
outgoing wave if there was no nuclear interaction
present between the colliding particles. This
assumption will be formulated more sharply later
for the case in which the compound state can be
obtained from more than one pair of nuclear par-
ticles, i.e., for the case in which a nuclear reaction
is possible. This assumption was not made in
the note referred to above and inasmuch as the
final formulae show the existence of an energy
value as postulated here, the assumption has
been proved in the case of a single resonance
level.

RESONANCE SCATTEMNG

We now proceed with the consideration of the
case in which the compound nucleus can dis-
integrate only in one way which is then the same

way in which it was formed. No reaction can
take place in this case and the only phenomenon
which occurs is that of scattering. We shall
assume that the relative angular momentum of
the colliding partides is zero. The wave function
in the peripheral region of the configuration space
(outside the internal region) is then

s, =(4~)-&r- u; [exp (—ik, r)
—Ug exp (ik~r) ]P(i). (1)

The same convention is being used here as
before: y~ is the wave function of the stationary
state with energy Ej and unit flux of the in-
coming wave, k~ is the wave vector v~ ——u~'
=hk&/3f the relative velocity of the particles for
energy E~. The f(i) is the normalized, real wave
function of the internal coordinates of the
colliding particles, r is their distance. U~ is the
quantity to be determined; it gives by the equa-
tion U~ =exp (2i8~) the phase shift and hence the
scattering cross section at energy E&. Equation
(1) is valid in the peripheral region, i.e. , if r) a.
In the internal region, we define

yg
——%g (r (a).

Integration of the equation ym*Hy~ —q~(Hq~)*
= (E~—E2) q ~q 2* (where H is the Hamilton oper-
ator) over the internal region gives by means of
Green's theorem

(exp (ik2u) —U~* exp ( ikmo) ) ( —exp (—i—kga) —Ug exp (ikpa))
23IQiQ2

I'ik2
+ (exp (ik2a)+ U2* exp (—ik2o)) (exp ( ik~u) ——Uj exp (ik&a)) = (E&—E2))' 4'2*%'&. (3)

23IN yQ2

The last integral, as all integrals of 4', has to
be extended over the internal region. It was
pointed out in the previous note that (3) can be
derived also by considering the material balance
in the internal region for the wave function

yi exp (—sEit/k)+q~ exp ( ~E2t/k), —
which is a non-stationary solution of Schrod-
inger's equation.

~ P. L. Kapur and R. PeierIs, Proc. Roy. Soc. A166, 277
(1938); H. A. Bethe and G. Placzek, Phys. Rev. 51, 450
(1937); F. KaIckar, J. R. Oppenheimer, and R. Serber,
Phys. Rev. 52, 273 (1937); H. A. Bethe, Rev. Mad. Phys.
9, 71 (1937) (pages 101-117);G. Breit, Phys. Rev. 58, 1068
(1940); 59, 472 (1946).

One can eliminate the exponentials from (3)
by the substitution

U'e2iha ~ + +piket )

after which (3) becomes

kl(l U2 ) (1+Ul) +k2(1+ U2 ) (1 Ul)

= —2iM'Ngu2(Eg —E2)k ') 4'2~%'i. (&)

This is quite analogous to Eq. (8) of the preceding
note. ' The reality condition is obtained by
noting that the conjugate imaginary of (1) and



(2) must be, apart from a constant, identical
with (1) and (2). The constant is easily seen to
be —Ul*. This gives

Ui*Ui ——
(

Ui('- = 1 O' *= —U *4 (6)

Both equations are valid, of course, not only for
the quantities with the index 1 but for any other
index, corresponding to any other value of the
energy, as well. The erst shows that, in a sta-
tionary state, the intensities of incoming and
outgoing waves are equal. Both equations hold
equally for the unbarred quantities for which
they are written and for the barred quantities
of (4).

It was assumed in the previous note that all
~, etc. are multiples of one de6nite 0'.

This assumption mill be generalized now to the
assumption that the 4' are linear combinations„
with energy dependent coefFicients, of a set of
energy independent functions. Evidently, there
is a certain arbitrariness in the choice of these
functions. It will be assumed that these functions

, etc. , are the internal wave functions
for energy the values E~, E„, for which U be-
comes —1, i.e. , for the various centers of reso-
nance levels. We have, hence,

+i=0'i)+) +o.ai+,+

Because of (7a) and (6), the +q are real. The
assumptions embodied in (7), (7a) do not follow

from simple physical postulates. A comparison
with the results of the previous note will show,
however, that they are reasonable generalizations
of the results obtained there. It is also believed
that they could be derived, by a little more
algebra, in a way similar to that given there,
from the same postulates, and that they could
be verified afterwards in an entirely similar
fashion to that used there.

Applying (5) for Ei ——Ei, Ei E„an——d neglect-
ing the difference between barred and unbarred
quantities, the left side of (5) vanishes because
of (7a) and one has

(8)

i.e., that the internal wave functions of the
various resonance levels are orthogonal. lt then
follows that, in general,

42 +1=ii2i Alxcx+G2p Ripe~+ ' ' '. (9)

Applying now (5) for E2 ——Ei gives

2ki(1 1 Ui) = 2aM—Nil i(Ei Ei)k—'ng, ci-,

or
Alx ik ki(1+ Ui)/MsxQ1(E1 Ex)cx ~ (10)

Similar equations hold, of course, for O.l„, etc. so
that all the a are determined by (10) in terms of
the U.

Dividing now (5) by kik2(1+ L'&) (1+L 2*)

gives because of (9) and (10)

1 1 —U2* 1 j.—Ul+-
kg 1+Ug* ki 1+Ui

2ik'(Ei —Eg)
+ +

vari(Ei —Ei) (E2 —Ei) v„c„(Ei E„)(Ei E„)— —

1 t 1 1 q 1 t' 1 1
=2ik -( — —— /+ ]

— (+ . . . (»)
kic), LEi —Ei E2 Ei) k„c„E—Ei E„Ei E„)— —

It then follows that the Ri defined by (12)
becomes

i i —Ul —Rl
kl I+Pl

+ + . .+R„, (12)
k),cy(E), —Ei) k„c„(E„Ei)—

where R„ is independent of energy. The real

quantities R defined in (12) are 3II/O times the
quantities 5 defined in the previous note; (12)
itself is the generalization of (14a) given there.
The c&„c„,etc. , are, because of (8), all positive
real quantities, they correspond to (2/k)' of the
previous note. The notation R has been chosen
for the quantity appearing in (12) because it
has the dimension of a length and because its
square is closely related by (13) to the scattering
cross section. However, both R and also the
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its denominator, it can be written in the form

5=50++
v P, —jy

(13a)

Flu. 1. Resonance scattering. R, i.e., tangent of phase
shift divided by the wave number, in arbitrary units and
scattering cross section 0 in units of maximum possible cross
section 4+/k' (schematic).

constant E„can be negative as well as positive.
From U=e'~ and the formula for the cross sec-
tion in terms of the phase shift b one obtains for
the scattering cross section

The sum of (13a) contains as many terms as
are resonance levels, i.e., as there are terms in
the sum of (12). If R„of (12) vanishes, 50 will

vanish also. Although (13), (13a) are, mathe-
matically, completely equivalent to (12) and
(12a) and although they give a simpler expression
for the cross section than (12) and (12a) do, the
latter seem to me preferable for three reasons.
First, the symbols s and F which occur in (13a)
a,re in general complex while those in (12) are
all real. Second, there are no restrictions on the
constants B)„c)„except that they are real and
the latter ones positive. The s, and F. of (13c)
satisfy complicated equations (not to be given
here) which express the fact that R = 5(i+ikS) '
is real. Finally, the E~, c), are strictly independent
of energy while s„and Ii. depend on the energy
through k. They are, of course, slowly varying
functions of the energy and their energy de-
pendence is really signi6cant only for very low 0,
e.g. , for neutrons near the thermal region.

A rather good approximation for S is given by

4x
r(E) =—sin' 8=

k' 1+k'R'
(12a)

-', ki'g/kg
Sappr = Q

~ Z, ——;ikr,/k, —Z'

I'), ——4k/c), . (12b)

Equation (12a) can also be written in the
for Hl

S is the quotient of two rational functions of E,
i.e. , itself a rational function. Since the degree
of its numerator is not higher than the degree of

This shows that the cross section is 4+8.' as long
as kR&&i. It assumes its maximum possible
value of 4m. /k' if R = ~.

Figure 1 shows the general trend of R as
function of energy and also 0. as function of
energy. It shows, in the instance represented,
the familiar pattern of sharp lines. As long as
the lines are as well separated as in Fig. 1, the
width of the line at Z), from half-maximum to
half-maximum is given by

which is an expression often given in the litera-
ture. ' Equation (14) is accurate as long as the
energy 8 is not in the neighborhood of more
than one resonance level Z)„neighborhood mean-

ing a distance of the order I'q. It is always accu-
rate if the energy actually coincides with one of
the resonance levels and a good approximation
for all 8 if the resonance levels are all distinct,
i.e. , their distance is greater than their width.
As a result, (14) is, under ordinary conditions,
a very good approximation for every E. One

~ Cf. e.g. , H. A. Bethe and G. Placzek, reference 2. The
development leading to (13), (13a) is very similar to sec-
tions 4 and 5 of G. Breit's last paper (cf. reference 2). Breit
already pointed out the limitations of this representation of
the resonance formula as they manifest themselves in his
model. In particular, he noted that although, in first
approximation, the absolute value of our ks„ is oppositely
equal to the imaginary part of F„(cf. (14}},this does not
hold rigorously and that, in general, the absolute value of
ks„ is greater than the imaginary part of F,. This is an
inequality which follows from the equations to which the s„
and F„are subject.
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FIG. 2a Fro. 2b

FIG. 2. Relation between two descriptions of resonance scattering. Two resonances at Eo—6 and 80+8, each of width I',

~

~

~ ~ ~ ~

~

've apparent resonances at E. The real parts F, of the two Fare given in Fig. 2a in units of d (one of them by a broken
inc), the negative imaginary parts in units of $1'. The real parts of the two Ii are the same for F&26„ the imaginary parts

for I'&2h. Figure 2b gives the real and imaginary parts s, and s; of the strengths of the two apparent resonance»&
units $F.

sees this also by calculating

S—S.pp, = (1—ikR)-'
-', kr./k, —;kr„/k„Xg- (14a)

gy„Eg ——',ikI'g/k), —E E„—E
Because of the Xg p, condition, one of the factors
after the summation sign is always small if all
the resonances are distinct. The second factor
can become very large if E=E„but is, in this
case, compensated by the factor before the
summation sign. In spite of all this, (14) can
become grossly inaccurate, e.g. , between two
levels the width of which is comparable with
their distance. In this case (13) with S,», sub-
stituted for 5 can even become larger than the
maximum possible width 4~/k'. The reason is,
of course, that the approximate values of s, and
F, (i.e., )ki"„/k. and E.——',iki'. /k, ) which were
adopted in (14) do not satisfy the conditions to
which the actual s, and F„are subject.

Figures 2a and 2b illustrate the behavior of
the quantities s„and F, in the particularly simple
case of only two resonance levels. These are
assumed to be at Eo —6 and Eo+6 and to have
both the same width F. The energy Eo is sup-
posed to be so high as compared with 6 or 1 that
the variation of k with energy can be neglected.
Figure 2a gives the rea1 part and the negative

imaginary part of the two Ii —Eo, in units of 5
and —,'I', respectively, both as function of I'/2h.
The former is ~1 in the approximation in which

(14) is valid, the latter 1. One sees that the
imaginary part of both I' is indeed ——,'I' as long
as F&25 but that this does not hold if F&26.
In the latter case, both P are purely imaginary,
the real parts of both having gone to zero as F
approached h. The s are shown in Fig. 2b.They
are complex for F &2h but real for F &2h. The
absolute value of ks is always greater than the
imaginary part of the corresponding Ii, a fact
which has been recognized already by Breit. '
It is worth while to note that, in spite of this,
the absolute value of kS never exceeds 1. Inas-
much as we believe that the F and E), are the
physically signihcant quantities, these figures
illustrate the somewhat artificial nature of the
representation (13), (13a).

RESONANCE REACTIONS

The treatment of the case in which, in addition
to elastic scattering a real nuclear reaction (or, at
least, inelastic scattering) is possible, divers from
the above one in that the peripheral wave func-
tion has, instead of (1), the form

sgg=P( (4s)-&r(-'Nu '[b;g exp ( -ikur()—
—U~;~ exp (ik~~r~) $P(i~) (15).



RESONAN CE REACTIONS 611

In this as in the following formulae, the in-

dices j, l, ~ ~ ~ etc. denote pairs of nuclei which
can react with each other or appear as products
of the reaction. The f(i~) is the product of the
real normalized wave functions of the pair /.

(E.g. , j can denote the pair Li'+H'; / the pair
Li'+H'; m the pair He'+He' etc.) The r~ is

the relative distance of the nudei forming the
pair l, the relative velocity of this pair for the
energy value E1 of the total system is denoted
by s~~=u~P=kk~~/3f~, the M~ being the relative
mass of the pair L In (15), because of the 8;~,

only nuclei of the pair j approach each other;
the U1;~ are the elements of the collision matrix.

The square
~

U~n~' gives the number of pairs I
formed if one pair of the kind j collides.

Equation (15) is valid in the peripheral region.
In the internal region, i.e., in the part of the
configuration space in which all particles are
close together, we have instead of (2)

(15a)
In order to calculate the second approximation

we need an equation analogous to (3). This can
be obtained again by integration of the equation

'P2 j~~+1l 'Pll(~ IP2j) '(+1 +2) 'Pill lj

over the internal region. This yields by Green's
theorem

[~ exp (fk2 +) U2j exp ( ~k2 a) j[ 8& ex—p ( ik&—a) —U~~ exp (ik~„u) g

h'ik2
f~pa exp (~k2trp) + U2jwa exp ( ~km+&+)19lm exp ( ~k1n&+)

Ulled

exp (~klan+) j
M

= (Zg —Z2) %p;*4'g(. (16)

In order to eliminate the exponentials, one can again introduce barred quantities

e, =4~ exp (ik~a); U~ ——U~„exp [i(k +k~)a]

YVith this substitution, and after multiplication with exp [i(k~~ —k2;)a], (16) goes over into

~ Qm(~lm+ U1lm)@lm+Rm (~jm Umjm ) + Qm(~lm Ulna)+1m +2m(bjm+ U2jya )

=2(Bg—Z2) I +~;*+i(. (18)

This is analogous to Eq. (22) of the previous
note. The bars will be left o6' again forthwith.

We shall now make the assumption mentioned
at the end of the Introduction more precise. It
will be assumed that there are "resonance
energies" Ey, E„, , etc. for which the matrices
Ill=

)~ U~~„~~ have a characteristic value —1. The
corresponding normalized characteristic vectors
will be denoted by gq with components Pq„so
that Ilying =

—Ilq, or, more in detail,

This amounts to the assumption that, at the
resonance energies, there are superpositions of
incident waves

for which the outgoing wave has, apart from the
sign, the same value which it would have if
there was no nuclear reaction or scattering, but
that the sign of the outgoing wave is opposite.
This means that the outgoing wave for the
superposition of incoming waves given by (20a) is

g~ Pq~(4s) &r~ 'uq~ ' exp (ikq~r~)f(i~). (20b)

The internal wave function for the incoming
wave (20a) (and the outgoing wave (20b)) will
be denoted by +~ and it will further be assumed
that these are the 0'~, 0„, which permit one
to express, in first approximation, the internal
wave functions linearly for all energies and all
incident waves:

Pg P).((4m) lr( 'u), ( 'exp-( -ikg(r-()P(i)), (20a—) +11 11 +X+1p +p+
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The coefficients a depend both on the energy
(Zi in (21)) and also on the pair of particles

(j in (21)) the coBision of which is represented
by the wave function 4'i; of (15a). The fact that
the internal wave function is 0'z for energy E), if
the incoming wave is given by (20a) means that

+i=piPi;. % j

This is equivalent with

Z j P&i&&» ~&w (23)

which is the analogon of the second equation of
(Ta). Since the 4'i„%'„, , etc. can be considered
as solutions of the same characteristic value
problem with the same homogeneous boundary
conditions embodied in (20a), (20b), they are
mutually orthogonal

' +Is 0'), = SIC), ', Cg=Cg +0,

which is the analogon of (8). Equation (24)
follows also from the more general equation (18)
if one inserts X for i, p for 2 and multiplies it with

pi, ip»*, sums over / and j and considers (19), the
symmetric nature of Q and the first part of (22).

No assumption analogous to the one contained
in (21) was made in the previous note and it is,
in fact, believed that this assumption follows
from the other more general assumptions made
in the Introduction. This was explicitly demon-
strated in the previous note for the case of a
single resonance level: the energy Zq was de-
noted there by 8& (there was only one Ei,), the
corresponding vector g& was denoted there by
uog (with components uoipi), and all internal wave
functions were the same apart from constant
factors. The existence of both the Eo and the
vector g was derived there while it is assumed
here because it simplifies the analysis to such a
great extent.

Since (20b) is the conjugate complex of (20a),
(the vector g will be shown in (26) to be real)
the peripheral wave function is real and the same
must hold then for 0'~. This also follows from the
more general equations which are the generaliza-

tions of (6).

Q! Ul ji +ilsa —~jmt g i +1jl +i/ +1j ~ (25)

One can easily convince oneself that (25) holds
both for the unbarred and also for the barred
quantities defined in (17). The first equation of
(25) reads, in matrix notation pi*pi ——1 and is,
because of the unitary nature of 11, equivalent.
with the statement that H is symmetric. Both
(25) and (16) or (18) are rigorous, i.e., do not
involve any approximations. However, (21) has
only approximate validity.

Introducing now (21) into (18), the right side
of this goes over into

2(&1 +2) Z~ &2k &1X ~L. (18')

All matrices (and vectors) have as many dimen-
sions as there are ways of disintegration for the
compound state, the indices 1, 2 give the energy
values B~, B~ to which the quantities refer, u~, u2

are diagonal matrices with diagonal elements
I&&, u2&, respectively, e» is a vector with com-
ponents O.n', etc. Equation (19) then becomes

(19a)

while (23) goes over into

(23a)

It may be worth while to remark that because of
(19a) and the symmetric nature of 11'„ the
vectors g~ can be chosen to be real and that they
can be assumed to be normalized

gi g) =Qifj) i'=1. (26)

One can substitute Z„ for E2 in (18a) and

apply it to the vector g„*,i.e. , substitute Z„ for Z~
in (18), multiply it with P», and sum over j.
Because of the symmetry of ll„and (19), the
second term on the left side drops out, the first

We can define the matrix product of two vectors
x and y as the matrix x&&y the j, l element of
which is (xXy);i=x;yi, (18) then becomes in
the matrix-vector notation which has been used
also in the previous note

ih(1+U&)uiu2 '(1 —02t)
+ih(1 —Q&)u&-'u2(1+14t)
=2(Zi —Zs) P), ci,(en Xen&.*). (18a)
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simplifies considerably and one has

2~ii(1+Ui)uiu„-'g„*

=2(Ei—E,) Q~&~(au, xa, ) )g„*

= 2(Ei —E„)c„ei„. (27)

The last part follows from (23) or (23a) and
the general equation

(xxy)x=(y x)x.

be real. Inserting (27a) into (18a) one obtains
for the right side of the latter

2 (Ei—Eg) li'
Z~ (1+Ui)ui

~X(E1 EX) (E2 K)
X (u~-'gi Xu~-'1I~)u, (1+U,t) (28)

because of the general equation

(a Xby) =n(xxy)I'
From (27), the vector ei„becomes

valid for all matrices n, 5 (h' being the trans-
posed of 5) and all vectors x, y. Thus (18a)
becomes after multiplication with ui '(1+Iii) '
from the left, (1+U~t) 'u2 ' from the right and

As was pointed out before, g„can be assumed to division by ih

u —'(1 —U2t) (1+U2t) —'ul —'+ui —(1+U,) '(1 —Ui)u„—'

ux '(y~Xyk)ux '=o (29)
cx(Ei —Ei) ci(E2 —E),)

It then follows that the terms which depend
on Ei (and similarly the terms which depend
on Eq) give an energy independent matrix. One
can clearly replace in (29) all the diagonal
matrices H ' =5 & by the diagonal matrices

q '=f i and obtain for the matrix Ri

pair j into pair l is

(E)= l(U —1) I'
k 2

4~ t qiRiqi
(3»)

k,P &1—sqiRiqi);i

Rl 'iql (1+Ul) (1 Ul)ql

=R +Pg q). '()~x)),)q). ' (30)
A(K Ei)

U 1 1 2iq 1R1q1/( I q 1Rlq 1) (31)

This is the analogon of the final result (12) for
scattering and represents the general solution of
our problem just as (36), (36a) of the previous
note represented the general solution in the case
of a single resonance level. R„ is an arbitrary real
symmetric matrix, the Eq are arbitrary real
energy values, the c) are positive real numbers
the gq real vectors and they can be assumed to
be normalized, or, if not, c),=1 can be assumed.

The matrix U& —1 can be expressed in terms
of Ri as

Although both this expression and that for Ri
(30) is quite simple, it does not seem possible to
express in general the 0;~(E) in closed form in

terms of the 8, k;, k~, the energy independent
quantities Eq, Pq, cq, and R~.

HIGHER SPINS

It is easy to generalize (30), (31a) for the
case that the nuclei of the pair j, say, have spins j
and j', i.e., angular momenta jk and j'h, respec-
tively. If our assumption remains valid, that only
those states need to be taken into account in
which the angular momentum of the motion of
the pair around their common center of mass
vanishes, one can consider the collision system
formed by the pair j as a mixture of states for
which the total angular momentum has one of
the values

and the cross section for the transformation of J=
Ij—g'I, Ij—j'I+1, , j+j'—1, j+j'. (32)
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gz=
(2i+ &)(2i'+ &)

(33)

The k;, q, R~ all refer4 to the energy 8 in (33).
It is, probably, unnecessary to remark that (30)
can be written in a somewhat simpler form

y) Xyt
gJ(g) —'gg J+Qz (33a)

where the J on the summation sign indicates
that the summation is to be extended only over
those X for which the angular momentum of the
compound state 0 ~ is Jk. The real vectors y), are,
as are the g&, and the S„j,independent of energy

(33b)

They are, of course, not normalized.
The R„jof (33a) could be, o8 hand, arbitrary

real symmetric matrices. They describe that part
of the reaction or scattering which would be
present even in the absence of resonance levels.

4 Strictly speaking, the matrix in (33) is undefined be-
cause g and gpss do not commute in general. A comparison
arit (82} shovrs that the proper dehnition is

q%q (33')
1-~qRq 1—iq%q

The fraction on the right side is completely defined since it
is a function of a single matrix q9tq. The right side of (33')
will be meant alvrays vrhen the left side is written for
brevity.

This total angular momentum consists of the
vector sum of the spins of the particles making
up the pair j since, according to assumption, the
relative motion of the particles has no angular
momentum. From the wave functions with a
definite J only such compound states + can be
reached which have the same J. As a conse-
quence, one must consider as many sets of
resonance levels as are J in (32) and define for
each set an %~ according to (30) in which, then,
the summation is to be extended only over the
compound states with spin J. The total cross
section then becomes the weighted sum of ex-
pressions (31a), corresponding to the components
of the mixture (32)

44rki
'+'

r

kj J ( j j~[ —(1 zq% q) ji

It has been argued, in the previous note, that
these R„can be considered to be diagonal
matrices as long as we can speak of pure reso-
nance reactions. Even if this should not be the
case, two remarks will be applicable to the
matrix elements E. ;&. First, since they corre-
spond to non-resonance reactions, their order of
magnitude will not be greater than the nuclear
radius. As a result, their product with g;gi ——(k;ki) &

will be small compared to 1 except if the energy
of both pairs j and / is quite high. Second,
R„;&(k;ki)& will be particularly small if either
the pair j, or the pair /, consists of a light
quantum and a nucleus. If both j and 1 are such
pairs, the process for which R„;i(k;ki)» is re-
sponsible is essentially a Compton effect on a
nucleus or a similar straight scattering term.
Even if only one pair, say j, contains a light
quantum, g;R;~q~ will be a high order correction
term which is, e.g. , consistently neglected in the
usual treatments of light absorption or emission.
It therefore appears to be justified to neglect
R;& if either of the pairs j or l contains a light
quantum.

Since every symmetric matrix can be written
as a sum of matrices (y, Xy,), it is possible,
formally, to set the %„~ equal to zero if one
admits a few terms in the sum of (33a) for
which E), is infinite but the y), also infinite in
such a way t.hat the corresponding terms give a
finite contribution to (33a), replacing 5„.This
is particularly tempting in the case of the (e, y)
reaction. For these reactions, all pairs I, -, etc.
contain a light quantum (in addition to the
normal or excited state of the product nucleus),
except one, the initial state j. Because of the
remarks made before, all the matrix elements of
%„~ will vanish except the jj element and S„~
can be replaced by a single term (y Xy ) with
a vector y„a11 the components of which vanish,
except the j component. Although the elimina-
tion of 5„,which has just been described, is a
very forma1 one, it. mill be adopted later because
it simplifies the formulae at least from a formal
point of view. We shall write then

(33c)

However, when using (33c) we must keep in
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mind that it has a few (or, in the case of an

(N, y) reaction, one) finite terms with Ei,= ~.

EVALUATION OF (33)

while the reaction cross section is

4m
0'p =—

k' (1 D)—2+(S; i+Sii)-
(35a)

q%q
=(1 D i(S,,+S—iz)) —'

1 iq%—q
~'S;, iD—

x
5.)

—~D
in which

(34)

( 'YA j'Y li)
S,i ——(khaki)&) R;i„+P

E),—8)
(34a)

Although the preceding formulae give, in

principle, a complete solution of our problem,
they are unsuited not only to practical calcula-
tions but even for obtaining a qualitative picture
of the variation of the cross sections. The dif6-

culty in using (33) (or (31a) and (30)) consists
in the evaluating of the elements of the matrix

q%q(1 i—q%q) ' if only the matrix elements of %
al e glvel1.

This dik. culty can be easily overcome if there
are only two states involved, i.e., if only one pair
of reaction products is possible. On the whole,
this is an exceptional case as even the (n, y)
reaction has several possible end products corre-
sponding to the diAerent excited states of t.he
product nucleus. Examples in question may be,
however, some (m, y) reactions of light ele-

ments, and, perhaps, reactions of the kind
Li'+n = Be'+H'

If there is, in addition to the original pair of
nuclei, only one pair of reaction products possible,
the matrix q%q becomes two-dimensional and its
reciprocal can be found easily. One obtains for

(qv Xqv)
1 iq%—q 1 =i P —— (36)

The remarkable feature of this last expression is
that it goes through zero at least between any
two consecutive resonances for which y~,gq~ has
the same sign since, evidently, 5;~ goes through
zero between two such points. It is similar, in

this respect, to the scattering cross section of
Fig. 1 which applies if no reaction is possible.
However, the scattering cross section given by
(35), which applies if a reaction is possible in

addition to the scattering, does not exhibit this
feature any more, since it can vanish only if
both 5;;and D vanish for the same K Even the
reaction cross section does not become zero
between consecutive maxima if either more than
one pair of reaction products are possible or if
there are compound states with more than one
value of J. The former case will be investigated
below. In the latter case the cross section is,
according to (33), a weighted average of ex-
pressions of the form (35a). This could vanish
only if the expression (35a) would vanish for
the same E for every J. Such an occurrence has
"zero probability. "

If several pairs of reaction products are
possible, the matrices % and q%q have more than
two dimensions and the reciprocal of 1 —iq%q
becomes an involved expression. It seems worth
while, in that case, to adopt the convention of
(33c) to eliminate the constant matrix
which occurs in (33a). The J will again be
omitted in the following transformation.

Because of (II), one can write for the de-
nominator of the expression in (33)

4x 5; +D

kP (1 —D)'+(S;,+Sii)-
(35)

ft is assumed that all compound states have the
same J. As a result of (34), the cross section for
scattering becomes

EVe shall try to write for

(1—iq%q)-'=1+i Q„„A„„(qy„Xqy,.). (36a)

The A„, are, of course, functions of the energy.
The product of the right sides of (36a) and (36)
must give 1. It can be evaluated by means of
the general equation

(xXy)(*Xw) =(y.z)(xXw). (III)
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One obtains for the A„, the equations One has because of (39b)

Pv +pvt vX

E),—B
(37) and

8—-,'ig —Ei =1—'(5—Ei)V

8=V'(F —E1) '9 (40a)
where the I',), are the scalar products

ki" ~=(qv e~)=Z &n.n~. (37a)

The I' with two indices are, in contrast to the I'
of (13a), functions of the energy because of the k
which enters (37a). They are, however, slowly
varying functions of the energy. The A„, will
turn out to be rapidly varying functions of E.

Both the I'~, and the A„q are symmetric in
their two indices: I'„~——I'~„, A„~=A~„. As a result
of (36a), (37), and (III), the matrix in (33) can
also be written as4

= Z.).~.~(v. Xv~).
1 —iqRq

a = (8—-,'i8 —El)-'. (39a)

If the symmetric matrix 8 ,'i8 has n—o—double

characteristic values —which would be, after a11,
an exceptional cas" --it will be possible to bring
it into the diagonal form 5

(39b)

Because of the symmetry of 8—~if, one can
assume that V' is a complex orthogonal matrix

(39c)

This is how far the transformation of (33) can
be carried easily without making approximations.

At this point, the possibility of a transforma-
tion similar to that given by (13) should be
mentioned. Equation (37) is evidently a matrix
equation although the rows and columns of the
matrices occurring in it do not refer to the
diR'erent reaction products as in the case of the
matrices q, R, etc. , but refer to the different
resonance levels X, y, v, etc. After multiplication
with Eq —E, (37) can be written as

a(8 E1) —fie8—=1. (39)

In this, 8 is the diagonal matrix with the diagonal
elements Ez, E„, etc. , 8 and g are symmetric
matrices with elements A„, and 1'„„. It follows
from (39) that

The diagonal elements F„of &, as well as the
elements r„„of 1 will still be slowly varying
functions of the energy. However, the elements
of 8 will be

A„),= Q, T.„(F. E) 'T,g
— (40b)

at least in the neighborhood of thy real part of F„
rapidly varying functions of B.

Because of (40b), (38) becomes

R
(y, Xy),)

1 —iq%q yx v F„—E

(s.Xs,)
F„—E

(41)

wherein the vector s, is dehned by

&vl QX TvXVXl.

Finally, (33) gives for the cross section

(41a)

4xk i svpv)
~ ~(E)= Z g~ 2'

k. ~ " F —E
(42)

~Again, Breit's work anticipates many of the results
derived here. Although Breit's paper deals with a rather
special model, a comparison of his formulae with ours
shows that the model used by him already exhibits practi-
cally all the features which prevail in the general case.

There is, of course, a separate set of F, and s„;
for every value of J and the sum of (42) should
be taken in this sense. Equation (42) is the
analogon of (13), (13a) and is subject to the same
kind of limitations as are those equations: the
quantities s,~, s„., F„are in general complex;
they are subject to rather complicated equations
which express the fact that the matrices 8 and g
are real; they are functions of the energy al-
though slowly varying functions. Except for
these limitations (42) is a very concise form of
the resonance formula. ' It should be remembered,
however, that the expressions (34), (35) give
the cross sections in terms of the R;;,R;~, A~i,
Eg, yg, etc. which are al1 real, subject to no
equations and independent of energy. Of course,
they apply only in the case of the simplest re-
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actions in which only one pair of reaction
products is possible.

In order to derive an expression for the cross
sections which is not subject to the limitations
to which (42) is subject, one will try to avoid
the doubtful diagonalization (39b) and try to
solve (37) for the A„q more directly. If several
reaction products are possible, one wi11 obtain a
manageable expression only if one resorts to
approximations, and it will be assumed that the
energy differences are larger than the widths F.
It will then turn out that the A» are, in general,
considerably larger than the A„), with p, ~X. One
can, therefore, obtain a first approximation for
A» by using the equation )I. =p of (37) and
neglecting the A„„ terms with p, Ws. This gives

(43)

One then obtains for A„q from (37) by keeping,
from the sum, only the terms v =X and v = p, and
using (43) for the latter

]g'bF pg

A„),= (~&)).
(E.—E—kiI'-)(» —E—2iI'~.) (43a)

This can be considered to be small as compared
with (43) because the energy difFerences are, in

general, larger than the F. For this reason, the
terms with X A p may be neglected in first
approximation in (38) and one obtains with (33)

4mk) Vvi Ye&

~ ~(E) = Z g~ E', . (44)
k; ~ ~ E„—E——,'i F„„

This equation actually has the form of (42) and
constitutes an approximation to it in the same
sense as (14) is an approximation to (13c). One
sees the analogy between (44) and the customary
one level formula, perhaps, most easily if one
denotes

so that, because of (37a), g; I'„;=I'». One then
sees that F» is what is usually denoted by F„
and that the matrix elements, which are the
g,~», are real. This shows that s.; of (42) are
also approximately real, i.e. , their complex phases
are small. However, if the F are of the same order
of magnitude as the energy diRerences between
resonances, (44) may become grossly inaccurate,
just as (14) was inaccurate under similar con-
ditions.

In the next approximation, it is necessary to take the A» with p ~& into account. Using (43a) for
these, the matrix needed for (33) becomes

(y„Xy„) 2ir„~(y, Xyz)+2
1—iqRq E„E ,'iI'„„—& ~ —(E—„—E——,'iI'„„)(E —E——,'il'„,)

(45)

In this approximation, it is still easy to write (45) in the form (41). The F„are the same as in (44)

and the s„becomes

2$F»

~sF„),
s„=y„+P

XWp ~X ~y,

(45a)

(45b)

One sees that neither the Ji nor the s are entirely independent of the energy. The s are not real any
more as they were in 6rst approximation. However, in the present approximation, i.e. , up to terms of
the order I'/(E&, E„), the imaginary pa—rt of F„ is still equal to the square of the length of qy„.

The above is intended to show that if one uses equations of the form (42) without taking the
restrictions on the F and s into consideration, one automatically restricts oneself to the case in which
the level width is small compared with the spacing of the levels. Under such conditions, the matrix
elements are at least approximately real. As one approaches the case in which the F are of the same
order as the spacing of the levels, the s become complex in general. However, there remain relations
which replace the reality condition which is valid for F«E& —E„. It does not appear justihable to
make statistical statements on the cross sections without taking these conditions into account. Of
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course, (33) ahvays remains valid, but it does not seem to be easy to make statistical statements on
the basis thereof without resorting to somewhat crude assumptions.

One can calculate the A» in the following approximation by taking into account all terms in the
Eq. (37) with X =y but using for A„, the approximation (43a). This gives

I vp

(E„—E——',il'„„)A„„=1 ——,
' P

&~ (E„E—,'i—I'„-„)(E„E—',i—I'„-„)

Since the last term herein is a correction term one may write for the right side 1/(1+;P ) where
is the sum on the right side. This gives then

A»= —--
E„E ', i—r„„+—,'-P.' r„-,2/(E, —E—-,'ir„) (46)

The term with v =y has to be omitted in the summation over v in the denominator. In general, (46)
is still approximate. However, one can easily convince oneself that (46) is actually accurate if there
is, in addition to p, only one more resonance level. The approximation corresponding to (46) for A„~
with p, WX is

(46a)

(E„—E—,'ii „„)(E,—E—-', ir»)
~

r„,——,i g" ~+-;r„,E„E—-',iI—',„)

In the summation over v in the denominator the terms v = p, and v = 3 have to be omitted so that the
sum over u vanishes if there are only two resonance levels, p, and X. Under this condition (46a) is
accurate and differs only by the last term in the denominator from (43a).

Evidena:ly, the last equations are too complicated for being of great practical value. This can hardly
to be expected otherwise since our result is quite general except that we assumed only short range
forces and considered only collisions in which the angular momentum of the motion of the colliding
particles vanishes. Hence (33) should be able to represent the variation of the various cross sections
with energy under almost arbitrary conditions. In most cases, if special conditions prevail which are
dilferent from those assumed above, it may be easiest to refer back to (33).One property of the cross
sections that is of fairly great generality can be, however, easily checked by means of the above
formulae, that is that the reaction cross section goes through zero between successive maxima,
at least if y~~y~; has the same sign for both, if only two pairs of products are possible but that this
does not occur if several products can be formed.


