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Eq. (53) assumes the form

(L, 'Ls') cosec~ 8 y(x+y cot 0)

Of these two terms, the second one is large com-
pared with the first, so that the final expression is

XV'V'N(x, y, s)dxdy. (6l)
I f t

(L 'Lp') —y'7'7'Ndxdy,
20' a

(63)

1t can be shown that the expression which re-
mains under the integral sign is changed but
little if the circular sector is expanded into a
semicircle. Thus, the expression (57) can be
further simpli6ed into

(L,'Ls') ~ xyV'V'Ndxdy
2820 ~

1
+ y'V'V'Ndxdy. (62)

28' J

where y is the direction perpendicular to R in
the plane of source and receivers.

To obtain the usual correlation coefhcient, the
expression (63) has to be divided through by (50).
It is found that the correlation coefFicient is
independent of the distance between source and
receivers and inversely proportional to the cube
of the distance between the two receiving stations
perpendicular to the line connecting the source
with the location of the receivers, 5, as indicated
in Fig. 2.
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The binding energies of the nuclei H' and He4 are calculated by the method of equivalent
two-body, using the potential suggested by Wang. The range at which the potential between
two nucleons is cut oR' is the same as that for the case of the deuteron, and the same range for
the equivalent two-body is deduced accordingly. The binding energies thus calculated are
7.3 Mev and 15.1 Mev, respectively.

I. METHOD OF CALCULATION

HE nuclear potential proposed by %ang'
was previously applied by the author to

the calculation of the binding energy of the
deuteron and of the neutron-proton scattering. '
In the present work the binding energies of the
nuclei H' and He4 are computed by using the
same potential in the method of the equivalent
two-body.

Let C4(r) be the potential between any two
nucleons. If the Gaussian wave function
N exp[ —s'u(r~P+r~32+r~P) j is used, the varia-

' K. C. Wang and H. L. Tsao, Phys. Rev. 66, 155 I,'1944);
Nature 155, April 28 (1945}.' Mu-Hsien %'ang, Phys. Rev. M, 103 (1944).

tion energy for H' is'

9vk' 4
E(H') = —3C— exp (—x')

2M m& ~0
Xy[x/(3v/2) &jx'dx, (l)

x = (3v/2) &r~2 (or r~~, r23),

and rl~ is the distance between particles 1 and 2.
For the nucleus He', taking N exp[ ——',v(r~2'+r~P
+r~4'+r2P+r24'+r~P) j as the wave function, we
have

9vk' 4 r"
E(He') = —6C—'

exp (—x')
M

Xy[x/(2~) &)x'dx, (2)
' William Rarita and R. D. Present, Phys. Rev. 51, 788

(1937).



BINDINQ ENERGIES OF O' AND HE'
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5.00 X10~—1
2c
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2s
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x = (2r) trge (or r)e, r, 4, . ~ ).
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1.20
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1.17

coth (388e~)

1.16
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and
ro ——a/3& for He4.

where V is the potential. The condition for the
smooth joint of the wave function at rp is'

~
V(re) ~/2e —1=coth(Pre),

where P = (3A/It, ') &

(8)

II. THE BINDING ENERGY OF H'

If the zero cut-o6 method is employed, the po-
tential for H' has therefore the form (9a, b) or
t.he form (10a, b), and the potential for He' has
the form (11a, b) or the form (12a, b).

The binding energy, e, of H' and of He' is
then the proper value of the wave equation

3Ehf h'(e+—V)P =0,

Now, let DC (r) be the potential for the equiva-
lent two-body problem. Using the wave function
X expL —pr'/2j, we get for the variation energy
for the equivalent two-body:

(a) For the potential

DC (r) =0 for r & re a/2 t, —— (9a)

3pk

2M

oo

D ll e—xp (——x')

XC (x/pt)x'dx

x= p&r.

DC(r) = —3A exp(E/2tr) for r&ro, (9b)

where' A =4.78)&10 '5, %=3.84&(10 " cm,
(3) a=4.21X10 "cm, Eq. (8) becomes:

5.00X10 '/2e —1 =coth(370et)

In order that Z(H'), as given by (1), may equal
E.~, we should have

D=3C, C'(r) =4 (2'r) (4)p =3K,

Similarly, to have E(He') =E„,we must set
DC (r) =0 for r &ro —— /2', (10a)

C (r) =4 (3'r). (5) and3p/2 =9r,

The numerical results are given in Table I.
The estimated binding energy of H' is therefore
11.5X10 'erg, or 7.23 Mev.

(b) For the potential

In our case, the potential is

Cp(r) = Ve= const. for r &a,

8
Cy(r) = Rex' or —ex' for r &a-,—

r
where

r12 (OI rle r14 '')
and where a has the same meaning as in the
deuteron; its value was found in reference 2. To
determine the cut-o6 distance, ro, to be used in
the equivalent two-body method, we compare
Eq. (3) in turn with Eqs. (1) and (2), and find
that

re=a/2& for H',

38
DC(r) = — exp (X/2tr) for r)re, (10b)

2&r

where' a=4.42X10 " cm, B=1.84X10 '5, we
have

5.00X10 '/2e —1=coth(388et).

The results are given in Table II. The estimated
binding energy of H' is therefore 11.6X10 6 erg,
or 7.30 Mev. These results are in good agree-
ment with the experimental value 8.3 Mev.

IH. THE BINDING ENERGY OF He4

(a) For the potential

DC(r) =0 for r&ro a/3t, ——
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TABLE IV

e, erg

23.6X10 ~

23.8 X 10-~
24.0X 10-6

1.00X10 4

-1
2e

1.12
1.11
1.08

coth (302e~)

1.12
1.11
1.10

e, erg

23.8X10 6

24.0X»-~
24.2X10 6

1 00)(10 4

2e

1.11
1.08
1.07

coth (317'~)

1.10
1.09
1.09

DC (r) = —6A exp(X/3&r) for r )ro, (11b)

where the constants have the same values as in
Section II (a), Eq. (8) turns out to be

1.00)& 10 '/2e —1 = coth(302c&),

and yields Table III. According to this table, the
binding energy of He' is 23.8)(10 ' erg, or 15.0
Mev.

(b) For the potentiaI

DC(r) =0 for r&rp a!3&, ——(12a)

68
DC (r) = — exp (X/3&r) for r) ro, (12b)

jar

where the constants have the same values as
in Section II (b), Eq. (8) becomes

1.00&&10 '/2e —1=coth(317&&),

and yields Table Iv. According to this table, the
binding energy of He' is 24.0&10 ' erg, or 15.1
Mev.

The values of the binding energy of He' com-
puted above are about 45 percent less than the
experimental value 27.8 Mev. The results for
He4 are therefore not as good as those for H'.
This may mean that the method of the equiva-
lent two-body tends to be a poor approximation
as the number of particles increases.

In conclusion, the author wishes to express his
thanks to Dr. K. C. Wang for helpful discussions.
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Chree's method of superposed epochs was employed in

the statistical investigation of variations in the frequency
of occurrence of small cosmic-ray bursts which produced
2.9 to 3.6 millions of pairs of ions in a shielded spherical
ionization chamber of 13.3 liters effective volume contain-

ing air at 160 atmospheres. The data employed were

obtained by Long and Whaley in the same investigation
(during a little more than 18 months in 1938 and 1939)
which supplied the data for the author's work on recur-

rences in variations of cosmic-ray intensity and their
relation to geomagnetic and heliophysical activities. The

analysis was carried out only for the range of day numbers
from —45 to +45. Irregular secondary pulses were found
both preceding and subsequent to both positive and
negative primary pulses. Both subsequent and preceding
difference curves and the combination difference curve
displayed secondary pulses with peaks at about 27 days
preceding and subsequent to the primary pulses. The
secondary pulses amounted to about 3 or 4 percent of
the average frequency of approximately 37 small bursts
per day, and about 10 percent of the larger variations
constituting the primary pulses.

HE data regarding bursts which are dis-

cussed in this paper were observed by
Long' and Whaley2 3 in the same investigation

~ Presented at the meeting of the American Physical
Society at St. Louis, November 30-December 1, 1945;
Phys. Rev. 69, 46 (1946).' V. A. Long, Ph.D. Thesis„University of Colorado,
August 14, 1940.

during ejghteen months in 1938 and 1939, which
yiekied data used heretofore by the writer. 4 5

~ R. M. Whaley, M.A. Thesis, University of Colorado,
June 3, 1940.

3V. A. Long and R. M. Whaley, Phys. Rev. 59, 470
(1941).

4 J. W. Broxon, Phys. Rev. 59, 773 (1941}.
~ J.W. Broxon, Phys. Rev. 62, 508 (1942).


