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The Stability of Synchrotron Orbits*
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The stability of electron orbits in a synchrotron with a
frequency modulated r-f has been investigated. The
method consists in expanding the equations of motion and
in solving them to zeroth and to first order of approxima-
tion. Attention is centered on the relatively low voltages—up to 200 Mev —and consequently the eEects of radiation
damping are of minor importance and may be neglected.
Kith the correct frequency modulation, the electrons, in
zeroth order, move in circular orbits with a constant
radius. In first order their r and 8 coordinates oscillate with
the two frequencies eu& and a» while the axial coordinate z
oscillates with the frequency au3. It is shown that as the

energy of the electrons increases, the amplitudes of the ~1
and co3 motions decrease approximately as 1/8& while the
A&2 amplitude decreases as 1/B&. Thus the electron orbits
are stable. A numerical example is calculated in detail for
a machine where the injection energy is ~ Mev and the
final energy 150 Mev. The accuracy of the solution is dis-
cussed and it is concluded that it will be correct to better
than one percent provided the frequencies co&, ca2, and aoa

are not commensurable. In the latter case, under certain
conditions, secular changes in the orbits could occur which
would destroy their stability.

HE purpose of the present paper is to
investigate the stability of electron orbits

in a synchrotron accelerator. The type of syn-
chrotron to be considered is similar to that de-
scribed by Veksler' and by McMillan, ' but
contains a variation proposed by H. R. Crane;
namely, the radiofrequency which furnishes the
electron acceleration is to be frequency modu-
lated in such a manner that the equilibrium
electron orbits consist of circles with a constant
radius.

The equations of motion for the electrons are
very complex and there is little hope of finding
an exact solution of them. It is, however, possible
to develop the variables and to solve by the
method of successive approximation. The present
work carries the problem through the zeroth and
first orders of approximation. It is found that,
providing the injection velocity of the electrons
is fairly high, say 25,000 ev or more, the orbits
are definitely stable and that any oscillational
motions which are initially present will be
damped out as the electrons attain higher energy.

Cylindrical coordinates will be employed. The
z axis is the symmetry axis of the synchrotron,
r, the radius of the orbit, and 8 is its azimuthal
angle. The electron orbits lie in a ring shaped
region defined by the coordinates z= +zo and

~ The work described in this paper has been supported
by the Bureau of Ordnance, U.S. Navy, under contract
NOrd-7924.
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and, since the calculation will not go beyond
first order, to retain only the first two terms.
The magnetic field has neither curl nor diver-
gence in the region and these conditions impose
relationships between the components of the
field. (Strictly speaking, curl H is not zero since
II is assumed to vary with the time. The extra
terms, however, are proportional to a'0'/c' and
are negligibly small. ) One thus obtains,

IX, =HO(1 n(r a)/a) sin 0t, — —
H„= —(nz/a)Hp sin Qt,

II,=0.
The electron will be subjected to two types of

electric fields both of which are directed mainly
in the 8, that is, in a tangential direction. The
first of these is caused by the betatron eHfect and
is equal to,

1 trBH
(~e) p

= — 2~r dr.
2mrc ~0 Bt

r=a+ro. VVithin this region the magnetic field
has its greatest component in the z direction but,
except in the median plane, it also possesses an
r component. It is assumed that the field varies
inversely as r" and that it changes sinusoidally
in time. The electron motion is to take place
close to the median plane, z=0, and to the
equilibrium orbit where r=a. It is therefore
possible to develop

1 1 n(r —a)
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The integral may be divided into two parts, (1)
the contribution from r =0 to r =a and (2) the
contribution from r =a to r =r. The former may
be designated by means of a constant coeScient,
I, while the latter may be developed in powers
of (r a)—/u and only the terms through the first
order of approximation retained.

(pp) p ———(0/cr) [I.+Hpa(r —u) j cos fhh.

mr', m8, and mz and add. The result may be
written,

1d
[—m'r'+ m'r'8'+ m"-z' j= em(r p„+'r8 pp+ zp, ).

2dt

The left-hand side of the equation is, however,
from (4) and (5) equal to

1d
——(m'c' —m p'c') = mine'
2dt

The second type of electric 6eld is that caused
by the radiofrequency. Let there be N gaps
each with an oscillating potential of frequency
~0 and magnitude Vo. While the accelerations Thus the four equations which define r, g, z,
occur at the gaps, it will be convenient to con- and m may be expressed as,
sider that the electric 6eld is spread out over
the entire ring. The 6eld which the electron feels d e
depends upon the phase of its motion relative to

dt
—(mr') mr 8'=—[VH-]„-+ep„,

C
(6)

the phase of the radiofrequency. Thus

(pe).i=—VpN
sin

]
8 — pppdh ).

2prr

dm
c'-=e(rp„+r'8 pp+ z p,),

dt

The radiofrequency, ~0, is to be made a function
of the time in order that the equilibrium orbit
may have the constant radius r =O„and for that
reason it will prove convenient to express the
argument of the radiofrequency as f'ipse pdh.

The equations of motion of an electron in an
electric and magnetic held are we11 known and in
cylindrical coordinates have the following form,

d e—(mr) mr8'= [VH],+—ep-„
dt c

d(r'm8) er
[VH jp+er pp, —

dt c

—(mz) = [VHj,+zp, . —
C

m—
[1 (V'/c')]&

P"2 —P2+ r2j2+ ~2

(4)

These equations may be put in a somewhat
more suitable form. Multiply Eqs. (1)—(3) by

The velocity V and the mass m of the electron
are further related,

d e—(mz) = [VHj.+ep-. ,
dt c

tS2T2+8$2r2g2+t82P tP$2C2 fPSp2C2

The magnetic and electric field components
may be substituted into the above equations.
It will be convenient to replace e by —e, corre-
sponding to the negative electronic charge. Two
simplifying assumptions will be made. (1) The
growth of the magnetic 6eld is exceedingly slow
in comparison with the electronic motions and,
therefore, in any study of the stability of the
orbits it mill be possible to replace sin Qt by Qt

and cos Qt by unity without materially changing
the problem. This approximation is strictly valid
only for the initial portion of the cycle but it mill

be shown later that it may be adapted for any
portion. (2) It will appear that for reasonable
values of the radiofrequency potential Vo, the
phase f 'pppdh —8 will be small and consequently
sin (f'capdh 8) will be simplified to—f''pppCh 8. —
An auxiliary study has been made which appar-
ently shows that the assumed simplification,
while it may afFect the motion somewhat, cannot
have any essential influence upon the orbit
stability.

XVith these simplifications and substitutions
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the equations of motion (6) through (9) become, by only small quantities. '1'hus, let,

dr' e m(r —a)
~ —+rm m—rfl2 = rb—1— HDQt, (10)

dt C Q

8z
PS +1kz—=—

dt

enr8z
HpQt, (12)

m'r'+m'r 8'+m's' =m'c' m'c—' (13)

It will be noted that terms arising from the
radiation damping have been omitted. Two
remarks may be made. (1) The most critical
portion of the electron motion from the point of
view of orbit stability is the initial portion and
here the radiation is of negligible importance.
(2) At the later times when the radiation becomes
larger, it will act as a very slowly varying fric-
tional force. Its efkct will be merely to displace
the phase of the electron relative to the radio-
frequency acceleration so that on each cycle the
electron may receive sufFicient energy to compen-
sate for the radiation losses.

In attacking the equations of motion, it will

be fruitful to investigate those orbits (a) which
lie in the median plane and (b) for which the
radius is constant. These will be defined as the
equilibrium orbits and will represent the zeroth
approximation to the genera1. motion. Setting
r =u and z =0 into the equations, one obtains,

m =mo(1+K'P) &,

2mQ
8 = (v Odt+ (a'IIO L)—

Vp¹

where

c Et

a (1+K't') &

K =asH00/n o&2.

Since for the equilibrium orbit, the electron
velocity is ad, the radiofrequency may be
expressed as,

s)0=8= V/a= cp/u.

It will now be assumed that the actual orbits
of the electron diR'er from the equilibrium orbits

e08
c'm = [L+Hos(r a)]-

C

eVOEH ]+ i
8 —

~
(godt ~, (11)

)

r=a+) p,

m =mo(1+K't') l+P p

z=),g,

2~0
(soda+(a'-'IIo L) —+Xq,Vp¹

C

Mp=
a (1+K't') &

where X is a parameter of smallness and p, p, , y,
and 1' are functions of the time.

These values for r, m, z, and 8 are substituted in
the equations of motion (10), (11),(12), and (13).
The zeroth-order terms are automatically satis-
fied and all terms in X' and higher are neglected
since only an approximation through first order
is desired.

d p K'& c' (1—n)K'P—+ P+- p
dt 1+K't' u' (1+K't')

C p, =0, (14)
moa(1+K't') &

a'- (1+K't') & Qp,
p+— = 0, (15)

c Kt mDK'P(1+K't') &

eN VpEt
=0, (16)

2+ac(l +K't') & t(1+K't')

dg X2t—+ f'+ i =o. (17)
dt 1+K't' a'(1+K't')

The straightforward solution of these equa-
tions is still very dificult although perhaps not
impossible. It will, however, be possible to obtain
a rather simple solution which holds to a high
order of approximation except in the immediate
neighborhood of t =0. According to our equations
t =0 represents m=mp and consequently a zero
initial injection energy. It is, however, planned
to inject at, say, —,

' Mev and at this, or higher
energies, t is much greater than the critical
region just referred to. (This point will be
discussed later. )

The method of making the approximation lies
in the realization that the magnetic 6eld is
changing very slowly indeed compared with the
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dp, )—+4pg'-(1 —n) po-
d'

C pp
=0, (18)

mpa(1+¹T')&

8 Cpo
Po+ go —— =0, (19)

&pg mgE'T'(1+E'T') &

orbital motion of the electrons. Let us suppose
that at a time t = T, the magnetic 6eld is frozen.
The values of r, m, s, and 8 in this case are, to
6rst order of approximation,

r =a+Xpp,

m =mg(1+E'T') &+etio,

S=hfo,

8 =Goot+A, po,

C Er
No=-

a (1+E'T')&

Since the magnetic 6eld is frozen, the betatron
terms o'HoQ and I.Q of course vanish. The
equations for po, po, fo and qo may be obtained
by the method used earlier and are,

4gp = —— sin (4pit+Bi)
a(1 —n) &

c(1 n—) & ET(E'T'+n) &

Cg sin (4pgt+Bg),
(E'-T'+ 1)'

gp Cg cos (gogt+Bg),

where a)3 ——n4)o.
This solution for the case of the constant

magnetic 6eld is very interesting and contains
in it many of the essential features of the motion.
The coordinates r, m, and s oscillate harmoni-
cally around their average values, namely, a
m, (1+E'T')& and zero, respectively. The motion
of e consists of a uniform increase with the time
upon which is superimposed a small harmonic os-
cillation. The average value of the electron mass
divided by mo will be defined as f= (1+EgTg)&
The equation defining co& and co& is, therefore,

4g 4gggp (f 1+n)
4g4 —(1 n) 4p—o' 4—p'—+ =0,

3

and has the solution,

eN V(goo
po—

(1—n)ogpg a
pgg

——0, (20)
21t'C 2 2f

dip ((1 n)4ppp— a q
' cgggp'(f' —1+n) &

+ngpppi p 0. (21)—— (22)
dt 2 2fg) f'

Since in these equations coo and T are con-
stants, it is readily possible te integrate them
exactly. The results are as follows where the C8
and Bg are integration constants and where co1

and a» are the positive roots of the equation.

apipg(EgT +n)
+ =0

(E'T'+1) &

where a=cNVp/2gragmp.

pp = Ci cos (ppit+Bi) +Co cos (gggt+Bg),

Quantity

(1—n)id 4'
$.7X ]0~6 2.2X$(j~6

The numerical order of magnitude of the
quantities involved in the above equation may
be readily estimated for the two limiting cases
f= 2; that is, the time of injection, and f= 200,
the time when the electron will have acquired
approximately 100 Mev. Let a=100 cm and
n = zg. (n determines the fall off law of the static
magnetic field. ) Let the radiofrequency potential
and the number of gaps X be such that VoX
=3000 volts = IO e.s.u.

tSgCA
go= Ci cos (4git+Bi)

c'(1 —n)
5.3 X y0»

mp(1 —n)+- Cp cos (4pgt+Bg),
(1+E'T') &

4ggpo'( f' —1+n)
2 5X I03o 3.8X ~0~8
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A study of these figures shows that oui and au~

may be expressed as,

cg, = (1 —n)'44„ (23)

with an accuracy equal to one part in a thousand
when f= 2 and far better for f=200

The description of the electron motion in the
constant magnetic held may now be completed.

1. The average mass of the electron is fm4.
2. The principal frequency is that associated

with the uniform increase of the azimuthal angle
8. It is

c (f' 1)l—

the amplitudes C~, C2, and C3 will be slowly
varying functions of the time. The frequencies
4do, ~i, ~g, and &u4 are functions of f, and hence
mill depend upon the time. These changes will

be brought about by the fact that Eqs. (14)—(17)
diEer from (1S)-(21).The difFerences are of two
sorts, (a) the coefficients of the dependent vari-
ables and their derivatives are functions of the
time in the first group of equations while they
are constants in the second group. (b) Equation
(14) has the extra term

K't
pi1+%'t'

Eq. (16) the extra term

3. The electron oscillates in the z direction
with a constant amplitude (determined by the
initial conditions) and with a circular frequency
n ~0. Evidently this motion is stable only if n &0.

4. The radial distance r is equal to a constant
plus the sum of two harmonic terms. The first
of these has a frequency 404 ——(1—n)*'cdo which is
independent of the accelerating electric field.
It will be spoken of as the radial frequency.
Clearly this motion wi11 be stable provided n & i.

5. The second harmonic term has a frequency

(1—n) & f&

This will be called the frequency of the phase
oscillation (phase of 8 relative to the radio-
frequency field). It is proportional to the square
root of the accelerating potential and, for large
energies, inversely to the square root of the
electron energy. By substituting the numerical
constants a=100 cm, n=~, and VOX= j.0 e.s.u.
one finds that &p2/4po varies from 1/30 to 1/330
as f increases from 2 to 200.

6. The amplitudes of oscillation of r, 8, and m
are interrelated for both of the harmonic oscilla-
tions ~~ and ~2 but otherwise are constant and
are determined by the initial conditions.

The nature of the solution for the case where
the magnetic field increases slowly may be in-
ferred from the solutions just obtained for the
frozen field problem. It is to be expected that

t(1+K't')

and Eq. (17) the term

It is to be expected that the influence of these
extra terms will be small and will contribute to
the slow time variation of the amplitudes and
frequencies. It will be convenient to divide the
various terms of Eq. (14) through (17) into
principal terms and extra terms, the latter being
those which have just been defined.

It is now assumed that the solution of Eqs.
(14)—(17) may be written in the following form:

p=Di cos
i

i ipidt+B

+Dmcos
(

~gtt+Bs ~,
EJ

p=D, cos
i

' ~idt+Bi i

LJ

+R4 sin
I

&did~+Bi

+D4 cos
I

l~ cdgf+BR

+84 sin
)

~ idgft+Bm (,
(
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p = Dg sm
I

&ogdt+Bg I]
l(pF, cos

~
~&dt+B, )

EJ )

+D( sin
~

cumdt+B2
~

I, J

+F6 cos
( amdt+BI I~
E~ )

&=Dpcos
~

' ~(dt+Bs ~.i

It is understood that the above expressions
constitute a solution of the equations of motion
subject to the following conditions.

1. B~, B2, and B3 are integration constants.
2. Dj) D2, D3, D4) Dg) D6) Q,nd D( a1e slowly

vaIylng funct1ons of the time. Thus %hen the/
occur in the principal terms of the differential
equations, D; and D; are to be retained but
dD(/dt is to be neglected. In the case of the
extra terms (whose inhuence is assumed to be
small), D; will be retained, but D; and dD;/dt
are discarded.

3. E3, E4, E5, and 86 are small, slowly varying,
functions of the time. In the principal terms E,
is retained but E; and dE;/dt are not. In the

extra terms, E;, as well as its derivatives, mill

be neglected.
4. ~1 and co~ are assumed to have the form

given by Eqs. (23) and (24) rather than by the
more exact relation (22). This means that in
any of the equations, a term involving n is to be
neglected with respect to a term involving +p'.
This last assumption is merely a matter of con-
venience. It would be quite possible to carry
through the work using the exact relation (22),
but the anticipated changes from this procedure
would amount to only one part in a thousand
even for f=2.

The above conditions governing the solution
of the equations of motion may appear to limit
the validity of the results. Actually this is not
the case. The basic ideas behind them are. very
clear and are, (a) an exact solution for the
problem of a constant magnetic field has been
found, and (b) in the actual problem the ma.g-
netic field changes very slowly indeed compared
with the motion of the electron. Consequently,
the solution for the actual problem cannot differ
greatly from the constant field case and must
represent a slow unfolding of that motion.

The complete solution for r, 8, s, and ns through
the zeroth and first order of approximation will
now be given. It will prove convenient to express
the frequencies in terms of f, the ratio of the
average electron mass to its rest mass.

tX =
tt1 pC

aeHpQ
f=(1+X't2)&, X= eXUp c(f' 1)&-

GOp = M1= (1 n))MO,
af

a'*(f' —1+n) l
602 = CO3 = S-COP)

(1 n)'f'—
A g A 2 A 3 Bg B2 B3 are integration constants.

-(f' —1+n) (f' —1)'.
cos

(
cogft+Bm ),

( I'

2m D(a'Ho —1.)
8 =

J coodt+
Up&c

sin
~

t co~dt+B~ (
a(1 —n) &(f' —1)&

2c(1 —n)'(f' —1)

c(1 —n)& f' —1+n &

cos
I i

~idt+B ) a2~$ f(
X(1—n) &f'*(f' —1)& 3(1—n)

X sin
] comdt+B2 [+ (

—1
( cos) I co(dt+B2 ))) 4c(&(f' 1+n) ) ( —f'
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A3
cos

~

pppttt+8p I,
(f' —1)l

m~0, Ai
m= fmp+

c'(1 —n) (f-' —1)'.
aK(f"+1)-(

cos
(

piidt+ai I+ s'" I) c(1—n) &f(f —1) EJ )

mp(1 n—)A p (f' —1)-"

+
a (f' —1+n)f

a' Kcs-:(f"+n-1)—&(f-'+1)
cos

I
sppdt+&p I+»n

I

i pppdt+~'
I

c"-(1—n) &f&(f' —1)s i

P K-"sin'- Qt)r
f= (1+K't') & by f=

i
1+

n& )

(2) Replace the constant phase angle of the
equilibrium orbit,

2xQ 2xQ
(a'IIp —L), by (a'H& —L,) cos Qt.

Vo¹ Vp¹
(3) Wherever K occurs explicitly in the expres-

sions for 8 and m, replace it by X cos Qt.

(This is not to be construed as any change
in the definition of K itself, however. )

The solution just given is very satisfactory.
It shows that the orbits are stable since the
amplitude of the oscillations of s and of r and 8

for the spi vibration decrease as 1/fl for large
values of f The a. mplitude of r and e for the ppp

motion (phase oscillation) decreases for large f
as 1/f', The phase differences between the mo-

tions (represented earlier by the quantities Es,
~4, &s, and &s) also decrease as f increases. The
amplitude of the oscillations in the electron mass
for the vibration pip will increase as f' This do. es
nor represent any instability in the electron
orbits, however, and merely gives rise to a slight

spread in the final electron energies.
The expressions for r, 8, s, and m have been

derived for the case of a uniformly increasing

magnetic field. The whole point of the derivation,
however, was that the magnetic field changes so

slowly that the motion may be represented by
slow changes in the constant magnetic field

orbits. The particular manner in which the
magnetic held changes is immaterial provided
the rate of change is small enough. The expres-
sions for r, 8, s, m, coo, ~i, ~2, and co; given above

may be readily modified for a sin usoidally

changing magnetic field by making the following

changes only.
(1) Re lace

The physical meaning of the constants K and
0. may be visualized in a number of ways. If the
final mass attained by the electron at the end
of the magnetic quarter cycle is m~, then
K =Q[(m*/mp)' —f j&. A second method of inter-

preting X consists in calculating the increase in

the average electron energy per revolution
divided by its rest mass. It ma~ be readily
shown that this quantity,

(
2x dB

is equal to
euoEo dt A„

2'
E cos Qt.

jVo t5 pC

This quantity is, however, equal to

2pra'- 2 pr(f
' 1)a'-—

c2 %g 2

f ppp (~~)max

2pr(f' —1) Fp

If NUo=3000 volts, then

(AB) .„3
~o

ss 3f'X10 s

and
spp' pr(f' —1)

It is therefore clear that the approximation
which has been used, namely, one in which a

The magnetic field has been assumed to increase

very slowly and hence the numerical values
chosen for any actual case must be such that
K«c/(2sra cos Qt). The constant a is related to
the radiofrequency potential. If the electron
should make one revolution in such a manner as
to pick up the maximum amount of energy from

the radiofrequency field, the phase angle would

necessarily be 90 degrees. The energy it would

obtain, divided by the rest energy, wou1d be

(AZ),„„„eXVp



TABI.E I. Numerical example.

1.57X10 p

2.56X10 '
4.44X10 '
9.00X10 ~

1.81X 10-'
5.60X10 4

2,01X10-3
4.16X 10-3

No. of
turns

0
425

1,278
3,410
7,660

16,230
42,500

198,000

41.4
45.1
46.8
47.5
47.7
47.8
47.8
47.8

2
3
5

10
20
40

100
298

Equi-
librium
phase

28.3'
28.3'
28.3'
28.3'
28.2'
28.0'
26.6'

Q.Q'

I orr
amplitude

due to
cue or act

1.0 cm
0.78
0.59
0.42
0.29
0.21
0.13
0.08

I amp.
due to

1.32 cm
0.88
0.57
0.33
0.20
0.12
0.06
0.03

ft amp.
due to

20'
18.4'
16.4'
]3.8'
11.5'
9.8'
7.8'
59'

ts amp.
due to

lds

0.010 mp
0.012 mp
0.014 mp
0.016 mp
0.020 mp
0.023 mp
0.029 mp
0.039 mp

1/30
1/39
1/51
1/73
1/103
1/146
1/230
1/400

may be neglected in comparison to coo', will be
very good except in the region where f is close
to unity. Even for f= 1.05, corresponding to an
electron energy of 25 kev, a/duo'=1. 02X10 '

It may be of interest to construct a numerical
example which will further bring out the order
of magnitude of the quantities involved. Ke
shall choose a sinusoidally varying magnetic field
with an 0 corresponding to 60 cycles/sec. Let
a=100 cm, HO=5000 gauss, VOX=3000 volts,
n=-'„and let the injection voltage correspond
to ii Mev or f= 2 The de.rived constants become,
X=1.105X10', 0.=8.43X10i3. Let the integra-
tion constants be chosen so that the initial
amplitude of the z oscillation is 1 cm, the initial
amplitude of the radial motion (that is, the ~i
motion) is 1 cm while the initial amplitude of
the phase oscillation is 20 degrees. These condi-
tions mean that

x a'0&H- 8 -'
Ay=As ——3l and A. =—

9 c 3.5

Let Bi=82=83=0.
The quantity, I., depends upon the fiux of the

magnetic field inside the equilibrium orbit, r =c,
and will be a function of the magnet design. For
this numerical example we will assume that the
cross section of the iron has the form

where the return magnetic circuit is inside the
electron orbits. One may estimate that the return
Aux in the iron has twice the value of the Aux

in the air gap at the pole faces and that, more-
over, the equilibrium orbit lies midway in the

air gap. If the radial extent of the pole pieces is
100 em&7 cm the problem is determined and
one finds that I = —10'.

In Table I the first column gives the time, be-

ginning with the injection time t. =1.57X10 '
second and extending to the end of a quarter-
cycle of the magnetic field, that is, t=1/240.
The second column lists the number of turns the
electron has made since injection. The third
column is the radiofrequency in megacycles,
while the fourth gives the ratio of the average
mass of the electron to its rest mass. The fifth
column shows the phase of the equilibrium orbit,
namely

expressed in degrees.
The sixth column gives an amplitude in centi-

meters which is that, either of the z oscillation, or;
of that r oscillation which is due to the radial
motion (that is, to cubi). The seventh, eighth, and
ninth columns list the amplitudes of r, 8, and m

which arise from the phase oscillation aug. The
last column gives the ratio of the phase oscillation
frequency to the orbital frequency coo. The ratio
of the frequency of the z oscillation as well as
that of the radial vibration to the orbital fre-

quency is, of course, constant and equal to
n&=(1 )&=n1/—V2 for the case n=q

The total displacement of the electron in the
radial direction will be equal to the sum of the
two radial amplitudes and for the numerical
example just given has a maximum value of
2.32 cm at injection, which decreases to 0.11 cm
at the conclusion of the magnetic quarter cycle.
The position of the electron relative to the radio-



frequency, that is, the phase, oscillates in the
above example between 48.3' and 8.3' at the
time of injection, decreasing to an oscillation
between +5.9' and —5.9' at the conclusion.
This extreme value of the phase angle, namely
48.3', seems rather large since it has been as-
sumed that the sine of the phase angle can be
replaced by the angle itself in the equations of
motion. It is not believed that this constitutes
any essential limitation on the validity of the
predicted motion however. The reasons for this
belief mill appear in the following general discus-
sion of the accuracy of the solution which has
been obtained.

1. The solution of the equations of motion
which has been given is correct through zeroth
and first order of approximation but neglects
second and higher terms. (The fact that it be-
comes invalid for very small values of t will be
discussed later. )

2. Throughout the discussion the decrease in
the amplitudes of the r, e, and s vibrations has
been spoken of as a damping. This is not a
proper description since the energy of these
vibrations is not disappearing although the
amplitudes do grow smaller. For example, if the
motion is allowed to continue through the second
quarter cycle of the magnetic field, the motion
is strictly reversible and the amplitudes of the
vibrations will increase as the energy of the
electrons decreases. The situation may be visual-
ized in a very direct fashion for the case of the s
vibration. Here, the mass of the electron is
growing with time but also the restoring force
grows at almost precisely the same rate so that,
for large values of f, the frequency ~3 is inde-
pendent of f This mo. tion is at right angles to
the other (r and e) motions and its energy is
conserved. Thus at the points where i=0, the
potential energy = ~Ez"-=constan t. Since the
force constant X is proportional to f, the ampli-
tude of the motion will be inversely proportional
to f'*. This is precisely the result obtained earlier
when f is large. It shows that the decrease in

the amplitude cannot be attributed to a damping
process but rather is merely a consequence of
the simultaneous increase in the mass and in the
restoring force constant. The situation for the
other vibrations, ar& and co2, is more complicated
but the mechanism by which the amplitudes are

decreased appears to be of the same general
nature.

3. The phase angle (8—J''~OCt) has been as-
sumed to be sufficiently small so that the sine of
the phase may be replaced by the phase itself.
This may not always be the case as has been
illustrated in the numerical example. A study of
the motion for the frozen magnetic field indicates
that the phase oscillation (that is, the ~2 oscilla-
tion) for large amplitudes bears the same rela-
tionship to the motion for small amplitudes thai
ordinary pendulum motion for large amplitudes
bears to simple harmonic motion. Thus it is
expected that, in the case of the slowly growing
magnetic field, the period of the oscillation will

be larger for those electrons with large phase
amplitudes but that this circumstance should
have no essential infIuence upon the stability of
the orbits. The stability depends upon the growth
of the electron mass as has been explained above.

4. There do exist some mechanisms affecting;
the orbits which have not been included in the
analysis. Among these are, (a) the scattering of
electrons by gas molecules, (b) space charge,
and (c) radiation damping. The 6rst two of
these effects wiII reduce the final yield of high

energy electrons. The third, radiation damping,
will tend to increase the equilibrium phase angle
during the latter portion of the magnetic quarter
cycle. This would only become important if it
became so large that the phase angle approached
90 degrees. The magnitude of the equilibrium
phase angle may of course be reduced by using
a higher value of the radiofrequency potential Vp.

5. The zeroth order, or equilibrium orbit, solu-

tion is valid for all values of t but the first-order
approximation breaks down when t is sufticiently
small; that is, for low values of the injection
energy. This comes about in two ways: (a) the
quadratic equation (22) which determines ~~

and co2 can no longer be well approximated by
the simpler relations (23) and (24); (b) The
so-called extra terms in the equations of motion
no longer have a small infiuence upon the motion
as compared with the principal terms. One mani-
festation of this latter effect will be that the
amplitudes B3 to E6 will not be small compared
with the amplitudes D3 to D6, when taken in

respective pairs. From both of these tests one
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may estimate that for the numerical example the
solution which has been given will be good to
one part in a thousand for an injection energy of

Mev or f=2 It. will be good to around 1

percent for an injection energy of 25 kev or

f= 1.05.
The first-order equations of motion resemble

in many respects the differential equations de-
fining Bessel functions although they are more
complex. When the Bessel equation is treated by
the methods used here, one obtains the standard
asymptotic form for the function. The argument
of the function is the angle 8 counting from an
initial time when the electron was at rest. At
f= 1.05, 8 = 136 (using the constants of the
numerical example), and for such a large value
of the argument the asymptotic expressions for
the Bessel functions are not in error by more
than 1 percent.

6. The estimates which have just been made

apply only to the zeroth- and first-order approxi-
mationsand are not an indication of the magnitude
of the second- and higher order approximations.
In general, the ratio of second- to first-order
terms is roughly equal to the ratio of first-to
zeroth-order terms. In the numerical example
the 6rst-order terms were of the order of one or
two percent of the zeroth-order quantities so it
would seem that the 6rst-order approximation is
adequate. There is an exception to the general
rule, however, in the case where there exist
commensurable relationships between the vari-
ous fundamenta1 frequencies of the system.
Secular changes may then set in, and the ampli-
tudes may slowly build up to large values. For

example, the second-order terms have been ex-
amined, and it is found that one, and only one,
divergent situation may occur. The condition for
this is that 2&as ~i =raoL2(n)& —(1—n)'j =0.
Thus a magnetic fall oR' with n=-,'must be
avoided. It is expected that still higher order
approximations will reveal other combinations
of the frequencies which would lead to unstable
orbits. However, the rate at which the amplitude
of the oscillation builds up becomes progressively
slower for the higher orders (if the initial ampli-
tudes of oscillation are about 1 cm, the number
of turns required for the catastrophe to develop
is of the order of a& ', where a is the radius of
the orbit in centimeters and p is the order of
approximation for which the frequencies inter-
act) so that eventually a commensurability be-
tween the frequencies becomes harmless. The
phenomenon of instability due to commensurable
relationships between frequencies is not confined
to the synchrotron but exists as mell in the
betatron, although there the situation is some-
what simpler since the phase oscillation co2 is
absent.

7. The synchrotron which has been considered
in this paper is one in which the radiofrequency
field is frequency modulated. It is, however,
obvious that by the time the electrons have
obtained 2 Mev or more of kinetic energy the
radiofrequency has become nearly constant.
From this point onward the equations and their
solution would apply equally well to a synchro-
tron without frequency modulation or to the
combination betatron-synchrotron type of ac-
celerator.


