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Some evidence is given that the self-energy of an electron in the hole theory is finite, but
coincides with mc? only if €2/hc satisfies a particular equation.

INTRODUCTION AND DISCUSSION OF THE RESULTS

NE of the very few tentative ways of explaining the finiteness of the self-energy of the electron

without hypothesis ad hoc was made by Weisskopf,! who considered an electron in the ‘“‘vacuum”

of the hole theory and reached the conclusion that its self-energy diverges only logarithmically in
every approximation; i.e., if the self-energy W is expanded in a series of approximations

W=3. W", (1

corresponding to an expansion in powers of the parameter €*/hc, W™ does not diverge more strongly

than
W ~me(e /by [log (h/mea) T @

where @ is a “critical length” giving the ‘‘dimension” of the electron.

Although Weisskopf did not obtain a finite self-energy, a great step was made, since the radius of
the electron appears in (2) only logarithmically, and the electron mass appears for the first time as a
coefficient in the self-energy.

Weisskopf considered his result as an evidence that the critical lenght a is of the order of (&/mc)
exp(—hc/e?), but it must be pointed out that if the series (1) is an alternating one, it is possible, and
also very probable, that W remains finite also if @ is infinitely small.

If we consider the physical meaning of the different approximations, it appears also very probable
that the series (1) is an alternating one. Weisskopf has shown that the reduction of the order of the
divergence in the hole theory is caused by a polarization of the ‘““vacuum.” In the first approximation
this polarization is caused only by the repulsion between identical particles in a completely degenerate
Fermi gas. The second approximation gives the effect of the electrostatic repulsion, and therefore
this approximation gives a further increase of the polarization and a reduction of the self-energy,
i.e., a negative term. Since in the second approximation the electrostatic repulsion is calculated for
electrons which are nearer than in reality to the polarizing one, the third approximation will be
positive, and so on.

It is therefore possible that the series (1) converges for every value of a to a limit

W=mcf[(k/mca), (¢¢/he)], 3)
and that f is finite also for vanishing a:
limaoof[(k/mca), (e2/hc)]=g(e*/hc). (4)

The requirement that the whole mass of the electron should be electromagnetic would then give
a condition for the numerical value of €2/kc, which should be a root of the equation

g(e?/hc)=1. (5)
In order to control these conjectures we shall calculate the second approximation of the electro-

1V. F.Weisskopf, Zeits. f. Physik 89, 27 and 90, 817 (1934); Phys..Rev. 56, 72 (1939).
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static self-energy in the hole theory and shall find that it diverges according to (2) and is in effect
negative.

We have not yet calculated the ‘‘second’’ approximation of the electrodynamic self-energy, which
is in reality the fourth approximation of the perturbation produced by the interaction of the elec-
trons with the transverse part of the electromagnetic field; but we have no reasons to believe that
the result will be a different one. Anyway, the fact that the second approximation of the electro-
static self-energy is negative is sufficient reason for not rejecting the hope that the series (1) will
converge also for vanishing a.

In conclusion we may say that it is possible that the divergence of the self-energy in the hole
theory may be only apparent, and may be caused by failure of the expansion in powers of e2/kc. In
this case the exact solution of the problem which must be obtained without expanding powers of ¢?/k¢
will give a finite self-energy; but this solution will be consistent with the assumption of the electro-
magnetic origin of the mass only if the numerical value of the fine-structure constant satisfies a con-
dition of the type (5).

THE SECOND APPROXIMATION OF THE ELECTROSTATIC SELF-ENERGY
The electrostatic self-energy, according to Weisskopf, is given by
2Es=3 pataota,a,ta A (grst) —2 3o agta, o A(qrs—s™)+ 2 A(s~s™t7t7), (6)
a,=a‘(q), (1=1,2,3,4) (7)

where

are the well-known operators of the second quantization, and

2k2 ik 7 k% l
Algrst) =4 (q%w)ze_ {u™*(Qui(r) } {u+*(s)u (t)}, (qds=r4t). ®
VvV (q—1)?

Since only the first term of (6) has non-diagonal elements, we obtain for the diagonal elements of
the electrostatic self-energy in second approximation

AW s® = T pster 0440000540000, 4 (quro) A (s1012) (B, + Eo— Eu— B, ©)
where (u, v, w, x) are permutations of (g, 7, s, £) with

usq, vFEr, wFEs, x7#t (10a)

(u, v, w, x)#(r, q, ¢, ). (10b)

and

Using the well-known relations between the a,, we obtain after some changes of the indices

" Ws®=A+B (11)
m; A=33 4se N,N.(1—=N,)(1 = N)A(gsrt)[A(sqtr) — A(srtg) { Eq+E, — E,— E)™ (11a)
an B=13% 4 N,(1—=2N,)(1 —N,)(1 —2N,)A(grrs)A(sttg)(E,— E,) . (11b)

The second approximation of the self-energy of an electron at rest is

W® =W®(Vac.+1) — W®(Vac.), (12)

and its electrostatic part may be obtained by deriving Ws® with respect to Vy+ and putting after-
wards N,+=0 and N,-=1. We obtain in this way

A =3 e A(OFstr—tH)[A(sF0HHr~) — A (strt+0Y) J(me—R— S—T)~!
—2ore A(gstr0)[A(stg0tr) —A(str-0t¢) J(—Q—R—S—mc)™, (13)
Q= (m+¢)}, R=m+r)}, S=m’t+s)}, T=(m>+)}, (14)

where
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and changing the indices in the first sum we have
A ==Y oo A(OFrts—gqP)[A(r+0+gts—) — A(r*s—q¢t0+) J(Q+ R+ S—mc)~!
with + 3o A(gstr0t)[A(stqg 0tr~) — A(str-0*¢) J(Q+ R+ S+mec)t  (13')
s=q+r. (15)
The sum over the spin directions may be made in the usual way:*

Vien?
; A =3\ —[32QRSr(Q+R+S—me) 1 SpL(1+8) (R+ e« 1+Bmc) ]
etht

X SpL(S—ea-s—pme)(Q+a- q+Bmc) ]+ [32QRSg@*(Q+ R+ S—me) ]

X SpL(1+B)(R+a-r+8mc)(S—a-s—pmc) (Q+a- q+Bmc) ]
+[320RSH(Q+R+S+me) T SpL(1 +B)(R—a-1—gme) ]

X SpL(S+a-s+pme)(Q—a-q—Bme) ]~ [32QRSg*(Q+ R+ S+mc) ]

X SpL(1+B)(R—a-1—Bmc)(S+a-s+Bmc)(Q— «- q—pmc) ]}
(Q+2R+S)[72—(S—Q)”]+ QR(Q+R—.S)—m*c*S
“120RSH[(Q+R+S)2—m2?] 20RSgr*[(Q+R+S)2 — m2*]

}; (16)

the sum over ¢ and 7 may be substituted by an integral:

i ( ) f{ FQR+2R+ [ = (S=0)¢]  QR(Q+R—S)—m*S Idﬂqdﬂrdqdf .
= —mc )
20RS[(Q+ R+ S)2—m2c?] ZQRS[(Q+R+ S)2— m2c?) 72
Since oniy

S=[m2+(q+r)2 ] (18)

depends on the relative directions of q and r, we may use the transformation

dﬂqdﬂ,dqdr » dqdr
f 8ffdcos(qr) dqdr-8f f f £Sds. (19)
with

=[m*c+(g—r)*}, S=[m?+ (q+r)2]‘; (20)

on the other hand, since we are interested only in the asymptotic behavior of 4 for p>mc, and f is
finite for ¢ and r finite, we may neglect mc with respect to ¢ and 7, and write

2 dQdR
ZE-—mc?(e) ff 24(0, R)——Q——— (21)

me me

where
Q+R +2R+S)[R2—=(S—0)*]+R}(Q+R-S
1(0.R) = 4f QQ )L (S—0)*] Q )dS 22)
1Q—R| R¥Q+R+S)?
has the values
40P —20*°R+R3 4(03—20R*+R? R
24(Q, R) =4 ¢ —4 ¢-20 log et for R<Q (22a)
; QR? R3 Q
anc
40P —20°R+QR* 4Q*—2Q0R*+R3 +R
24(Q, R)=4 ¢ (12; s —4 ¢ R?‘* log QR for R> Q. (22b)

2 W. Heitler, Quantum Theory of Radiation (Oxford University Press, New York, 1936), p. 150.
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Owing to the fact that g4(Q, R) is a homogeneous function of degree zero, it is easy to see that for
P>mc

= —mc(€*/hc)*3[g4(Q, 0)+24(0, R)] log? (P/mc); (23)
and then we obtain from (22a) and (22b) that
A== —(4/3)mc*(e?/hc)? log? (P/mc). (24)
In the same way we have for B:
¢B=3 . N,(1—N,)(1—2N,)A(q0+0%s) A (sttq) /2Q (q=s)
=2 A(g 00t g [A(gHtttrq) — A(gHtt=g7)]/2Q; (25)

ooy [320°T@*(t—q)* F ' SpL(1 +8)(Q+«- g+ Bmc) (a- t+Bmc) (Q— a- q—Bmc) ]

=mc 3 o[40°T¢*(t—¢)* T (¢*—t-q); (26)
r=t—q, (27)

or, putting

Veg
MB m ¥ or(g?+R2— T2/ (803 Tg?). (26")

rom here we obtain

oo S [LART dndn (2 ) [ [ wenE

re

Q+R Q2+R2
¢n(Q, ) = f Ry (29)
1Q—FR|
the values
g8(Q, R)=4R*/3Q* for REQ (29a)
g8(Q, R)=4/3 for R2 Q; (29b)
then -
B=2(2/3)mc*(e*/hc)? log? (P/mc). (30)

ntroducing the critical length a=h/p, we conclude from (11), (24), and (30) that
W@ —(2/3)mc(e?/he)? logi(h/mca). (31)



