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Propagation of Radiation in a Me¹i~tri with Random I'n&omogeneities*
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By means of the methods of geometrical optics, approximate formulae are being derived
which correlate the statistical properties of the inhomogeneities of the transmitting medium
with the Ructuations to be expected in the signal level of radiative energy. Through a further
simpli6cation of the formulae obtained, it is possible to predict the dependence of signal
f1uctuation on range without detailed knowledge of the statistical parameters of the "micro-
structure" of the transmitting medium.

INTRODUCTION

HEN radiative energy is propagated over
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~
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~

considerable distances, the transmitting
medium is rarely the homogeneous expanse it is
assumed to be in elementary theory. The medium
is bounded, and it may have an internal struc-
ture, such as a density gradient. In addition,
the most important non-solid media of propaga-
tion, the atmosphere and the ocean, are known
to possess a rapidly changeable random structure
of comparatively small dimensions, which is
caused by local heating, convective currents,
and similar factors. In this paper, the modifica-
tion of the radiative field which is caused by
random structure will be derived for the case
of small changes and on the assumption of a
wave-length so short that the formulae of ray
optics are valid. The results obtained may find

application in the propagation of either electro-
magnetic or sound waves of high frequencies in
the atmosphere or in a similarly extended
medium.

THE PROBLEM

We shall restrict ourselves at once to the
application of ray optical methods. Treatment of
the same problem by means of wave optics is
planned for the future. The basic equations of
ray optics in the stationary case may. be written
in the form

(vs) ' =n', .

~ This work represents in part results of research carried
out by the Sonar Analysis Group under contracts between
Columbia University and the OfFice of Scienti6c Research
and Development and between Woods Hole Oceanographic
Institution and the Bureau of Ships, Navy Department.

In these equations, the function S(r) is the
optical path length counted from the radiative
source to the point r along the connecting ray
path. Each constant value of 5&0 corresponds
to a wave front in the ray optical approximation.
n(r) is the local index of refraction, and I(r) is
the intensity of the radiative field, measured in
units of energy passing per unit time through a
unit area cross section perpendicular to the
rays. In electromagnetic theory, I is the averaged
magnitude of Poynting's vector, while in acous-
tics, I is the mean square pressure divided by pc.
The first of the Eqs. (1) expresses Huygens'
principle that the distance between consecutive
wave fronts is inversely proportional to the local
index of refraction; while the second equation is
the law of conservation of energy. Absorption
and scattering are disregarded. For the following
discussion, it is convenient to introduce the
level L„d fi edneas the logarithm (on some base)
of I/n. ' We shall measure the level in nepers,
that is on the base e. In terms of level, Eqs. (I)
may be rewritten in the form

(vs)' =e'
VS.VI.+V25=0.

It will now be assumed that n is very nearly
equal to unity. We shall set

n = 1+An',

with X a constant parameter,

X«1.
' The quantity I/n has no direct physical significance and

is chosen merely for convenience. However, because n very
nearly equals unity, according to the assumptions made,
I/n does not differ signi6cantly from I. In most practical
cases, n divers from unity by an amount less than 10 ',
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An approximate solution of Eqs. (1) will be
obtained in terms of definite integrals.

APPROXIMATE SOLUTION OF THE
BASIC EQUATIONS

If n' vanishes, the solution of Eq. (1) for a
point source is

Fro. i. Variation of the line integral.

So=r,
Lg b(fl) =—2 ln r,) (5) we find that the variation of this integral may

be written as
where r is the distance from the source and b is
a constant or, in the case of a directional source,
a function of the angle Q. That the pair Sp, L,o, is
a solution can be verified directly by substi-
tuting the expressions (5) into Eqs. (2) with n
equal to unity. We shall call Sp, Lo the zero
approximation.

The first approximation is obtained if Eq. (2)
is expanded into a power series with respect to
the parameter X. Denoting all first-order variables
by primes, we obtain the following conditions
for the first approximation:

~~( ) = &LA( )dp]

r r

I Rf (p)dp+, A (p) hdp. (9)J
0 0

The local variation bA(p) is, according to the
figure,

BA(p) =-Vg(p) br
P

S'(r) = "n'(p)dp (7)

r() V'5'=n',
r, VL'= —V25' —VL, .VS',

where ro is the unit vector pointing directly
away from the source.

Fortunately, the two Eqs. (6) need not be
solved simultaneously. They can be solved with
the further condition that the variables 5' and L'
are to vanish at the location of the source.

The solution of the first Eq. (6) is provided
by the integral

while the variation of d p equals

ro br
Sdp = dp.

r

Ke find, therefore,

hJ(r) =—br ) Lpv', A(p)+roA(p)]dp
r

0

r

Pbr ~ V—' LpA(p)]dp.

The gradient of S', Eq. (7), is thus

(12)

The symbol *J' refers to integration along a
0

straight line from the location of the source to
the point characterized by the radius vector r.
p is the variable of integration. For what follows,
we shall require the gradient and the Laplacian
of 5'. Figure 1 shows how the path of integration
must be transformed if a differentiation of an
integral of the type (7) is to be carried out.
Considering the unspecified integral

I

J(r) = )tA(p)dp,

j
V'S'(r) =—

)
V', (pn')dp.

r
(13)

fil
7'S'(r) = V~

—
I
. V, (pn')dp(r) J

r1't
+ J' '7~ &~I 'tpn)]dp (14)r'

0

iteration of this process of differentiation leads
to the result
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This expression can be further simplified with
the help of the identity

r

&,Q(p)d p =-Q(r) -Q(0)
0

'A?e obtain, after a straightforward computation,

2
~

1'"
V 5'(r) = n'—(r)+ — p Vp n'(p)dp. (16)

r r2

M?e shall now write out the explicit expressions
occurring on the right-hand side of the second
Eq. (6). We have for VI 0 the expression

2
VI.O

=Vb ——ro,

with the further condition

ro Vb=o.

The second Eq. (6) therefore assumes the form

r

r() VLr = —,p Vp Qdp
J

0

——V'b pV, n'dp= B(r). (19)—
0

r

I &(p)dpJ

~ t' (1 1)
(

———
(
p'Vp'n'd p,

'

~, (p «)

(20)

The two terms on the right-hand side of Eq. (19)
can be interpreted quite simply. The first term
corresponds to the "lens action" of local in-

homogeneities, while the second term, which

depends on the directivity of the source, repre-
sents the change in local intensity caused by the
lateral displacement of the "beam. " In what
follows we shall consider a non-directional source
and drop the second term.

The solution of Fq. (19) is the integral

Equations (7) and (20) are solutions of the
differential Eq. (6). If conditions at the source
are disregarded, these solutions are not unique;
it is possible to write down the general solution
of Eq. (6). The difference between two solutions
of the first Eq. (6) is a function of the angle only.
The most general solution is, therefore,

&,' =&o'+4(Q),
ro- V'p =0.

So' is the particular solution (7), and P(Q) is an
arbitrary function of the solid angle 0. The
addition p(Q) produces a discontinuous addition
to the variable S at the source, and is, thus,
inconsistent with the assumption that for vanish-
ing r, S' is to vanish. We find that the expressions
(7) and (20) represent the only solution which
satisfies the conditions at the source.

As for the higher approximations, the ex-
pansion described here leads, at each stage, to
equations for S&"& and L &"&, which have the same

type left-hand sides as Eq. (6). The right-hand
sides, however, get progressively more involved.
At any rate, each successive approximation has
a unique solution, which can be expressed in
the form of explicit line integrals. These higher
approximations will not be considered in the
remaining sections of this paper.

THE SELF-CORRELATION FUNCTION OF THE
INDEX OF REFRACTION

(n'(x, y, s)) =0. (22)

In the following sections, we shall derive the
mean and the standard deviation of S, the optical
path length from the source, and of L, the level

at a fixed point r. First, however, the micro-
structure must be characterized by certain
statistical properties. If' we consider a configura-
tion of microstructure patterns, or a time series
of distributions of e' in the same medium, then
we shall assume that there is a possibility of

averaging all quantities which depend on the
spatial distribution of n' and its derivatives.
The averaged quantities shall be enclosed in

angular brackets, ( ). Obviously, it is reasonable
to define the standard wave velocity so that

by a simple transformation of the double in-
tegrals.

The significance of this normalization is that the
deviation. of e' from unity is equally likely to be
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positive or negative. The second assumption is equality
that the spatial correlation function,

[n'(0) an'(r) ]' &~ 0 (24)

(xi yl sl)n (x2 y2 s2))

exists and is a function of the coordinate di6er-
ences only,

(n'(xi, yi, si) n'(x2, y«, s«))
=—N(xi —xm, yi —y2, si —s2)
=N(x2 —xi, y, -yi, s.-si) .

In other words, it is assumed that the statistical
characteristics of the microstructure, while not
necessarily isotropic, are homogeneous.

The function X satisfies a number of in-

equalities. A few shall be listed here. From the
inequality

N(S) = N(0)(I —«), (31)

where « is again a sma, ll quantity, then (30) goes
over into

—«N(r) —[«(2 —«) ]'LN'(0) —N'(r)]'
& N(r aS) —N(r) & —«N(r) ' (32)
+[«(2+«)]&[¹(0)—¹(r)].

[N(ri) N(r2) —R] & N(ri~r2)
N(0)

1
[N(r, )N(r, ) +R], (30)

N(0)

R =—{[¹(0)—¹(ri)][N'(0) —¹(rm)]I &.

It follows that N will be continuous every-
where if it is continuous at the point 0. For if
r2 is a very small coordinate difference 5, and if

ur, for all coordinate di8erences r,

Both the lower and the upper bound converge

0 (([n~(0)~n~(r)]«) 2[N(0) ~N(r)] (25) toward zero with « It fol.lows further from the
inequality (32) that the rate of change of N,
defined as

N(o) &o,
iN(r) i

&N(0). (26)

1
lim [N(r+S) —N(r)] (33)

n.'(0), n '(ri), n '(r2)
0= np'(0), ne'(ri), ne'(rm),

n, '(0), n, '(ri), n, '(rm)

(27)

averaged three times, over n, P, and y. This
triple mean square is

(D') = 6 I ¹(0)+2N(ri) N(r«) N(riar2)
N(0) [¹(ri)+¹(r2)+¹(rl~r2)]I ~

The resulting inequality takes the form

(28)

An inequality between the X-values belonging
to two arguments ri and r& is obtained by means
of another positive definite expression. Introduce
a parameter u (or P or y) which serves to number
the cases which constitute the "population" for
purposes of averaging and then consider the
square of the determinant

is everywhere bounded if the following limit
exists

I N(S) &

11m 1— (34)
N(o)

for fixed direction of S. If that limit vanishes,
N(r) is constant everywhere and equal to N(0).

Another set of inequalities can be obtained by
considering positive definite expressions of the
type

r r

Q= ' 4(p)n'(p)dp 4'(~)n'(~)d~~& o (35)
0 0

where the asterisk indicates transition to the
conjugate complex. If we choose in particular for
the arbitrary function p(p) the function e'"&, then
we obtain the following

N'(0)+2N(ri) N(r«)N(ri&r2)
—N(O) [N'(ri) + N'(r, ) ~ (29)

+¹(ri+rm)]~&0.

This inequality can be transformed if we solve
it with respect to N(rior«). We find the in-

Q= e'"o iN(p —o)dpdo.

0

=2 I(r —p) cos kp N(p)dp&0
~J

(36)
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or

p't
(

1 ——
i

cos kp N(p)dp&~0.
r)

THE MEAN SQUARE DEVIATION OF 8'

It may be assumed that in most practical
cases the function N(r) decreases rapidly for

(3&) large values of the argument. As a result, ex-
pression (42) may be replaced, in fair approxi-
mation, by

From Eq. ('I), we shall now compute an ex-
pression for the mean square deviation of the
optical path length from the geometrical path
length. We have

o s' =((Sg+liS'+X'5")') —(So+liS'+)I,'5")'
=12[{5")—(5')']+higher terms. (38)

In this expression, (5'), the mean deviation of
the optical from the geometrical path length,
vanishes,

t

op' 2r j N(p)dp. (44)

THE SIGNAL LEVEL FLUCTUATION

Without any knowledge of the details of the
function N, it can be predicted that, for suffi-

ciently large distances, the r.m. s. fluctuation of
the optical path length will increase with the
square root of the distance.

(5') = (n'(p))dp=o.

For (5") we find

From Eqs. (19) and (20), it is possible to

(39) obtain an expression for signal level fluctuation.
By an argument analogous to that leading to
the mean square deviation of the optical path
length, we find first that

p, cr 0

(40)

N(r)d»d(r

This double integral can be transformed as
follows:

2 (I &2)

This expression is, in turn, equal to

1) (1
~ J L, p r) &o r)
p, a'—0

Xp'0'(V 'n'(p) V 'n'(0))d«p.

(43)

(46)

rr 0 r —o'

0 r

N(r)d«»+ t N(»)d«»,
J

The integrand can be simplified, first of all, by
the introduction of the iterated Laplacean of
N(r), in accordance with the identity

0e 0

and finally

(V'n'(p) V' '(n~)) V'V'N=—(p 0)—
Equation (46) then assumes the form

(4&)

(5")= 2 (» p) N(p)d p—
0

(rs= 2 j (r —p)N(p)dp (43)

We find, thus, that the mean optical path length
equals the actual distance r, while the r.m.s.
deviation is given in this approximation by the
expression

' »(1 1) (1 11(I")=
gp r) (0 r&

p, u=0

Xp'0"-V'V'N(p 0)d«p. (48)—

It is now possible to convert the double integral
into a single integral by means of transforma-
tions similar to those leading to Eq. (42) above.
We obtain the expression

X(r p)3V'V'N(p)dp. (49)—

The integral is to be extended over the straight (I.'2) = — (»2+3pr+p&)
line connecting the source with the point at
which the observer is located.
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FIG. 2. Two receiving stations.

FrG, 3. Area of integration in the r-plane.

If N(p) is small for large values of the argument,
then the expression (49) can be approximated by
the much cruder approximation

(L") —r' V'V'N(p)d p.
1S

p=0

(50)

CORRELATION AT TVf0 RECEIVING STATIONS

New observations, made recently at the Labo-
ratory of the University of California, Division
of War Research, at San Diego, appear to show
that the Auctuation of supersonic sound signals
over paths in the deep ocean, well removed from
both surface and bottom, shows an increase with
increasing distance, but the rate of increase did
not agree quantitatively with Eq. (50).

FiG. 4. Coordinate transformation in the x-plane.

information on the dependence on distance for
large distances. First of all, we shall assume that
the argument N(r) is significantly different from
zero only for small values of the argument r,
let us say for

fr/ &I, (53)

and further, that I itself is small compared with
the lateral separation of the stations o. and P,
that is,

,'8(r +rp). - (54)

It will further be assumed that 8 is a small angle
and that

(55)
r +rp

(56)R=——',(r +rp).*t (1 11
L.' = —

i

———
) p'V, 'n'(p) dp,

(p r) In that case, the only portion of the integral
which contributes signihcantly is the obtuse
circular section in the r-plane indicated in Fig. 3.
In this region, the expression (52) may be re-
placed, in fair approximation, by

In the case of two stations receiving the same
signals (Fig. 2), the levels received at either
station are given by the expression (20) so that The average vector from source to receivers will

we have be called R,

The average product of I ' and Ip' is given by
the expression

'c't (1 1) (1 1~

J, ~, (p r) (o rp&

Kp'o'V'V'N(r)dodp, (52)

where the two integrals are to be extended over
two diferent paths. r is a vector which connects
the two points (o) and (p), as indicated in Fig. 2.
This double integral cannot be converted into a
single integral, because the vector r assumes
values depending on two parameters. However,
it is possible to replace the expression (52) by an
approximate expression which, like (50), gives

(L 'Lp') poV'V'N(r)dpdo. (5&)

p=x+y cot 8,
o =y cosec 8,

with the Jacobian

Bp Bg Bp 80'
=cosec 8,

Bx 8$ 8$ Bx

(59)

This integral, in turn, can be further transformed.
If we describe the area of integration by rec-
tangular coordinates, x and y, Fig. 4,

x=p —0 cos 8,
y=o sin 8,

or
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Eq. (53) assumes the form

(L, 'Ls') cosec~ 8 y(x+y cot 0)

Of these two terms, the second one is large com-
pared with the first, so that the final expression is

XV'V'N(x, y, s)dxdy. (6l)
I f t

(L 'Lp') —y'7'7'Ndxdy,
20' a

(63)

1t can be shown that the expression which re-
mains under the integral sign is changed but
little if the circular sector is expanded into a
semicircle. Thus, the expression (57) can be
further simpli6ed into

(L,'Ls') ~ xyV'V'Ndxdy
2820 ~

1
+ y'V'V'Ndxdy. (62)

28' J

where y is the direction perpendicular to R in
the plane of source and receivers.

To obtain the usual correlation coefhcient, the
expression (63) has to be divided through by (50).
It is found that the correlation coefFicient is
independent of the distance between source and
receivers and inversely proportional to the cube
of the distance between the two receiving stations
perpendicular to the line connecting the source
with the location of the receivers, 5, as indicated
in Fig. 2.
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The binding energies of the nuclei H' and He4 are calculated by the method of equivalent
two-body, using the potential suggested by Wang. The range at which the potential between
two nucleons is cut oR' is the same as that for the case of the deuteron, and the same range for
the equivalent two-body is deduced accordingly. The binding energies thus calculated are
7.3 Mev and 15.1 Mev, respectively.

I. METHOD OF CALCULATION

HE nuclear potential proposed by %ang'
was previously applied by the author to

the calculation of the binding energy of the
deuteron and of the neutron-proton scattering. '
In the present work the binding energies of the
nuclei H' and He4 are computed by using the
same potential in the method of the equivalent
two-body.

Let C4(r) be the potential between any two
nucleons. If the Gaussian wave function
N exp[ —s'u(r~P+r~32+r~P) j is used, the varia-

' K. C. Wang and H. L. Tsao, Phys. Rev. 66, 155 I,'1944);
Nature 155, April 28 (1945}.' Mu-Hsien %'ang, Phys. Rev. M, 103 (1944).

tion energy for H' is'

9vk' 4
E(H') = —3C— exp (—x')

2M m& ~0
Xy[x/(3v/2) &jx'dx, (l)

x = (3v/2) &r~2 (or r~~, r23),

and rl~ is the distance between particles 1 and 2.
For the nucleus He', taking N exp[ ——',v(r~2'+r~P
+r~4'+r2P+r24'+r~P) j as the wave function, we
have

9vk' 4 r"
E(He') = —6C—'

exp (—x')
M

Xy[x/(2~) &)x'dx, (2)
' William Rarita and R. D. Present, Phys. Rev. 51, 788

(1937).


