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Some evidence is given that the self-energy of an electron in the hole theory is hnite, but
coincides arith mc' only if e~/hc satis6es a particular equation.

INTRODUCTION AND DISCUSSION OF THE RESULTS

~~NE of the very few tentative ways of explaining the finiteness of the self-energy of the electron
without hypothesis ad koc was made by Weisskopf, ' who considered an electron in the "vacuum"

of the hole theory and reached the conclusion that its self-energy diverges only logarithmically in
every approximation; i.e., if the self-energy 8' is expanded in a series of approximations

W= Q„W&"&,

corresponding to an expansion in powers of the parameter e'/kc, II&i"& does not diverge more strongly
than

W&"& mc'(e'/kc) "[log (k/mca)]",

where e is a "critical length" giving the "dimension" of the electron.
Although Keisskopf did not obtain a finite self-energy, a great step was made, since the radius of

the electron appears in (2) only logarithmically, and the electron mass appears for the first time as a
coeScient in the self-energy.

Weisskopf considered his result as an evidence that the critical lenght a is of the order of (k/mc)
exp( —kc/e'), but it must be pointed out that if the series (1) is an alternating one, it is possible, and
also very probable, that 8' remains finite also if c is infinitely sma11.

If we consider the physical meaning of the diHerent approximations, it appears a1so very probable
that the series (1) is an alternating one. Weisskopf has shown that the reduction of the order of the
divergence in the hole theory is caused by a polarization of the "vacuum. " In the first approximation
this polarization iz caused only by the repulsion between identical particles in a completely degenerate
Fermi gas. The second approximation gives the eA'ect of the electrostatic repulsion, and therefore
this approximation gives a further increase of the polarization and a reduction of the self-energy,
i.e., a negative term. Since in the second approximation the electrostatic repulsion is calculated for
electrons which are nearer than in reality to the polarizing one, the third approximation mill be
positive, and so on.

It is therefore possible that the series (1) converges for every value of a to a limit

W mc'g(k/mca), (e'/kc) g,

and that f is finite also for vanishing a:

lim. of[(k/mca), (e'/kc)]=g(e'/kc)

The requirement that the whole mass of the electron should be electromagnetic mould then give
a condition for the numerical value of e'/kc, which should be a root of the equation

g(e'/kc) 1.

In order to control these conjectures we shall calculate the second approximation of the electro-

' V. F.Weisskopf, Zeits. f. Physik 80, 27 and 90, Si'I (1934); Phys. .Rev. 56, 72 (1939).
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static self-energy in the hole theory and shall 6nd that it diverges according to (2) and is in effect
negative.

%e have not yet calculated the "second" approximation of the electrodynamic self-energy, which
is in reality the fourth approximation of the perturbation produced by the interaction of the elec-
trons arit the transverse part of the electromagnetic 6eld; but we have no reasons to believe that
the result vrill be a different one. Anyway, the fact that the second approximation of the electro-
static self-energy is negative is sufficient reason for not rejecting the hope that the series (1) will

converge also for vanishing a.
In conclusion we may say that it is possible that the divergence of the self-energy in the hole

theory may be only apparent, and may be caused by failure of the expansion in powers of e'jhc. In
this case the exact solution of the problem which must be obtained without expanding powers of e'/hc
will give a 6nite self-energy; but this solution will be consistent with the assumption of the electro-
magnetic origin of the mass only if the numerical value of the one-structure constant satis6es a con-
dition of the type (5).

THE SECOND APPROXIMATION OF THE ELECTROSTATIC SELF-ENERGY

The electrostatic self-energy, according to Keisskopf, is given by

2Es ——g„,&a,+a%,+a&A(qrst) —2 P„a,+a, P.- A(qrs s )+g;,— A(s st t ), --—
a, = (a&I)&, (i=1, 2, 3, 4)

are the we11-known operators of the second quantization, and

e'I&' {u&*(&I)u&(r) I {u"*(s)u'(t) I
A (qrst) =A (q'r's~t&) = (&I+s = r+t)

x V (&I—r)'
(8)

Since only the first term of (6) has non-diagonal elements, we obtain for the diagonal elements of
the electrostatic self-energy in second approximation

4We&si = Qg„& . a,+a a,+a,a,+a a&+a&(qure)A(swtx)(Eq+E„E„E, ) —', —

where (u, e, u&, x) are permutations of (q, r, s, t) with

eQg,

vier,

mQs, xQt

(u, «, u, x) W (r, q, t, s).

(10a)

(10b)

Using the well-known relations between the a„we obtain after some changes of the indices

~s"' =~
A =-," g,„,& E,I&t,(1 —E,)(1 J&'ti)A(qsrt)[—A(sqtr) —A(srtq) j(E,+E„E,—E,)-'—

'J3= si Q,„„X,(1—2%„)(1—N, )(1—2'&)A(qrrs)A(sttq)(E, —E,) '.

The second apprmimation of the self-energy of an electron at rest is

W&" = W&"(Vac. +1)—W&@(Vac.),

(11)

(11a)

(11b)

(12)

and its electrostatic part may be obtained by deriving 8'g' & with respect to Xo+ and putting after-
wards N„+ 0 and N„-= i. We obtain in this way

cZ P,-,...A (0+s+r t+) [A (s+0+t+r-) —A (s+-r t+0+) &(mc —E -5—T)-'—
,+ A(q s+r 0+)[A(s+q 0+r ) —A(-s+r-0+q-) j(—Q —R —5—mc)-' (13)

Q (m'c'+q )&, R (m'cm+r') &, S (m'c'+s') &, T (m'c'+t~) &;
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and changing the indices in the 6rst sum we have

cg = —P,+r A (0+r+s q+)
—[A(r+0+q+s ) -A—(r+s q+—0+)](Q+R+S m—c)

with
+P;;A(q

—s+r 0+)[A(s+q 0+r ) A(—s+r 0+q-)](Q+R+5+mc)-' (13')

s= q+r.

The sum over the spin directions may be made in the usual way:"-

V'cH
g =P« I

—[32QRsr4(Q+R+ 5—mc)] 'SP[(1+P)(R+a r+Pmc)]
h

X Sp[(s—n s .pm—c)(Q+ a q+. pmc)]+ [32QRsq'r'(Q+R+ S—mc) ] '

X SP[(1+P)(R+e x+Pmc)(s —e.s —Pmc)(Q+ e q+Pmc)]

+[32QRsr'(Q+R+5+mc)] —'Sp[(1+p)(R —n r —pmc)]

Xsp[(S+e s+pmc)(Q —e ~ q —pmc)] —[ 32Q Rsqr2~(Q +R+5+m)c] '

X Sp[(1+p) (R er —pm—c)(5+a s+p. mc) (Q —n q —pmc)] }

(Q+2R+s) ["—(s—Q)'] QR(Q+R —s) — ' 's
= —mc g„ + (16)

2QRSr'[(Q+R+ S)' m'c—'] 2QRSq'r'[(Q+R+5)' —m'c'] }

the sum over q and r may be substituted by an integral:

t
q'(Q+2R+5) [r' —(5—Q)'] QR(Q+ R —5) —m'c'5 df»pngqdr

A = mc'} ——
} +

», hc j c I 2QRsr [(Q+R+5) m c ] 2QRS[(Q+R+5) —m c ]
t

Since only
5= [m'c'+ (q+ r)']'

depends on the relative directions of q and r, we may use the transformation

(18)

r d QP Qgqdr

J f
(& (&dqdr

f5d5,=8 I f dcos(qx) dqdr=8
0 qr a Sl

5$ ——[m c +(q —r) ]», 52=[m2c'+(q+r)']»; (20)

on the other hand, since we are interested only in the asymptotic behavior of A for p&&mc, and f is
Finite for q and r finite, we may neglect @ac with respect to q and r, and write

has the values

(e')'
t

p Ir dQdR
A ——mc'i —

} g~(Q, R)
&hc) ~ „,~„„QR

p
~+s Q(Q+2R+ 5)[R' (5 Q)']+R'(Q—+—R S)—

g.~(Q R)=4 85
I —i' I R'(Q+R+ 5)'

4P —2Q'R+R' 4Q' —2QR'+R' Q+R
gg(Q, R) =4 —4 log for R&Q

QR' R'

(21)

(22)

(22a)

for R& Q.
4P 2PR+QR' 4Q—' 2QR'+R' Q+—R

gg(Q, R) =4 log
R' R' R

~ W. Heifer, QNeetum Theory of Radmtion (Oxford University Press, iXew York, 1936), p. 150.

(22b)



Owing to the fact that g~(Q, R) is a homogeneous function of degree zero, it is easy to see that for
P&&nsc

A ——mc'(e'/kc)'pLgg(Q, 0)+gg(0, R)] log' (P/mc);

and then we obtain from {22a) and (22b) that

iI——(4/3) mc'(e'/hc)' log' (P/mc)

ln t.he same way we have for 8:
c8 = Q„, N, (1 —N, ) (1 2N, )—A (q0+0+s)A (sttq)/2Q

=Z. ~ (q-0'0'q') L~ (q't't'q-) —~(q't-t-q-) j/2Q

V'c~
8=P,I L32Q3Tq'(t —q)2j 'Spl {1+/)(Q+n q+ttmc){n t+ttmc)(Q —n q —Pmc) je'k'

(23)

or, PUtting

=mc Q gL4QSTq'(t —q)'j-'(q' —t q) (26)

V'x"'
8= m Qq„{q'+R' —T ) /(SQ'Tq'v"-).

e4h4
(26')

rom here we obtain

SQI T

t'e'y '-'

t q'+R-" T."dQQO—+qdv t' e'~ '
8 =mc'/ —

f
ll

— -- - ——mc'
/

—
I

kkcJ ~ n' (kc)

dQdR
gs(Q, R)

QR
(28)

then

ps+F Qz+R2 T2
gs(Q R)= ~ — — dT

I 0—s'I Q

gs(Q, R) =4R'/3Q' for R & Q

gs(Q, R) =4/3 for R & Q;

8—(2/3) mc'-(e' ikc)' log' (P/mc).

(29)

(29a)

(29b)

atroducing the critical length a=k/p, we conclude from (11), (24), and (30) that

Weo~ ——(2/3) mc'{e'/hc) '-' log'(k/mca) . (31)


