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The affine spin connection is characterized by expressions I',;*. These are defined by

: B . . .
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where { } are the Christoffel symbols of the metric (B1). For a free electron, i.e., in the absence
r

of an electromagnetic field, we also have

Fae*=Ta:%

(B42)

The relations (B41), (B42) suffice to determine the T, uniquely. The only non-vanishing com-

ponents are found to be

I'pt= —T2?=1%7 cos p,
(B43)
Tos'= —T'is?=1 cos p sin 6+ 37 cos .
Dirac’s equations are ) )
24653, (A 1+ ¥P) = 185X, (BS1)
N iM(Xy, — TaifX,) =18 V4, (BS2)
where Bg is the constant given by (15.15). Explicitly, these equations assume the form
sin p[i Wi , —3¥E ,—i cot p¥i+BsX,]=¥,+1 cot 6+ (i/sin O) ¥ ,, (B61)
sin p[iWE , —4¥l ,— cot p¥i+4BeX,]= — Wi ,—1 cot ¥ — (i/sin 6) ¥ ,, (B62)
sin p[1Xy,,+1Xs , 41 cot p Xa+Br¥ = — Xy s—1% cot 6X,— (i/sin )Xy, ,, (B63)
sin p[iX, , 41Xy, , 44 cot pX;+Be¥?] =Xy s+4 cot 6X;4(3/sin )X, ,. (B64)

These equations immediately reduce to Schrédinger’s form, i.e., Egs. (15.11) to (15.14), under

the 4-dimensional transformation

wr=sin p sin} 6 W+ V2 +X,+X,],
wz=sin p sin} [ —
ws=sin p sin? [ ¥+ ¥ —-X,—X,],
ws=sin p sin? [ ¥ — ¥i—X;+X,].
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N the June 1-15, 1946 number of The Physical
Review, E. F. Lype discusses thermodynamic
equilibria of higher order from the point of view
of an expansion of the thermodynamic potentials
in Taylor’'s series, and obtains results which,
when applied to transitions of the second order,
differ from the well-known results of Ehrenfest
by a factor of two. Application of the results to
the experiments of Keesom on helium and of
Clusius and Perlick on methane is held to valid-

ate the method of thermodynamic potential and
Taylor's series.

The difference between the results of Ehren-
fest and of Lype is not to be attributed to any
failure of mathematical rigor on the part of
Ehrenfest, but to two different conceptions of
the nature of the physical phenomena, which
are essentially incompatible with each other.
To bring out the difference it will be sufficient
to restrict ourselves for the present to transitions
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of the second order. The mathematics as used
by Lype demands that the equilibrium of the
second order occur at a single isolated point,
po, To, in the p-r plane. At this point the first-
order derivatives of the potentials of the two
phases are equal to each other and there is a
discontinuity in the second derivatives. The dif-
ference of thermodynamic potential of the two
phases in the neighborhood may be expanded
in the form

AG=A(p—p0)*+B(p—po)(r—710) +C(r—70)>%

By setting AG=0, the equation of two lines is
obtained on which the two phases are in equi-
librium. The point now is that everywhere ex-
cept at po, 7o the first derivatives of the differ-
ence of thermodynamic potentials no longer
vanish, that is, the first derivative becomes dis-
continuous, so that the transition reverts to a
normal first-order transition except at po, 7o.
That is, the mathematics demands a second-
order transition where two first-order transition
lines between the same two phases cross each
other. The p-r plane is divided into four quad-
rants, in one opposite pair of which the one
phase is stable and in the other the other, the
transition being everywhere, except at one point,
of the first order. This is obviously a highly ex-
ceptional state of affairs and there is no experi-
mental evidence for its existence. According to
Ehrenfest’s picture, on the other hand, there is a
single transition line, on the one side of which
the one phase is stable and on the other the other.
On this line the first derivatives are always con-
tinuous so that the transition remains of the
second order over the extent of the line. Mathe-
matically, Ehrenfest’s case may be considered a
degenerate case of the more general case in
which two intersecting first-order transition lines
have become coincident. The thermodynamic
potential surface of the one phase everywhere
lies above that of the other, the two surfaces
being tangent along the bottom of a trough.
This degenerate case involves the vanishing of a
certain discriminant, which may be written in
the form:

AC,= —1[A(dv/d7),*/A(dv/8p). ], D

a condition which was obtained by Ehrenfest.
The experiments of Keesom from which Lype
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takes numerical values to the disadvantage of
Ehrenfest indicate that the volumes of Hel and
Hell are continuous along a line running at
least from the vapor pressure to 25 atmospheres,
and that on this line the first volume derivatives
(second potential derivatives) are discontinuous.
That is, the physical system is that to which
Ehrenfest’s assumptions apply. Under these con-
ditions the relation (I) is a mathematical identity,
which can be used to check the internal con-
sistency of the experimental results. Keesom's
results, as extrapolated by Lype, do not satisfy
the relation, which indicates either unsatisfac-
tory accuracy in the experiment or an improper
extrapolation. In any event, considering the fail-
ure of the basic assumptions, any apparent nu-
merical check can be dismissed as coincidental.
Furthermore, experimentally there is no evi-
dence for the second of the two transition lines.
In his solution, Lype disregarded as ‘“‘trivial” the
solution dr=0. This is not trivial, but represents
the second transition line as demanded by the
assumed equality of the compressibility of the
two phases. The check presented by Lype based
on the data of Clusius and Perlick did not yield
so definite an inferiority of Ehrenfest’s result,
and involved the assumption of equal compressi-
bility for the two phases, an assumption which
loses much of its plausibility if Ehrenfest’s rela-
tion is recognized as an identity.

It would appear therefore that although Ehre-
fest's method of treatment may be so presented
as to be a degenerate case from the point of
view of pure mathematics, nevertheless from the
point of view of physics it is the generalized
mathematical treatment that involves a highly
specialized physical state of affairs, namely a
higher order transition existing at only a single
point, with the plane about this point separated
by transition lines into sectors in which the
equilibrium of the two phases alternates.

Since the whole question of higher order transi-
tions has evoked considerable discussion without
any notable agreement, I take this opportunity
to add a couple of general comments. In the first
place, in view of the degenerate nature of the
mathematics, a simplified method of mathe-
matical treatment is to be preferred to the gen-
eral method by Taylor’'s expansion. All the
thermodynamic relations can be deduced from a
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simple geometrical relation involving discontinui-
ties in derivatives. Given z a function of two
variables x and y. In Fig. 1 z is shown as a func-
tion of x at two constant values of y differing
by dy. z is continuous, but its derivatives are
discontinuous, as shown. The subscript (1) will
be used to denote z on one side of the discon-
tinuity, and (2) on the other. Then the following
relation is demanded by simple geometrical con-
siderations along the line connecting the points
of discontinuity:

(aZl 622)/ ( 021 02

The proof is straightforward and elementary
and need not be given here. The assumptions
evidently correspond to the conditions assumed
by Ehrenfest, namely the discontinuity is pro-
pagated along a line and is not confined to a
point.

By specializing the variables, many thermo-
dynamic relations may be obtained. A transition
of the first kind is characterized by discontinui-
ties in entropy and volume. A transition of the
second kind has continuous entropy and volume
but discontinuous derivatives. Identify x with
p, v with 7, and 2 successively with S and 2.
This gives, for a transition line of the second

T e en)
o®) /o2).

and
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On equating these, Ehrenfest’s
obtained.

Similarly, on a transition line of the first order,
the thermodynamic potential G is continuous
and its derivatives discontinuous. Identifying z
with G gives:

o) /o) -2

which is Clapeyron’s equation.

Transitions of higher order may be similarly
treated. Thus for a transition of the third order
dv/dr may be taken as continuous, but its de-
rivatives- discontinuous. The slope of the third-
order transition line is then given by:

~'z—A( )/a(::{

Finally, comment is required on the nature of
the physical system to which Ehrenfest’s analy-
sis applies. We have seen that for second-order
transitions the thermodynamic potential sur-
faces of the two modifications are tangent along
a trough, one surface everywhere lying higher
than the other except on the line of contact. If
we now apply the universal condition which has
not hitherto been mentioned, namely that that
phase is stable with respect to the other whose
thermodynamic potential is less, it would appear
that everywhere over the entire p-r plane the
one phase is stable with respect to the second,
except on a single line where the second phase
becomes capable of stable coexistence. This
state of affairs has led to the expressed opinion
that phase equilibria of even orders are physi-
cally impossible. Nevertheless, experimentally
second-order transitions appear to exist. The
explanation lies in other considerations than
those connected with the thermodynamic po-
tentials alone. If for some reason the phase
represented by one of the potential surfaces
should become incapable of physical realization
to one side of the transition line, then the other
phase must exist on that side of the line, whether
or not its potential surface is lower. A very simi-
lar situation arose in connection with Planck’s
discussion of the fundamental triangle on the
E-v plane. The thermodynamic potential surface

identity is
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of the three-phase system is mathematically a
plane overlying the entire E-v plane, but it
corresponds to a physically realizable system
only within the fundamental triangle, because
outside of this triangle the mathematics makes
the physically impossible demand of a negative
mass for one or the other of the three phases.
An analogous sort of thing may arise in connec-
tion with transitions of even orders. An example
might be the gold-copper alloys, which below a
critical temperature crystallize in a regular ar-
rangement, with the gold and copper atoms each
occupying definite well-ordered positions in the
lattice, while above the critical temperature,
disorder begins to appear in the location of the
gold and copper atoms. The simplest assumption,
which seems to correspond to the facts, and
which was obtained, for example, in the analysis
of Bragg, is that the amount of disorder is a
linear function of the excess of temperature
above the critical temperature. If now we iden-
tify the one phase with the completely ordered
arrangement and the other with that of partial
disorder, we see that although it makes sense
mathematically to talk about the potential of
the disordered phase below the critical tempera-
ture, physically it is meaningless because below
this temperature the fraction of the total mass
existing in the disordered condition would be
negative. Under these conditions the physical
system will pass from the one thermodynamic
potential surface to the other on crossing the
transition line, in spite of the fact that the
mathematical surface for the disordered phase
lies everywhere lower. This sort of thing would
seem in general to allow the possibility of transi-
tions of even as well as of odd orders. Obviously
odd ordered transition lines are compatible with
the same sort of physical situation. If, for ex-
ample, the amount of disorder varies as the
square of the temperature excess above a critical

W. BRIDGMAN

temperature we would have a transition line of
the third order.

Finally, the possibility brought out by Lype’s
analysis that there may be singular points at
which first-order transition lines cross and where
the transition degenerates, is of interest, and an
outlook should be kept for the experimental
realization. I have observed what may be part
of this phenomenon.! At atmospheric pressure
NHBr has what is usually considered a second-
order transition at approximately —35°C. The
temperature of transition is depressed with in-
creasing pressure. I have measured the transition
at —72° where it was so sharpened that it was
indistinguishable from a normal first-order transi-
tion, running at a pressure of 1600 kg/cm? But,
in these experiments no trace was found of any
other transition line on the isothermals at 0° and
75° up to 12,000 kg/cm? NH,Cl also has a
second-order transition at approximately —35°.
The temperature of this rises with increasing
pressure, but the transition becomes more
blurred instead of sharpening. At 75° a new
small anomoly made its appearance in the neigh-
borhood of 5000 kg/cm?. It is tempting to in-
terpret this as the appearance of the second
transition line demanded by the mathematics,
but the fact that the transition did not sharpen
into an obviously first-order transition is un-
favorable. On the other hand, the impossibility
of rigorously establishing any sort of true mathe-
matical discontinuity by direct experiment must
be considered—any discontinuity assumed on
the basis of experiment must remain to a certain
extent a matter of convenience of interpretation.
In any event, in the case of NHBr and NH,CI
further examination, preferably including x-ray
analysis of the crystal structure under pressure,
would be necessary to settle the matter.

1 P. W. Bridgman, Phys. Rev. 38, 182 (1931).



