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Maxwell's equations, Lorentz's equations of motion, and Dirac's equations are investigated
vn a cosmological background. Maxwell's equations are conform invariant and the equations
of motion can easily be made conform invariant. Then, without introducing any new assump-
tions, Dirac's equations are seen to be conform invariant. In open universes the solutions of
Maxwell's and Ditrac's equations are the same as in Bat Minkowski space. The behavior of
these equations is difFerent in closed universes by reasons of topology. In closed universes both
Maxwell's and Dirac's equatiens provide new eigenvalue problems. Dirac's equations e~hibit
a marked difference between an elliptic and a spherical closed uaiverse.

INTRODUCTION

~HIS investigation is the continuation of a
paper under the same title. "As the 6rst

two parts of A contained much material of which
no use is made here, we have tried to formulate
the present paper so that its main contents can
be understood without a detailed knowledge of A.

In A we investigated the possible cosmological
backgrounds. Here we shall examine the equa-
tions of electrodynamics and Dirac's equations
on this background.

In viewing the relation of atomic physics to
cosmology, we encounter two widely difkring
schools of thought. Some investigators believe
that the worlds of microphysics and of cosmology
are intimately connected. This point of view
was perhaps most distinctly represented by the
late Sir Arthur Eddington. Dirac, SchrRlinger,
and Milne seem te share this general attitude.
On the other hand, many physicists dismiss this
view as formal, speculative, and arbitrary.

Our analysis here seems to point toward a
third possibility, which differs from both extreme
views, the one claiming intimate connection, the
other complete independence between atomic
physics and cosmology.

We now give a brief summary of the con-
clusions reached in this paper.

The possible universes are either closed or open.

~ Now at the Carnegie Institute of Technology, Pitts-
burgh, Pennsylvania.

~ L. Infeld and A. Schild, Phys. Rev. 68, 250-272 (1945);
hereinafter referred to as A. The numbering of parts,
sections, equations, and footnotes is carried over from this
previous work. —9/e wish to take this opportunity to
correct a printing error in A; Eq. {A72}should read:
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The metric form of closed universes is

I: ds'=R'(r) tdr' dp'—
—sin' p(d8'+sin' 8dtps) ), (0.11)

and that of open universes is

II: ds' R'(r) I dr' dp'—

—sinh' p(d8'+sin' 8dto') I (0.12)
or

I II: ds' =R'(r) I d r' dp'—
—p'(d8'+sin' 8dy') }. (0.13)

In the cosmological coordinate system (c.c.s.),
the line elements assume the form

ds'= q(t, r)ds&', (0 2)

where dso' is the line element of Hat Minkowski
space-time, and the functions y are listed in A,
Table I.

It was shown in A that Maxwell's equations
do not involve the function y, and have, there-
fore, the same form in all cosmological spaces
and, in particular, the same form as in Minkowski
space. Under suitable assumptions, the same
statement applies to Lorentz's equations of
motion and to Dirac's equations. Thus the
equations of electrodynamics and Dirac's equa-
tions are insensitive to any change of metric;
the cosmological, background does not reveal
itself in the equations. The implication seems
unavoidable that the study of Maxwell's,
Lorentz's, and Dirac's equations does not point
to any connection between microphysics and
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cosmological structure. Yet a more detailed
analysis shows that such a connection does exist.
Anticipating our results, we may say:

In the case of open universes, there is n0 dif
fererice between Minkowski space and any other
cosmology.

In the case of closed universes, the situation is
diferent. The reason for this lies not in the
dNerential equations but in the appearance of
boundary conditions, which are caused by the
fact that the points (r, p), (r, p+s), and

(r+w, p) must be identified with a single physical
event. The relation of the atomic to the cos-
mological world is determined, not by the
metric, but by the topology of the universe.

We shall now outline brieQy the behavior of
the equations of electrodynamics and of Dirac's
equations in the transition from one cosmological
space to another. In particular, we wish to con-
sider under what conditions these equations are
conforms &ssariaet, i.e. , retain their form for all
universes of one type.

In the case of Maxwell's equations, the con-
form invariance is immediately demonstrated.
No new assumptions enter the argument. The
behavior of Lorentz's equations of motion and of
Dirac's equations is not so obvious.

The expressions
R/r. , R/r, (0.3)

r.=h/m

(Is = Planck's constant divided by 2n.).
The three ratios

(0.5)

R/r „R/r„r,/r, (0.6)

are dimensionless pure numbers, the last being
the fine structure constant. Ke now have the
following alternative: either r, and r. are assumed
constant, in which case the 6rst two of the three
dimensionless quantities are functions of time;
or, all three dimensionless quantities are con-
stants, in which case the electron mass m is a
function of time. The second of these assump-
tions implies the conform invariance of Lorene's
and Dirac's equations.

enter Lorentz's equations of motion for an elec-
tron and Dirac's equations, respectively. Here
R is a function of time defined by one of the line
elements (0.11) to (0.13);r, is the "radius of the
electron"

r.=s'/m

(m =mass of the electron, —e =charge of the
electron, c =velocity of light = 1); r, is the
Compton wave-length

IH. Cosmological Electrodynamics

Case II: y y(a),

Case I II: y y(t),

(8.13)

(8.14)

8. MAXWELL'8 EQUATIONS IÃ COSMO-
LOGICAL SPACES

In A it was shown that the line elements,
suitable for the large scale description of our
universe, are of the conformal-Minkowskian form

ds'= g; dx'dx& =y(t, r)ds, ' (8.1)

where dso' is the Minkowskian line element

(BE = g idx'dx~

=Ch' —dr' —r'(de'+sin' ldll'). (8.11)

Three distinct types of universes are found to be
compatible with the "postulate of homogeneity. "
The corresponding functions y are of the forms

where

g $2 r2 (8.15)

In universes of type I, the coordinate r of a
"fundamental particle, " representing a nebula,
is a double valued function of the time coordinate
t. The simplest way to avoid this difhculty is to
identify pairs of points in 4-space with single
physical events. The points thus identified are
connected by an inversion:

(t, r, 8, y)~( —t/a, r/a, 8, s). (8.16)

This transformation is of period two, i.e., it is
its own inverse. Also it leaves the cosmological
line element (8.1—8.12) invariant in form.

Suppressing the two polar coordinates 8 and
q, the tr plane has the topology of a torus.

The c.c.s. has the important property that,
in it, Maxwell's equations assume the same form
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for all possible universes, and, in particular, the
same form as in Rat Minkowski space. We write
Maxwell's equations for empty space in the
usual form

irsvariant in form under this inversion Let F;; (x)
be the tensor transform of F;;(x) under the
inversion (8.16); then we may write the boundary
condition in the compact form

BF;y/Bx'+8Fjg/8x'+OFT;/Bx& =0, (8.21) F; (a) =F;;(x). (8.3)

~((—g) 'g*'g" F»)/~x'= o (8.22)

lt follows immediately from (8.1) that

( g)'g—'"g "F~i'= ( 'g)' —'g'"g "F», (8 23)

and thus the differential Eqs. (8.21) and (8.22)
;are the same for all functions y.

We say that Maxwell's equations are conform
invariant. By this we mean that they are in-
variant under a conformal mapping

ds' = Xds, (8.24)

i.e., a, change in the function y of the cosmological
line element (8.1). The result of Eq. (8.23) is
expressed by saying that the tensor I';~ and the
tensor density ( g)&F'& are—conform invariant.
Another important conform invariant quantity
is the electromagnetic energy tensor density

(—g)'~"=(—g)'(F~F"+l&"F.~F"') (8 25)

ln the presence of charges and currents„Eq.
(8.22) must be replaced by

8((—g)&F")/Bx'= (—g)iJ', (8.26)

where J' is the charge-current vector. In order
to preserve the conform invariance of Maxwell's
equations, (—g)&J' must be conform invariant.

From the above it follows that all electro-
magnetic fields in cosmological spaces are also
possible 6elds in fiat space-time. In the case of
universes of types II and III, the converse
statement holds: Any electromagnetic field in
fiat space-time is a suitable solution of Maxwell's
equations in such universes. Thus the problem
of solving Maxwell's equations in universes of
types II and III is dealt with. However, matters
are more complicated in universes of type I.

In universes of type I a @em boundary condition
must be imposed on the solutions of Maxwell's
equations. Since two points connected by the
inversion (8.16) are identified as a single event
we must demand that the field tensor I";; be

%'e shall now show how such a suitable Ji;;
may be constructed from any solution 'F;; of
Maxwell's equations which may not necessarily
satisfy the boundary condition (8.3). Since the
inversion (8.16) leaves the line element of a
universe of type I invariant, it also leaves
Maxwell's equations invariant. Thus, OIi; is a
solution of Maxwell's equations, and so is

F'~ = k('F'&+'F7 ) (8-4)

Since the inversion (8.16) is its own inverse, we

deduce that F;; satisfies the condition (8.3) and
is therefore a suitable solution.

It is obvious that all possible solutions of
Maxwell's equations, which satisfy the condition
(8.3), can be written in the form (8.4). Thus all
electromagnetic fields in a universe of type I can
be constructed from the set of all fields in Rat
Minkowski space. This general result is, however,
of limited use in practice. A simple electromag-
netic field 'F;; will, by (8.4), generate a field F;;
which is, usually, very complicated and diRicult
to interpret physically.

A. simple example of an electromagnetic field in

a universe of type I is the usual electrostatic field
of a point charge e at the spatial origin r =0**:

F„&=e/r' , all other F-;,=0. (8.5)

A straightforward calculation shows that the
condition (8.3) is satisfied. The usual field of a
magnetic pole at the spatial origin also satisfies
the boundary condition.

Summarizing, we may say that the description
of electromagnetic phenomena in cosmological
spaces is completely independent of the metric of
the universe, but is only influenced by the type,
or, more precisely, by the topology of the universe

9. THE REST COORDINATE SYSTEM

For the detailed discussion of electromagnetic
6elds in universes of type I, it is convenient to

**Here F,t denotes the component EIo belonging to the
coordinates x'=r and H=t. A similar notation is used
throughout whenever there is no danger of confusion.
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use a system of coordinates difkrent from that
employed in the previous section. Under the
coordinate transformation

~+r = tan —,'(r+ p), ~ —r = tan ,'(r —. p)— (.9.1)

the conformal-Minkowskian line element (8.1—
8.12) assumes the form

—sin' p(d8'+sin' 8dy') I. (9.11)

In A it was sho~n that the fundamental par-
ticles, representing nebulae, are at rest in this
new coordinate system (r, p). We shall therefore
refer to it as the rest coordinate systemic, r.c.s. for
short. This coordinate system is closely related
to that used by Robertson. "

A. suitable conformal mapping reduces the line
clement (9.11) to that of an Einstein universe,
where A=Ay=constant. Thus, in the r.c.s. the
solutions of Maxwell's equations are of the same
form in all universes of type I, and, in particular,
the same as in the Einstein universe. In this
respect, the r.c.s. is similar to the c.c.s. Maxwell's
equations in an Einstein space are of a form less
familiar than in Minkowski space. But on the
other hand, the boundary condition to bc im-
posed on the electromagnetic field is considerably
simpler in the r. t.-.s. It is this property which
makes the r.c.s. convenient for the study of
Maxwell's equations.

lt immediately follows from (8.16) and from
the transformation Eqs. (9.1), that thc points

(r, p, 8, y) =—(r, p+x, 8, y)
(ry~, p, 8, ~)

—(9.12)

are identified as one single event. This implies
two facts: 6rst, the 3-space 7 =constant of
constant positive curvature is an elliptic 3-space;
second, the v--axis is closed. This last restriction
is new and arises quite naturally from the Ais-

cussion of universes of type I in the c.c.s. We
shall see that it has an important effect on the
large scale behavior of electromagnetic radiation
and possibly on other physical problems.

The rp plane (8= s =constant) is represented
by a square of side m of which opposite sides are
identified. Its topology is that of a torus.
Physically, the finite coordinate length ~ of the
~ axis is the time in which light circumnavigates
space and returns to the fundamental particIe
from which it was emitted. The boundary con-
dition to be imposed on the field tensor F;; is
that it be periodic in r and p with period s.

As an alternative to the "elliptic" universe,
wliich was just discussed, we may consider the
"spherica1" universe of type I in which the coor-
dinates 7 and p are of period 2x each. Its behavior
is to a great extent similar to that of the elliptic
universe. However, it has one serious disad-
vantage: singularities, of the electromagnetic
held, say, ahvays occur in pairs at spatially
antipodal points, the two singularities being
equal except for a possible diHerence in sign. It
is difFicult to see how a physical distinction is
to be made between a singularity and its "ghost. "
For this reason, the elliptic universes are to be
preferred.

Solutions of:maxwell's equations, free from

singularities, were investigated by Schrodinger'-'

in coordinates similar to our rest coordinates,
except that spatial coordinates were employed

by Schrodinger analogous to cylindrica) rather
than spherical coordinates. Schrodinger did not
introduce the a priori condition that the field

components be of period m in v-. Therefore, it
seems justified to give a fresh discussion of
Maxwell's equations in the r.c.s. which, inci-

dentally, includes electromagnetic fieMs with a
singularity at the spatial origin (these are
examined in the next section).

From the line element (9.11), we obtain

=R2 g = —R2 gqy ———R2 sin' p, g = —
¹

sin'-p sin' 8, ( —g)&=R»n p sin 8,
(9.2)

g"=1/R'-', g»= —1jR' g ~= —1jR' sin' p, g« = —1jR' sin' p sin-' 8.

~~ A, Section 4.
~ E. Schr6dinger, "Maxwell"s and Dirac's equations in the expanding universe, " Proc. Roy. Iri» Acad. 4&, 25~&

C.'I940). See also B. C. Mukerji, "Aber elektromagnetische KVellen im Friedmannschen Raurn, " Zeits. &. Physik &0&,
2'-275 (~9M}.
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Themcond set of Maxwell's equations (8.22) becomes

sin 8(sin' pF„,), ,+(sin 8', ), q+F~, , „/sin 8=0,

—sin' p sin 8F„,,+ (sin 8F,g), l F„,—, „/sin 8 =0,

—sin 8Fy, , ,—sin 8F,e, ,+Fbi„,~/sin' p sin 8=0,

—F~„,/sin 8+F«, ,/sin 8- (Fq~/sin 8) q/ isn' p =0,

(9.21)

where the comma denotes partial differentiation; thus F„,=8F„/8r, etc. iA'e introduce the electro-
magnetic potential vector C;:

(9.22)

Then the first set of Maxwell's equations (8.21) is identically satisfied. Substituting from (9.22)
into Eqs. (9.21), we obtain a set of four differential equations for the components C,. These are
checked to have the following solution" which depends on two arbitrary complex constants.

dB„' (sin mip
Agkar P m,

dp
'

icosmlp
'

Sin mp)
jA~giarg lP sa,

cos

mph'

I'p sin mq]
4 g ——Awe'"'B„'-

"sin 8 cosmlpl
'

dI'p cos my )C„Ae'"'8 'sin 8
d8 —Sill mp I

(9.31)

(9.32)

(9.33)

(9.34)

Here, A =A„i„ is an arbitrary complex constant, Pi" Pi"(cos 8) ——are associated Legendre poly-
nomials, and B„=B„(p)is a function of p which satisfies the differential equation

dmB ljdp +(n2 —l(l+1)/sin' p)B '=0. (9.4)

It is interesting to note that the four components C; can be derived from a single scalar function P:

@.=k

Sill mp)
Asian iP m,

cos mq! I

4 l = —(m/sin 8)P, 4,= —(sin 8/m)f, l,.

From Eqs. (9.31) to (9.34), we immediately obtain the components of the electromagnetic field
tensor P;g.

F„=A/(1+1)e'"' Pi"
siI12 p

Sill mp)

cos 5cpJ
(9.51)

(dB„'dPi" Pi") sin ms
F~, =Ae'"'I +imnB '

I( dp d8 sin Hi cos sory

dB„' dP pq cos ms
F„-Ae'-~ m Pi-y~nB i sin 8

dp de ) —sinmy

(9.52)

(9.53)

~e The solutions were actually obtained by solving Maxwell's equations in a c.c.s. and by subsequent transformation
to the r.c.s.
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Fg, A—-/(i+1)e'"'B„' sin 8Pi
cos Spy+

-sin mq
(9.54)

pdB„' dPi" q [ cos my)
F„,=Ae'"'l — — sin 8 +imnB„'Pi"

l

~

4 dp d8 ) I —sinmsil

dB„' Pi" dPpq sin ms~]F„=—Ae"
l

m
"

yinB„'
dp sin 8 d8 ) cos mal

(9.55)

(9.56)

Equations (9.21) are satisfied by virtue of the relation (9.4) and the second-order differential equation
for the Pi". The other set of Maxwell's equations (8.21) are satisfied by virtue of (9.22).

A.s is well known, the uniqueness of the F;~ in

physical space imposes the conditions that m

and l be integers with
l ml & ill. Since l is only

involved through l(l+1), we may assume l~&0.
The Fii involve the time coordinate r through

the factor e'"'. The boundary conditjon that the
P;y be of period ~ in v limits the constant e to
even integral values. We may, without loss of
generality, take ii positive as Eq. (9.4) involves
its square. We therefore have a discrete eigen-
value spectrum for n:

n~o 2 4 (9.6)

(9.61)

(9.62)

The other 8„' are obtained from either of these

~' L. Infeid, "On a new treatment of some eigenvalue
pmbleras, " Phys. Rev. 50, 737-747 (1941);Section 1.

VVe shall now discuss solutions which represent
free electromagnetic radiation and rel'egate the
investigation of fields with singularities to the
next section. For solutions free from singularities
the conform invariant, electromagnetic energy-
momentum tensor-density (—g) &E,~ must be
finite everywhere. The components of (—g) &E;i

can be computed from (8.25); some of these
components involve p through the factor
B„'/sin p. Thus B ' must vanish at p =0 and at
p = m at least as rapidly as sin p.

The problem of 6nding solutions of Eq. (9.&)
which are regular throughout the interval (0, s)
and which vanish at the ends has been solved
in detail by Infeld. "The "factorization" method
used in Infeld's paper immediately yields the 8„'
explicitly in terms of elementary functions. It
is shown that e ~~1, 1 ~~ n -1, and

by use of the following recurrence relations

B„' '= Il co-t p+d/dp}B ', (9.63)

B.'+' = I (l+1) cot p —d/d p I B„'. (9.64)

It is easily checked that the I3„' are of period m

in p when n is even.
This completes our survey of electromagnetic

6elds free from singularities in universes of
type I. We add a summary of the values which
the parameters n, I, m, may assume:

n-2, 4, {j

1~0, 1) 2, n —1

m =0, +j., +2, +I

(9.71)

(9.72)

(9.73)

vp, 2Pp) 3vp, (9.8)

vo = 1/s. (9.81)

Physically, this is obvious. Since the v axis of
the universes of type I is closed and of finite
length x, the wave-length of a light ray must be
a submultiple of ~. To put it difkrently, radi-
ation must complete an integral number of
vibrations while circumnavigating space, and
must return to the point of emission in its

The number of states belonging to a 6xed n is

2(1+3+5+ "+(2n-1) l =2+i. (9.74)

The factor 2 appears because Eqs. (9.51) to
(9.56) yield two complex solutions of Maxwell's
equations for given values of n, l, m, since there
is a choice in the terms involving y.

In all universes of type I the radiation spec-
trum is discrete. This result depends on the
topology but not on the metric of the universe.
The frequencies of free radiation are
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original phase. The minimum frequency 1/s.
corresponds to the wave-length ~ of light which
completes one single vibration on its journey
through the universe. This is the lower limit of
the infra-red spectrum.

In the case of a "spherical" universe of type I,
the condition to be imposed on the electromag-
netic field components is that they be of period
2x in 7 and p. This necessitates only a few
changes; we now have

(rc cot p d/—dp)(n cot p+d/dp)8„"=0, (10.5)

of which one solution satisfies

(n cot p+d/dp)8„"=0. (10.6)

search for a second set of solutions 8 *' when
l~& e. For this purpose we must first obtain 8„"
exp)icitly. When l=n, the deferential equation
(9.4) may be factorized as follows:

n=i 234
i 0 ——1/2s,

replacing Eqs. (9.71), (9.81), respectively.

CO. FIELDS VfITH SINGULAMTIES

This immediately yields
(9.91)

(9.92) (10.7)

Putting 8 ~"=s(p) sin —"
p, Eq. (9.4) reduces

de/dp' —2n cot pdv/d p =0.

We give here a short investigation of electro-
magnetic fields with a singularity at the spatial
origin. The field tensor Ii;; is given by Eqs.
(9.51) to (9.56), where 8„'(p) satisfies the dif-
ferential equation (9.4), and where n is an even
integer in the case of "elliptic" universes of
type I, and any integer in the case of "spherical"
universes. However, if we wish to investigate
singularities, we must drop the condition that
8„' be regular in the interval (0, ir), or (0, 2~),
and that it vanish at the ends.

For 1=0, Eq (9.4) r.educes to

d'8 '/dp'+n'8 '=0.

To the solution 8„=sin n p considered in Section
9, we must now add the second solution

B„'=cosnp. (10.1)

The factorization method" enables us to con-
struct a chain of solutions B ' by use of' the
recurrence relation

B.'+'=
I (1+1)cot p d/dp}B.—' (10.2).

(10.3)

(10.4)

In order to complete the investigation we must

Unlike the solutions starting with sin n p, the
chain of 8„'s does not terminate; all integral
values of l are admitted.

We now have the solutions

Thus

and, finally,

p sin 2m
p

J

8„*"= sin "p sin"" pd p.

Both solutions satisfy Maxwell's equations.
They are the fields of an electrostatic point
charge e and of a magnetic pole p, respectively,
which were mentioned at the end of Section 8.
Bo', Bo', etc. , yield the static fields of dipoles and
multipoles.

When n&0, the 8 ' yield the electromagnetic
fields of oscillating charges, dipoles, and multi-
po)es.

One point must be stressed here for later
reference. The charge e of a particle appears, in

When the integral is evaluated, it is seen that
J3„*" contains a term of the form p sin "p.
Thus 8 *" violates the condition of periodicity
and must be discarded. The same is true of the
other solutions 8„*', l&n, which are obtained
from 8„*"by repeated application of (10.2).

When n=0, the Bo' yield the electrostatic
solutions. Putting m=i=0, Eqs. (9.51) to (9.56)
reduce to Ii;;=0. However, it is easily verified,
directly from Maxwell's equations, that the
following two solutions hold:

F„=e/sin~ p, all other F,;=0, (10.91)

Fy~=p sin 8, all other F;;=0. (10.92)
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(10.91), as a constant of integration. Thus, in

particular, Maxwell's equations imply that the
charge of an electron is constant and cannot
change with time as the universe expands. The
electronic charge is a conform invariant.

b I (mds+e4odx') =0, (11.1)

"Attempts to obtain equations of motion from field
concepts have been made by P. A. M. Dirac, Proc. Roy.
Soc. A1N', 148 (1938), M. H. L. Pryce, Proc. Roy. Soc;
Ale, 302 (1938), L. Infeld and P. R. Wallace, Phys. Rev.
SV, '/9/ (1940}.

~9For similar considerations, compare J. A. Schouten
and J.Haantjes, "Cber die konforminvariante Gestalt der
relativistischen Bewegungsgleichungen, " Proc. Akad.
Wetensch. Amsterdam 39, 1059-1065 (1936},Eq. (1/).

'o P. G. Bergmann, Ietrodgctioe to the Theory of Retu-
«oity (Prentice Hall, Inc. , New York, 1942), p. 117.
Bergmann's electromagnetic potential vector Cp di6'ers
from ours ln sign.

&1, THE EQUATIONS OP MOTION

ln the previous sections we proved that
Maxwell's equations are conform invariant, i.e.,

the electromagnetic field can be the same func-
tion of coordinates in all universes of the same
type, independently of the metric. Electric
charges and their motion appear as singularities
of the field.

However an electromagnetic field with singu-
Iarities is not governed by Maxwell's field equa-
tions alone. A new set of relations must be added:
Lorewts's pondsromotive equations of motion

From the theoretical point of view the pondero-
motive equations are unsatisfactory, " but for
want of a better alternative, we shall now discuss
these equations, especially as we are only con-
cerned with the invariance of the formalism.

We have stated that, if a field with singularities
exists in a universe, then the same field with the
same singularities can exist in any other universe
ef the same type. This statement was based on
the conform invariance of Maxwell's equations.
Ke now see that if it is to be correct. the pon-
deromotive equations also must be insensitive to
the metric of' the universe. Only then will all
electromagnetic phenomena be truly conform
invariant. It is our purpose to show here that
this invariance of the equations of motion can
he achieved in a simple and natural manner. "

The starting point of our considerations is the
variatiooaI form "" of the ponderomotive equa-

tions�.

where the path of integration is along the real
or virtual world line of a particle of charge e
and mass m, Cg, is the potential vector of the
external electromagnetic field, and the end points
of the path are not varied.

ln the previous sections it was shown that e
and 4i are conform invariant. Thus, if the varia-
tional principle (11.1) is to be independent of
the metric of the universe, mds must be conform
invar nant.

Under the conformal transformation

the behavior of m is given by

m~X 'm.
Also

(-a) l'(-g)

(11.21)

(11.2)

(11.22)

Therefore, we can construct a conform invariant
scalar densAy

mo ——(—g) '"m. (11.3)

For the cosmological line element

ds' =ys;Px'dx'= ydso',

the ponderomotive equations become

(11.51)

d'x" amo t
dxi dx"

m, + —s~"
~

=e F;;s'". (11.5)
dso clx& ( d$0 dso 2 dso

As expected, the function y does not enter these
equations.

Universes of types II and III incIude as
simplest prototypes the Hat Minkowski space.

Both m and mo are in general functions of position
in space-time: ns is invariant under coordinate
transformations, but not under conformal trans-
formations; mo is invariant under conformal
transformations, but not under coordinate trans-
formations.

This disposes of our problem. The following is
merely of the nature of an appendix. The Euler-
Lagrange equations of the variational principIe
(11.1) are easily obtained in tensor form:

t
d'x" k ~dx'dxtp

& ds' z jl ds ds J

8 (mdxt dxo ) dx'
+ I

—g'"
l
=e F'. (11.4)

Bx' ( ds ds ) ds
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It is natural to assume that m is constant in a
Minkowski enilrse, where also am=me in the
c.c.s. This assumption implies that mo =constant
in the c.c.s. for all universes of types II and III.
The ponderomotive equations now simplify to

mod'x"/dso' e(dx'/dso) F;;q'" .(11.6)

homogeneity states, mathematically, that physi-
cal quantities (such as mass) must be invariant
in form under the three-parameter group of
coordinate transformations which move the
world-line of one fundamental particle into that
of another. This implies that, in the c.c.s., m must
be of the form

I he prototype of a cosmology of type I is the
Einstein universe E, which assumes its simplest
form in the r.c.s. In this coordinate system the
general line element is

m =m,p {t/(1-9+r') I,

m =m,p(P-r'),
m =m,p(&),

(11.81)

(11.82)

(11.83)

ds'~R'{dr'-dp' —sin' p(d8'+sin' ed'') I= (R/Rs)'dss'. (11.71)
Ke introduce

in a universe of type I, II, or III, respectively,
where m, is a constant. In the r.c.s., ns must be
of the form

ms= (R/Rs)m, (11.7) m=m, rr(, ), (11.84)

which is conform invariant because, under the
conformal transformation ds—+Ms, we have
R-+XR and m-+(I/X)m. We now add the as-
sumption that m is a constant in an Einstein
Neieerse, where also m =nsg in the r.c.s. It follows
that my=constant in the r.c.s. for all universes
of type I.

Our latest assumption can be expressed in the
dimensionless form given in the Introduction:

R/r, =constant, (11.72)

where r, is the "radius of the charge e,
" dehned

by Eq. (0.4). Later we shall deduce from Dirac's
equations that this constant, dimensionless ratio
is an integer.

Our derivation of conform invariant equations
of motion was based, primarily, on the behavior
of the mass m under conformal transformations,
as given by Eq. (11.2). Further subsidiary
assumptions, stating that m is constant in the
universes Z, Mg, Me, were added; these were
adopted on grounds of simplicity.

Even without making the subsidiary as-
sumptions, " a good deal of information on the
functional dependence of the mass m on position
in space-time can be obtained from general
principles. The mass m as a function of coor-
dinates must conform to the principles of iso-
impy, homogeneity, "and equivalence.

The spatial isotropy of the universe demands
that et be a function of t and r only in the c.c.s. ,
or of r and p only in the r.c.s. The principle of

"A, Section 2.

The function II(r) can be arbitrarily assigned in

any one universe. However, it is then determined
in a11 other universes of the same type by the
conformal property (11.2) of m.

The "principle of equivalence" asserts that
the motion of a particle in a purely gravitational
field (eF,;=0) is independent of the mass of the
particle. Alternatively, it states that under the
same initial conditions two particles of diferent
masses have identical motions. In the absence of
an electromagnetic 6eld, the equations of motion
(11.4) reduce to

(d'x" k tdx'dx&q+. .
~ ds z gl ds ds )

dII )dr dx"
+ {

— -g'"
i
=0 (11.9)

dr (ds ds

in the r.c.s., by virtue of (11.84). The principle
of equivalence demands that, in any one uni-
verse, the function II(r) be the same for all mass
particles.

Our "subsidiary assumptions" simply intro-
duce the special choice II =p = 1 for universes B,
Mg, Na.

One important question remains to be exam-
ined. In previous sections, the fundamental
particles, which are cosmologically important
special cases of free particles, were assumed to
move along geodesics. We must now show that
the fundamental particles satisfy our generalized
equations of motion (11.9);otherwise, our theory
would be inconsistent. The simplest way to
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answer this question is to choose a r.c.h. such
that any particular fundamental world-line
under examination coincides with the v axis.
Then

and
dx /ds=0, go =0, (a=1, 2, 3),

d r/ds = 1/R(r), g"= 1/R'(r).

Thus the last bracket expression in (11.9)
vanishes; for k = I, 2, 3, because both terms are
zero, and for k =0 because it reduces to

(gr/ds) o goo 1/Ro 1/Ro 0

2n'-,'An Sx'v'Av
fe"«' —1 e&"—1

(12.1)

whose wave-length is small compared to the
radius of the universe. For each n there are 2n'
complex solutions of Maxwell's equations (Eq.
(9.74)). The number of frequencies within an
interval hn is ~An, since n is limited to even
integral values (Eq. (9.71)). Thus, the number
Xof photons within a narrow frequency interval
Dv=Dn/2~ is given by the Einstein-Bose dis-
tribution law:

Therefore, the equations of motion (11.9) become where p is a constant.
The next step is the introduction of the energy

of a photon, and then the volume of space, i.e.,
f

~s o gl ds ~s the metric. The energy e of a photon is given by
Einstein's relation

which are the equations of a geodesic and are
satisfied by the 7 axis, by virtue of the spatial
isotropy of the universe. It follows from our
considerations that the only free particles which
move along geodesics are the fundamental
particles.

12. PLANCK~S RADIATION LAW IN AN
EINSTEIN UNIVERSE

In this section, we derive Planck's radiation
law in an Einstein universe, where we choose the
unit of length such that R~ = j.. The general case
of universes of type I is of no interest here, as
we can hardly consider a state of radiation
equilibrium in an expanding universe.

Usually, Planck's law is derived by considering
radiation enclosed in a "Jeans' box.""Here, any
reference to Jeans' box is superliuous because of
the 6nite volume of space.

We are concerned with radiation whose fre-
quency v =n/2or is a large number, i.e., radiation

f.= Av) (12.2)

where h is Planck's constant. The total energy
of radlatlon E ls:

8xkv'hv8= Vu= lr'
e&"—i

(12.3)

where V is the volume x' of elliptic space and u
the energy density. Dividing by V=m', we

finally obtain Planck's radiation law

8xhv'Av

e'"—1
(12.4)

In the spherical Einstein universe, the number
of frequency levels within an interval hn is An,
since n can now assume all integral values.
Therefore, X is 2 times the expression given by
(12.1). On the other hand, the volume of
spherical space is V=2m'. Thus, we again arrive
at (12.4).

IV—Dirat. "s Equations

13. INTRODUCTION

The formal work of many authors on the
generalization of Dirae's equations to the space-
time manifolds of general relativity allows us to
dispense here with much tedious calculation. We
shall use results obtained by Taub" and

"R.C. Tolman, The Principles of Statistic/ Mechanics
{Clarendon Press, Oxford, 1938), Section 93a.

3'A. H. Taub, "Quantum equations in cosmological
spaces, "Phys. Rev. 51, 5'12-525 {1937).

Schrodinger. " These will be combined with
results by Schouten and Haantjes. "

Schouten and Haantjes consider Dirac equa-
tions invariant under conformal transformations.

~ E. Schrodinger, "Eigenschwingungen des Spharischen
Raumes, " Commentationes Ponti6ciae Academiae Scien-
tiarum 2, 321-364 (1938).See also reference 25.

~ Reference 29. The same problem was investigated
along difFerent lines by O. Veblen, Proc. Nat. Acad. Sci.
21, 484—487 (1935},and by P. A. M. Dirac, Ann. Math.
3'7, 429-442 (1936).
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Since all cosmological spaces are conformal, their
results become pertinent to the problem before
us. On the other hand, Taub and Schrodinger
solve the problem of a free electron in a Robert-
son coordinate system. They do not formulate
the question whether Dirac's equations should
depend on the particular form of the function
R(r) or should, 1ike Maxwell's equations, be
insensitive to any choice of R. They could
hardly have avoided this question had their
coordinate system been, not Robertson's, but
the r.c.s. We find only an implicit reference to
this problem in Schrodinger's" discussion of
"alarming phenomena. "

For our further argument it is essential to dis-
tinguish between frequencies, v and, v."

The symbol, v stands for the frequency of
radiation in r time. The eigenvalues of this
frequency were obtained before:

,v=n/22r, 22=1, 2, 3, (13.1)

~~ The subscripts r and s are written on the left of ~,
in order to avoid confusion with tensor indices.

If only to simplify the language of our argument,
we shall ignore the discrete character of this
spectrum. For reasonable values of the fre-
quency, i.e., when n&&i, the spectrum is suf-
ficiently dense for, v to be treated as a con-
tinuous variable.

A source of radiation can emit a photon of any
frequency, v. But the radiation, once emitted,
keeps its rhythm, measured in w time, throughout
its journey. Actually, this applies in the r.c.s.
to radial light signals only; but it is these alone
which are of interest to us here. Thus the symbol

,v indicates the per2)2()', 22e22(;e of radiation in 2 time,
i.e., the constancy of its frequency measured by
the r clock described in A, Section 7.

So far, we have not discussed the sources of
radiation. From the point of view of general
relativity, these are clock devices indicating per-
manent f'requency, v in the proper time s which
they measure, An atom emitting radiation,
whether represented classically as an oscillator
with frequency, v, or quantum mechanically as
a system characterized by di8'erences in energy
levels, is such a clock and, in a given universe,
,v is a set of numbers, with dimensions [I 'j.
According to relativity theory we have, in the

r.c.s.,
gv = gv/R, (13.2)

where R has the dimensions [Lj.This equation
expresses the law of red shift.

We shall see later that the atomic and cosmo-
logical quantities enter Dirac's equations through
a dimensionless combination only. More spe-
cifically, let us consider a universe of type I in
the r.c.s. Then, for a free electron, or an electron
in a central Coulomb field, the only combinations
of physical quantities appearing in Dirac s
equations are

R/r, =Rm/5

and the fine structure constant

(13.3)

r,/r, = e2/h. (13.4)

What we do expect and do obtain from Dirac's
equations is a set of dimensionless and consta, nt:

numbers

v~q~, v(q~, v~3~, ~ ~ ~, vp, ~, (13.6)

These must be identified in some simple manner
with the observed frequency levels. The simplest
identification is

sv('A:) =~ v(a&,

where A has the dimensions [I. 'j. Since the
v~~~ are found to be constant, and since relativity
theory demands that the, vt y) be constant, there-
fore, A must be a constant.

14. THE CONFORM INVARIANT DIRAC
EQUATIONS

Schouten and Haantjes" have shown how
Dirac's wave equations must be generalized to
Riemannian space-time, so that they may be
conform invariant. In the case of cosmological
spaces, where the required mathematical tools
are simpler, their conclusions may be reached
more directly.

We use the c.c.s. with cartesian spatial coor-
dinates. The cosmological line elements are of the

Both are dimensionless. 'We therefore cannot
expect Dirac's equations to yield the charac-
teristic frequencies

sv(1), Iv(2) sv(8) ' ' ' ev(k)s (13 5)
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ds'-' = y(t, r) (dP —dx' —dy' —dz".)
(14.1)

=y(t r)ri dx'dx"'

Ke introduce the usua1 two-dimensional spin
space, " characterized by an arbitrary skew
symmetric spin metric y», and by a mixed Her-
mitian quantity o~"& which provides the transi-
tion from world vectors to spin tensors. In this
section (and also in Appendix B), Latin indices
refer to space-time coordinates and range over
0, 1, 2, 3, while Greek indices (dotted and un-

dotted) refer to spin coordinates and range
ovei I, 2.

The world metric imposes a restriction on the
~k)te-

tensor yj„given by

( g) tP ( g))oii I x„ooxxi & (14 41)

In order to obtain Dirac's equations, we put

(14.42)

The conservation equation (14.4) now becomes

O~kXP+. + +O~kkft, +
+'o'"& XipX„+'o'"&Xi,X„,g ——0, (14.5)

where the comma denotes partial differentiation.
This equation is satisfied if

2& 'o""&(0g, i —ieh-'C i%i)

gkL ~JcAIz~E ~kky~Lpo~. ,~ (14.2)

If we restrict ourselves to linear spin trans-
formations with determinant +1, we may con-
nect a particular spin metric with the Rieman-
nian metric of our c.c.s. in the following

2& 'a'""(Xg, i., —iek 'C gX1)

These are Dirac's equations for an electron. Jn
it, —e is the electronic charge, CI, the potential
4-vector of the external electromagnetic field,
and P is an invariant, given by

Let
612 62i 1 611, 622 0.

4 0

Oology ( g))okla ~2okxg

(14.22)

(14.23)
By (14.21) and (14.6), we have

(14.71)

P =(—g)'"P=( —g)'"m/k=m /tt (14 7)

r

~I-L O~k)ip, O~L prr~
Xp tttr» (14.3)

Thus the r~"& are constants independent of y
and, therefore, the same for all cosmological
spaces. They are in fact the Pauli matrices mul-

tiplied by 1/v2.
We begin our discussion of Dirac's equations

by considering the law of conservation which the
probability current and density 4-vector P
satisfies

Then, since by (14.1) g"'=(I!y)s"', Eq. (14.2)
reduces to

It is important to note that P can be an arbitrary
function of the space-time coordinates without
violating the conservation equations.

Equations (14.6) are invariant under any linear
spin transformation with constant components
and determinant +I. Unless we restrict spin
transformations in this way, the partial deriva-
tives in Eqs. (14.6) must be replaced by covariant
derivatives, which would add unnecessary com-
plication.

In Section 11, we postulated that, under the
conformal transformation ds —+Xds,

g I ( g)ilk l /g~k —0 (14.4) m-+(1 /X) m. (14.8)

The world vector P induces a Hermitian spin

»L. Infeld and B. L. v. d. Naerden, "Die Wellen-
gleichung des Elektrons in der allgemeinen Relativit@ts-
theorie, " Sitz. Ber. preuss. Akad. Wiss. 380-402 (1933).
See also O. Veblen and J. Von Neumann, "Geometry of
complex domains, " Princeton University Mimeographed
Notes (1935-36).

This was necessary to ensure the conform in-
variance of Lorentz's ponderomotive equations
of motion. This same assumption now ensures
the conform inoariance of Dirac's equations: By
(11.3), (14.7), and (14.8), Po is a conform invari-
ant density, i.e. , po is independent of the function
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y but may depend on the type of the universe;
thus y does not enter the Eqs. (14.6).

It is easily seen that the probability current
4-vector density (14.41) is conform invariant.
This is in accord with the usual identification of
the probabi1ity current 4-vector with the macro-
scopic electric current 4-vector whose density
was shown in Section 8 to be conform invariant.

%'e now add the subsidiary assumptions
adopted in Section 11, that m is constant in the
simple universes E, M2, 3I3. This immediately
implies in the case of universes of type II and
III that Dirac's equation and its solutions are
exactly identical with those in Hat Minkowski
space.

In the case of universes of type I, the new

boundary condition must be satisfied, although
not necessarily by the wave functions them-
selves. However, as in the case of Maxwell's
equations, Dirac's equations in cosmological
spaces are best solved in the r.c.s. In this coor-
dinate system, Eq. (14.8) and the assumption
of the constancy of m in the Einstein universe,
can be combined in the di.mensionless form

mR/k =R/r, = constant,

where r, is given by Eq. (0.5).

(14.9)

sin p(ioll, , i&43 „+tis441—]= —444, 3+ (i/sin 8)444, „,
sin pfi442, , i444, ,+P~442]—

= —443, 3
—(i/sin 8)443, „

(15.11)

(15.12)
'~ Reference 34, Eqs. (5.15), (6.4); and reference 25,

Eq. (3.6).

&S. THE FREE ELECTRON

Ke consider here universes of type I in the
r.c.s. Schrodinger has discussed Dirac's equa-
tions in these cosmological spaces in great
detail, " using Robertson's coordinate system.
Since the transition to the r.c.s. is very simple,
being a pure time transformation, we can take
over Schrodinger's results with a few necessary
changes. In the appendix, we give a short outline
of the derivation of the wave equations by use of
two-dimensional spinors.

For the line element

d32 R2(r) Ld&2 4fp2
—sin2p(d82+sin2 8d 422) j (15.1)

Dirac's equations for a free electron are

sill pL2443, ~
—244 1, &

—tis443]
= ol2, 3 (2/sin 8)&d2, &&

sin p/i444, , i—4d2, , P—gol4)
=oil, 3+ (i/sin 8)401, „,

(15.13)

(25.14)

where the comma denotes partial differentiation,
and

Ps RP——=mR/k. (15.15)

This is the same quantity as in (24.9) and thus,
by our assumptions, Ps is the same constant for
all universes of type I in the r.c.s.

The components of the probability current
4-vector density are explicitly given by

( g) I (401oll+ 442442+ 443403+444444) i

(-g) I'= (—ollol3-nl2444 —443401-~4nl2),

(15.16)

(25.27)

where the horizontal bar denotes the complex
conjugate.

Our purpose is to solve Eqs. (15.11) to (15.14)
for the four components co~, ~~, co3, co4 of the wave
function under the usual conditions and under
the "new boundary conditions" (see Section 9).
Schrodinger has shown "that the wave function
must be either single valued in all four com-
ponents and for all states, or else always double
valued, in which case the two branches of the
wave function must differ by a minus sign only.
Thus, in the case of an "elliptic" universe, our
new boundary conditions require that the wave
components be periodic in r and p with period ~,
or else always change their sign when x is added
to v or to p. In either case the components of
(—g)&I', given by Eqs. (15.16) to (15.19), are
single valued. In a "spherical" universe the same
statement applies with m replaced by 2x.

We now meet a rather surprising phenomenon:
The solution of Dirac's equations is radically
different in elliptic and in spherical universes.
This is the erst time that we encounter con-
clusions which are essentially and observationally
distinct for the two possible topologies of uni-
verses of type I. This difference seems not to
have been noticed previously. The solution of
"E. Scbr5dinger, "Die Mehrdeutigkeit der %'e11en-

funktion, " Ann. d. Physik L5j 32, 49—55 it93S).

( g) iI3 = (2/sill p) ( 4l1444 ol2073

+G)3(d2+444441), (15.18)

(—g)2I"= (1/Sin p Sin 8)(—nll&a4+ol2&o3

+ol3o12 —4d4&vl), (15.19)
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where the 6rst two of the separation constants
v, n, k, m are subject to the relation

V2 —222+P 2 (15.25)

The functions f„2(p), g„2(p) are defined by the
simultaneous differential equations

f" (k/sin —p)f„'= i22g„", —(15.31)

g„"'+(k/sin p)g„."= i22f„", — (15.32)

(f-"=df."/dp, «c ).

As implied by the notation, f2~(8) and g2"(8)
satisfy an analogous set of equations obtained
from (15.31), (15.32) by writing k, m, 8, for
n, k, p, respectively.

Eliminating g„" from Eqs. (15.31), (15.32), we

obtain the second-order equation

f "'—
I (k"—k cos p)/sin' p n2]f„'=0,—(15.33)

which can immediately be "factorized"" thus:

L(k+-', ) cot p —1/2 sin p+d/dp]
yL(k+2) cot p —1/2 sin p d/dp]f"—

=L222-(k+2)']f-" (15 34)

L(k —2') cot p —1/2 sin p —d/dp]
&([(k—-', ) cot p —1/2 sin p+d/dp]f„'

= I 222 (k —,')']f—' (1-5.35).
We may assume k &~ 0; if k &0, we have

(f'g')=(g "f ')

by Eqs. (15.31), (15.32). We also assume 22&~ 0;
if n &0, we have

Dirac's equations given by Schrodinger is correct
for spherical universes only. In elliptic universes
the wave function reduces to a particularly
simple form.

Schrodinger" obtained the solution of Dirac's
equations (15.11) to (15.14) in the separated form

A22s
—((vr—toy)f m(8)f 2(p) (15.21)

A22s
—i(vr mv)g2m—(8)f 2(p) (15.22)

1

co2 A(p——s+ v)e ""'—"2')f—2"(8)g„'(p), (15.23)

~4=A(Ps+v)s ""' ""'g- (8)g '(p) (15 24)

If k=n ——,', we obtain the first-order equation

[22 cot p
—1/2 sin p d—/dp]f" ~=0, (15.36)

which yields the solution

f." &=-A sin" p cot& —,'p
= 2&A sin"—

& p cps ~p.
(15.37)

and the g„" are obtained from the f„" by Eq.
(15.31).

The function f„" & given by (15.37), and the
f„', g„" derived from it, lead to a single valued
current vector density if either n is always an
integer, or else, n=s+-', is always half an odd
integer. Then the (—g)&I' are of period 22r in p,
so that the solution obtained above is valid in a
spkeric(d, universe only. Schrodinger" adopts the
case where n is half-integral. It then follows f'rom

similar consideration of the functions f2"(8),
g2 (8), that the constants 22, k, 222 are limited to
the values

22=+3/2, +5/2, W7/2, =2+-'„

k=+1, a2, +3, ", ~k~ &~22~,

(15.41)

(15.42)

m=ai/2, a3/2, a5/2
hami & ski. (15.43)

Our boundary condition for spherical uni-

verses, that the wave function be of period 2x
in 7, imposes the new restriction that v be
integral. Thus, not every integral s is admissible;
s and 2 must be integral solutions of (Eq. 15.25):

v'= (s+-2')'+Ps'. (15.5)

This is a remarkable requirement. It implies that
the actual eigenvalues v and s depend on the
number theoretical properties of the dimension-
less physical constant p)2 which is roughly of the
order of 1040.

If we assume the existence of the lowest
possible frequency v(), when s=0, then p22 must
be of the form

Other functions f„"are given by the recurrence
relation

f„' '=L(k —-', ) cot p—1/2 sin p+d/dpjf„", (15.38)

(f', g.")=(f=', -g--'). Ps2 = v()2 —1/4, (15.51)

40 Reference 34, Eqs. (8.18}and (7.17}.
"Reference 34, Eq. (8.19},where n", j, m correspond to

ourn, k, m,
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vo =a(4b' —1) b, —

s =4c5—1,

(15.54)

(15.55)

vo being an integer. Eq. (15.5) reduces to

v~=s(s+1)+ va'. (15.52)

A simple solution of this diophantine equation is
given by

(15.53)

angular components of the probability current
4-vector density, (—g)&P and (—g)&I&, are both
zero. This is important as both these components
involve the factor 1/sin p which does not have
period x in p.

The even integers v and n are subject to the
relation (15.25):

v'-' =n2+ ps"-.

If the lowest possible frequency vo, for n=0, is
to exist, then ps must be integral:where e and b are positive or negative integers.

We now turn to the examination of elHptic
universes of type I.The f„",obtained from (15.37)
and from the recurrence relation (15.38), are
now unsuitable as they do not have a period ~.
However, a satisfactory solution is obtained by
putting k =0. It immediately follows that
m=0."Eqs. (15.31) and (15.32) simplify to

(15.8)ps vo.

We now have the well-known Pythagorean
problem

(15.81)

which must be solved in even integers.
The dimensionless integer ps is the same

constant which was denoted by R/r, in the
introduction, (0.6). We may add the assumption,
adopted by many physicists and in particular by
Eddington, that the reciprocal of the fine struc-
ture constant

(15.61)

(15.62)

f„'+ing„= 0,

g '+inf =0.
Hence

(15.63)

The wave components now assume the simple
form (15.9)r,/r, = 137

g~g-s(Ã7+s p)

g (p&+ v) s—i(vs+a p)

(15.71)
exactly. It then follows that all three dimension-
less constants

The boundary conditions are satished if v and n
are even integers. It may be noted that the are integers.

R/r„ R/r„ r./r„ (15.91)

APPENDIX B

We give here a short sketch of the derivation" of Dirac's equations (15.11) to (15.14) for a free elec-
tron in a closed universe, by use of the two-dimensional spinor formalism. "Since Dirac's equations
are conform invariant, it is sufhcient to consider the Einstein universe, with Rg = 1, and we therefore

start with the line element

ds'=dr' —dp' —sin' p(de'+sin'8ds').

We adopt the simple spin metric

We then obtain for the n~"& defined by Eq. (14.2), the expressions

(0 i&-
asi" = (2& sin p) '(

Oj

(B2)

fi 01
!0'"&=(2& sin p sin 8) '~

(0 —iy

~ Reference 34, p. 352 C3), where j corresponds to our k.
4'The authors wish to thank Dr. B. A. Gri%th for supplying the calculations sketched in this section.
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The afFine spin connection is characterized by expressions I'„»". These are defined by

k t
t, &ik»+p. k+»»+p»&kku —

O
r s

where are the Christoffel symbols of the metric (81). For a free electron, i.e., in the absence
k

t

r s
of an electromagnetic field, we also have

(841)

(842)

1'I y2 ——r 22 —2$ cos p,

0

I'»' ——I';»2 =-,' cos p sin 8+-,'i cos 8.

2&0'k, (O",k+I';k" +') =iPsX»

24' " (Xk, k I kk X») =APE+

Dirac's equations are
(851)

(852)

The relations (841), (842) sufFice to determine the I'„i' uniquely. The only non-vanishing com-
ponents are found to be

where Ps is the constant given by (15.15). Explicitly, these equations assume the form

sin p[i%", i%,
'—

» i ,co—t p%'+psXk]= 4'2, k+~ cot 8%'+(i/sin 8)%', „,
sin p(i 4'„j4', »

—i cot p%—'+p@Xk]= —4', k
—

2 cot 8%"—(i/sin 8)%",„,
sin p[iXi, ,+iXk, ,+i cot p Xk+ps4']= X2k—, c,

o—t —8Xk—(i/sin 8)Xi, „,
sin ptiX, , ,+iX&,»+i cot pXk+ps4']=XLk+-,' cot 8Xi+(i/sin 8)X2, ».

(861)

(863)

(864)

(8?1)

(872)

(873)

(874)

co»=sin p sin& 8[—+'++' —X&+Xk],

krak
——sin p sin& 8t 4'+O' —Xi—Xk],

krak
——sin p sink 8LO' —O' —Xi+Xk].

These equations immediately reduce to Schrodinger's form, i.e., Eqs. (15.11) to (15.14), under
the 4-dimensional transformation

kik=sin p sin& 8L+'++'+Xk+Xk],
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' 'N the June 1—15, 1946 number of The Physical
- - Rema@, E. I'. Lype discusses thermodynamic
equilibria of higher order from the point of view
of an expansion of the thermodynamic potentials
in Taylor's series, and obtains results which,
when applied to transitions of the second order,
differ from the mell-known results of Ehrenfest
by a factor of two. Application of the results to
the experiments of Keesom on helium and of
Clusius and Perlick on methane is held to valid-

ate the method of thermodynamic potential and
Taylor's ser ies.

The difference between the results of Ehren-
fest and of Lype is not to be attributed to any
failure of mathematical rigor on the part of
Ehrenfest, but to two different conceptions of
the nature of the physical phenomena, which
are essentially incompatible with each other.
To bring out the difference it will be sufhcient
to restrict ourselves for the present to transitions


