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Theory of Nuclear Coulomb Energy
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The characteristic oscillatory behavior of the Coulomb energy differences for light nuclei is
explained in terms of the different values of the average Coulomb interaction between two
particles when the wave function is, respectively, symmetrical and antisymmetrical in the space
coordinates of the particles. The possible eHect of the low binding energy of the least strongly
bound particle in 4n+1 nuclei is discussed. It is shown how the Coulomb energy differences
obtained empirically from odd nuclei may be used to estimate Coulomb energy differences for
various other cases.

INTRODUCTION

HE Coulomb energy of nuclear systems has
been estimated by several distinct methods.

These are described brieHy in the following

paragraphs.
(a) For light nuclei (A —16), single particle

wave functions are combined to form Hartree
type total wave functions with definite angular
momentum and symmetry quantum numbers.
These wave functions are used to calculate the
expectation value of the electrostatic interaction.
Although this procedure does not yield precise
quantitative results, it reveals a characteristic
oscillatory behavior of the Coulomb energy as
a function of atomic number in qualitative agree-
ment with the observations. ' In the special case
of three particle systems (He' and H'), more
refined calculations based on models of nuclear
forces correlate the Coulomb energy with the
assumed range of the force in a satisfactory
manner.

(b) The classical energy of a continuous charge
distribution spread uniformly throughout a
sphere of radius R has the value 3Z'e'/5R, if Ze is
the total charge. To obtain the nuclear Coulomb
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energy, Z' is replaced by Z(Z —1) with the result

E,=3Z(Z —1)e'/5R.

The assumption of constant nuclear density with

R=1.47)(10 i3A& cm

yields' '
8,=0.592Z(Z —1)/A & Mev. (3)

For odd isobaric nuclei with X—Z= &1 the
Coulomb energy difkrence is simply

aZ, =E.(—1) —E,(+1)
=0.592(A —1)/A& Mev (4)

in excellent agreement with the experimental de-
terminations for A greater than j.s, excepting one
outstanding discrepancy at A =27. Below A = 16
there are numerous discrepancies, principally be-
cause of the oscillatory behaviour of the experi-
mental mass differences.

(c) Attempts have been made to correlate the
Coulomb energy differences of odd nuclei with
the binding energy of the least strongly bound
particle. "Consider, for example, the systems
4Be' and ~B'. The odd particle (neutron or
proton) is lightly bound and one might, therefore,
expect the effective nuclear radius to exceed the
value given by Eq. (2) and the Coulomb energy
difference to fall below the value AE, defined by
Eq. (4). The qualitative correlation is in the right
direction, but no quantitative formulation free
from arbitrary assumptions has yet been devised.
In view of the extreme nature of these assump-

' E. signer, Phys. Rev. 51, 947 (1937).
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tions, it seems reasonable to conclude that some
other effect must be invoked to account for the
major part of the experimental periodicity.

(d) The Coulomb energy is an important
factor in studies of nuclear structure based on the
alpha-particle model. ' However, it is not likely
that estimates of the Coulomb energy can supply
evidence for or against the spatial localization
suggested by the model. It is satisfactory that a
simple estimate agrees fairly well with the experi-
mental determinations.

The present calculation avoids the approxi-
mations made in (a) and (b) and yields the
characteristic oscillations found in (a) while

going over into (b) for suKciently large values of
A. Because of the effect described in (c), certain
relations must be interpreted as inequalities for A
less than 1.3.The method of calculation is adapted
from that used by signer in his theory of nuclear
mass defects. '

the number of proton pairs for which the wave
function is symmetric in the space coordinates of
the two protons.

The Coulomb energy, given by the equation

e'
~.=l Z'I 4, (1—rr')(1 ~r ) 0I— ('~)

r;; i

is readily expressed in the form

The quantities L, and L, defined by the equations

GENERAL FORMULATION

The operator'

X= -',-(1—7 r~) (1 —rr2)Pgg (5)

has the eigenvalues 1, —1, and 0, the first two
occurring only when both particles are protons.
From the expectation values of the operators

X,= -,'(Pgn+1)X,

X.=-';(Pgn —1)X

one obtains the probabilities

p. = (4, xA) = (x 4, XA)

p.= (4, XA) = (xA xA)

are interpreted as average values of the Coulomb
interaction between two particles when the wave
function is, respectively, symmetrical and anti-
symmetrical in the space coordinates of the parti-
cles. In the applications an approximation is
introduced by the assumption that L„andL, are
constant in an isobaric series and vary smoothly
as functions of A. A possible limitation on the
validity of this assumption is discussed in the
concluding section.

It is convenient to replace L, and L, by the
linear combinations

L,= ,'(L.+3L,), L, '-, =L, L,. —
for the eigenvalues 1 and —1, respectively, of X.
Summing Eq. (7) over all pairs of particles yields
the result becomes

(12)

—,'A (A —1)(p,+p.) = -', Z(Z —1).

Thus, ~2&(g —1)p, may be interpreted loosely as

~ L. R. Hafstad and E. Teller, Phys. Rev. 54, 681 (1938).
Harrison Brown a,nd D. R. Inglis, Phys. Rev. 55, 1182
(1939).

~g has the value 1 if the particle is a neutron and the
value —1 for a proton. The operator EI~ interchanges the
space coordinates of particles 1 and 2. %'e use a completely
antisymmetric wave function (in the space, spin, and
charge coordinates of the particles) to obviate the need to
distinguish between matrix elements of operators with
subscripts 1 and 2 and any other pair of subscripts.

g, =-', Z(Z —1)L„+qA (A —1)(3P, —P,)L',. (13)

The assumption that the nuclear volume is pro-
portional to the number of particles, as in Eq. (2),
implies that A &L, approaches a constant limiting
value as A grows larger. For L', one expects a
very rapid decrease with increasing A. In agree-
ment with this expectation, the empirical data
require that L, and L, approach equality beyond
A =20.
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To determine p, and p„some specification of
the symmetry properties of the wave function is
required. Wigner's first approximation, which

yieMs wave functions belonging to irreducible
representations of the symmetric group, is as-
sumed in this discussion.

It is easily seen that the spin state associated with
particles 2 and 3 is a linear combination of singlet
and triplet with statistical weights one and three,
respectively. Consequently, the addition of the
proton increases the Coulomb energy by the
aITlount

2 (L.+3L.) (13)

The Coulomb interaction energy between two
"four" groups is then evidently I..+31.,

In the A =4k series with A = 2Z there are Z/2
"four" groups and Z(Z —2)/8 pairs of "four"
groups. The Coulomb energy has the value

E,= ,'ZL, +Z(Z 2) (L,+3L,—)/8—
,'Z(Z 1)L.+3ZL'./-8. — (16)

The same result holds for all nuclei containing an
even number of protons. In the A =4k+1 series
with A =2Z —1 there are 2(Z —1) "four" groups,
(Z —1)(Z—3)/8 pairs of "four" groups, and one
additional proton. One obtains

E,=-', (Z —1)L„+(Z—1)(Z —3)(L,+3L,)/8

EVALUATION OF p, AND p,

Two procedures mill be described. The first
i»ay be called intuitive, since it interprets the
symmetry properties of the wave function in
terms of an alpha-particle structure without,
however, specifying the spatial location of the
alpha-particles (more properly the "four" groups).
The second is a formal and rigorous operator
calculation.

1. For a single alpha-particle, there is only one
interaction term and the Coulomb energy is
represented by B,=I., The same formal result is
obtained for the systems He' and He in their
normal states. If a proton is added to the alpha-
particle, the spin wave function of the three
protons has the form

2 'I~+(1)~-(2) —~+(2)~-(1) I~+(3) (14)

for these nuclei and for all others containing an
odd number of protons.

This simple procedure yields the Coulomb
energy without explicit reference to p, and p, .
These quantities may be inferred from Eqs. (8),
(13), (16), and (17). For systems containing an
even number of protons,

A (A —1)p. = —,'Z(Z+2);

A (A —1)p. = —,'Z(Z —2).

For an odd number of protons

~(~ —1)p =4(z —1)(z+3)
A(A —1)p = —,'(Z —1)'.

(18)

(19)

*

Tt Tg — ZT f ) TrfT( — Z T( I T)T$ — Z Tg

permits the reduction of an arbitrary power series
in the variables Tg, 7 „T~to a linear function of the
same variables. In particular

(1+~;.~~) (1—rr;) (1—rr;)

= 2(1 —rr*) (1—rrs) (23)

Equations (16), (17), (18), and (19) are valid only
for states with the same symmetry character (the
same (I' I"P")) as the normal state.

2. The formal and rigorous derivation starts
from the relation

'(1+—~-~i)(1+~' ~J)

which equates the space exchange operator to the
negative product of spin and charge spin exchange
operators. We wish to evaluate the diagonal
matrix elements of the operator

W= —,
' Q;g' 4(1 —rr;)(1 —rr;)P;,
= 3'2 2* '(&+~*"~~)(1+~' ~~)

X (1—rr;) (1 —7 r;).

It is evident froin Eqs. (5)—(7) that

l~(~ —1)(p*—p.) =(4, II'0).

KVith the help of Eq. (8), p, and p, can be ex-
pressed in terms of the diagonal matrix elements
of 8'.

The triad of relations

+.&(Z ])(L,+.3L,) (17) and Eq. (21), defining W, may be replaced by

=-,'Z(Z —1)L,+3(Z—1)L,',/8 —&= A 2* '(1+~'.~ )(1—rr')(1 —rr~) (24)
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The right-hand member of Eq. (24) can be ex-
pressed in terms of known quantities by the
expedient of adding and subtracting a diagonal
term to the sum overi and j:
—~= x's I Z'(I —r«) }'

+—,'~ I Q;e;(I —rr;) }"-—'„- Q;(I —rl I) (25)

= —,'Z' —Z+S -".

Q6-

~Q4—
4

Here, 5 -' is the total proton spin operator. Ke
are concerned with states which are eigenstates
of 5 ' =5'(8'+1) with the eigenvalues 0 (Z even)
and -', (1+q) (Z odd). These are the states with
maximum symmetry in the space coordinates of
the particles. Equations (18) and (19) are now
immediate consequences of Eqs. (8), (22), and
(25) combined with the above eigenvalues of 8 '.
In reality the total proton spin does not com-
mute with the Hamiltonian operator and the
reference to eigenvalues is inappropriate. How-
ever the diagonal matrix elements of S ' cannot
differ appreciably from the quoted eigenvalues.

We also include the relations between F, G
and I.

„

I. :

L„=G—
A —3 1 1 A+5

F, L,= ——G+— I'. (29)
A —1 3 3A —1

ZO 30
FrG. 1. Plot of experimental Coulomb energy differences

against mass number. Ordinates are in Mev and have been
multiplied by the factor 2/(A —1).

The formulae for 8, can be put in the following
form:

&.=kZ(Z —1)L.+ s LZ —k+5( —)'3L'' (26)

Then,

DZ, (A, u) =E,(A, u) —Z, (A, —u)

= -,'u(A —1)L. (28)

+lL +l(—I)"'""'}I—(—1) }jL'

Using Eq. (28), Table I is easily constructed:

Txm, E I.

4k+ 2

4k+3
2k
4k+1
4k+3

}w —z[
1

2n
3
3

sE{A, [N-z)3

$(A —2)L, P
$(A —1)L,+gL', =—G
n(F+G). m=1, 2, 3,
I'+2G
2Ji+G

Now, setting Z=-,'(A~u),

Z.(A, au) =g(Aau)(Aau —2)L,

+—,', (A +u —1+( —1)&"~"»'jL', . (27)

Evidently, for
}
X—Z

~

= 1, the alternation of
the coefticient of I.'. as one proceeds along the
series of odd nuclei causes an oscillatory behavior
of the Coulomb energy differences. That is, one
expects the data, for odd nuclei with

}
X—Z} =1

to fall on two separate curves, marked F and 6
in the table, rather than on a single curve.

Now, if F and G were smoothly varying
functions of the mass number, it would be
possible to use the experimental data for the
4e+3 nuclei to determine G for all A and simi-

larly to use the data for the 4n+1 nuclei to
determine F. With these results and also Table I,
Coulomb energy differences could be predicted
for many nuclei.

However, F and 0 may possibly change irregu-
larly with A for the following reason, already
mentioned in the introduction under (b). It is
likely that the nuclear radius is not a smoothly
varying function of mass number below A =12,
since the binding energy of the least strongly
bound particle in this range does not vary
smoothly with A. The nuclei of the type 4k+1
might be expected to have larger radii than would
be predicted from the radii of nuclei with
neighboring mass numbers. Now it seems likely
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A
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Fr@.2. Plot of L, and L against mass number. Ordinates

are in Mev. The dotted curves correspond to the following
change in Fig. 1: The 2 =4m+1 curve on Fig. 1 is held
constant and equal to 0.497 for A less than 13.

that I.,R and J,R, where R is the effective
nuclear radius, change in a fairly regular manner
with mass number, even though possibly L, and
I. do not. It follows that one expects FR and GR
to vary more smoothly with mass number than F
and G. This means that the experimentally de-
termined F curve, for A less than 13, applies
rigorously only to the 4k+1 nuclei, while the
interpolated points for other nuclei may be too
low. Similarly, the 6 curve is correct for all but
the 4k+1 nuclei, for which it may be too high.

The experimentally determined curves of
2F/(A —1) and 2G/(A —1) (not corrected for the
above possibility) are given in Fig. 1. The experi-
mental points are also indicated there. The
derived curves, L„and I.„areplotted in Fig. 2.
Table fI lists the experimental data and the
ordinates of the various curves. The Coulomb
energy diff'erence computed from Fq. (4) is also
included.

Summarizing the preceding discussion, the F
curve of Fig. 1 is to be interpreted, for all hut the
4k+1 nuclei, as a lower limit to the correct value
to be used in Table I. Similarly, the G curve is,
for the 4k+1 nudei, an upper limit. The curves
for I., and I., are lower and upper limits to the
correct values for all mass numbers. Above mass
12, all statements concerning upper and lower

TABLE II. Experimental Coulomb energy difkrences and
ordinates of curves plotted in Figs. 1 and 2.

25Eg
DFs Refer-

A (Mev) ences A —1

3 0 74 a 0 74
5 0.80 b 0.40
7 1.62 c 0.54
9 1.84 c 0.46

11 2.73 c 0.546
13 2.98 c 0.497
15 3.5 d 0.50
17 3.88 e 0.485
19 3.98 f 0.442
21 4.32 g 0.432
23 4.60 f 0.418
25 4 77 f 0 398
27 5.32 h 0.408
29 5.41 g 0.386
31 5.65 i, g 0.377

26 2F

L 1.184A &A —1 L,

0.74
0.94 0.22
0.98 0.25
0.93 0.30
0.80 0.38
0.65 0.45
0.55 0.47
0.49 0.47
0.45 0.45
0.43 0.43
0.42 0.43
0.41 0.41
0.40 0.40
0.39 0.39
0.38 0.38

0.74 0.37
0.67 0.40
0.62 0.43
0.58 0.46
0.55 0.48
0.52 0.50
0.50 0.49
0.48 0.47
0.45 0.45
0.43 0.43
0.42 0.42
0.41 0.41
0.40 0.40
0.39 0.39
0.38 0.38

0.821
0.692
0.619
0.569
0.532
0.504
0.480
0.461
0.444
0.429
0.416
0.405
0.395
0.385
0.377
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49, 368 (1936).
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Rev. 59, 63 (1941).

h W. H. Barkas, E. C. Creutz, L. A. Delsasso. R. R. Sutton. and M. G.
White, Phys. Rev. 58, 383 (1940).

1 See reference 5.

limits may be replaced by statements concerning
equalities.

In order to show the effect of a change in F on
the derived curves of Fig. 2, the dotted curves of
2 v ere plotted. These correspond to the assump-
tion that 2F/(A —1) is constant and equal to
0.497 for A less than 13.

ft will be possible to determine more accuratel~.
the values of F for other than 4k+1 nuclei when
suNcient data are obtained for the Coulomb
energy differences of even nuclei. Or, if some
estimate is obtained of the variation of nuclear
radius with mass number which is suf6ciently
accurate in this region, the experimental data can
be used to determine FR and GR for all A. One
then will be in a position to determine more
nearly correct values of F and G for all A.

A few words should be said about the experi-
mental values as plotted. Because of the uncer-
tainties of the data, the curves of I ig. 1 are
somewhat arbitrary. However, it seems quite
clear that the 4k+1 nuclei fall on a, separate
curve from the 4k+3 nuclei. The apparently
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anomalous experimental value for A = 7 is not yet
sufhciently well established to justify an attempt
at explanation or interpretation.

It is, of course, conceivable that the entire
experimental diA'erence G —Ii is attributable to
the variations of R alone, rather than to a

combination of causes, including the difference in

I, and L,. However, there seems to be no
plausible excuse for assuming I., and 1. to be
equal. What is surprising is that the experimental
evidence requires them to approach equality for
relatively low mass number (A 20).
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Elastic Backscattering of d —d Neutrons
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The backscattering of d —d neutrons was investigated for several materials. A directional
thick parafFin detector was used. The detector was sensitive primarily to neutrons which had
been scattered elastically or with little energy loss.

INTRODUCTION

HE purpose of the present experiments was
to measure the cross sections of various

materials for the backward scattering of d —d
neutrons which had suR'ered elastic collisions or
inelastic collisions with small energy loss. For
this purpose a detector was used, the sensitivity
of which is a rapidly increasing function of
neutron energy. The detector used the recoils
originating from a thick layer of paragon. Such a
detector has a high e%ciency, can be made
directional, and is most sensitive to the neutrons
of highest energy. The directional property of
recoil protons eliminates the necessity for a
shadow cone usually required to keep the large
direct beam from completely masking the small
fraction of reflected neutrons.

oxygen refluxing system which required only a
small amount of material near the target.

The neutron flux was monitored by counting
the protons from the companion D (d, p) H'
reaction.

The deuteron beam was collimated by two
tungsten diaphragms with ~" diameter apertures
to de6ne the source on the target. For the con-
ditions of the experiment, the neutron spectrum
extends from 2.5 to 3.1 Mev with an energy
spread of 0.3 Mev at half-maximum.

The angular distribution of the neutrons from
this source for the conditions. of the experiment

SOURCE

The neutrons were obtained from the d —d re-
action by bombarding a thick 020 ice target
with 50—100 pa of 200-kev unanalyzed ions of
deuterium accelerated by means of a Cockcroft-
&alton set. The target was cooled with a liquid

* Now on leave from Washington University.
~* Now at the University of Chicago.***Now at the University of %isconsin.
t' Now at the University of Nebraska.
ft Now at the University of Notre Dame.

FIG. 1. Spherical ionization chamber. Recoil protons from
a thick layer of paragon are detected.


