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It is we11 known that the line element corresponding to the homogeneous universe can be
derived from the physical assumptions that the material with which we are dealing is radially
symmetric and spatially isotropic. In order to obtain a more general cosmology the following
physical assumptions are made: i. The matter in the body is radially symmetric. 2. The
matter comprises a perfect fluid at rest. And 3. The matter obeys an equation of state of the
form p= p(p) where p is the pressure p is the density. It is shown that the above assumptions
lead to three possible cosmologies. One of these is of cou'rse the homogeneous universe and the
other two are new, .

INTRODUC'HON

HEN considering possible models for the
universe one of the most important,

hitherto discovered, is the homogeneous universe.
This model can be derived from the physical
assumptions' that the material with which we
are dealing is radially symmetric and spatially
isotopic. On the basis of these assumptions it
can be shown that the line element' for this
model is given by

de =dt2-
(1+r&/4ZP)~

X (dr'+r'd8'+r' sin' 86/), (1)

where g(t) is an arbitrary function of t. Further
the pressure~ p and density p are given by

~
—g(t) d2g———3j"-+A
Rfl' de

3g—u(&)

+-g —A
Ro'

where the dot denotes differentiation with re-

spect to l and A is the cosmological constant.
Since both p and p are functions of t alone, it is
obvious that an equation of state of the form

p =p(p) always exists for the homogeneous
universe.

In attempting to obtain a more general model
than the homogeneous universe Professor R. C.

' R. C. Tolman, Relativity, Thermodynamic s and Cos-
molo y {Oxford University Press, Cambridge, England,
1934, pp. 362-370.

~ Reference 1, p. 369.' Reference ), p. 37tI'.
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Tolman suggested to me, some time ago, the
following method of attack. The line element is
taken to have the form'

ds'=e"dt " e&(dr'+-—r'sin'8dg'+r"-d8"-), (4)

where ti = ti(r, t), v = v(r, t), and the material
body with which we are dealing is assumed to
have the following physical properties.

1. I'he rnatter in the body is radially symmetric,
2. The matter comprises a perfect fluid at rest in the

coordinate system of (4).
3. The matter obeys an equation of state of the fornax

P=P(s)

It is quite obvious that the homogeneous
universe satishes these assumptions. %'e shall
show that there are two additional models which
will satisfy all of the above assumptions.

2. GENERAL FORM OF THE GRAVITATIONAL
POTENTIALS

If T denotes the components of the energy-
momentum tensor then our second assumption
impliess T~'=T22=T33= —p, T44=p and T =0,i'. Using the expressions for T as given by
To/man' we hnd

gati' ti'v' ti'+v'l
8 p=.—.

(
—+ +

E4 2 r )
(d p yves—e '( +—'t'i2 ——)+,1, (2.1)
EdP 2)

'The same form of line element was recently used by
Einstein and Strauss in discussing the influence of the
expansion of space on the gravitation fields surrounding
stars. (Rev. Mod. Phys. 1V, 120-124 (1945).')

s Reference 1, p. 243.' Reference 1, p. 252.



t'p"+i i" p+i )
8s p =s-~i +—+

(,8irp= —& "I p"+—+ ~+i& "p" ~, (23)
4 r J

(2.4)

In the above expressions the prime notation
indicates partial diHerentiation with respect to
"r" and the dot notation indicates partial
diHerentiation with respect to "t."

Before proceeding it might be pointed out
that many writers on relativistic cosmology
prefer to take the value of the cosmological
constant A. to be zero. %e retain this constant
in our equations since its value does not aHect
the simplicity or complexity of our calculations
in any way.

%hen p, =o it is not difficult to show that a
pressureAensity relationship can exist only if the
line element can be transformed to a static form
in which both III., ~ are both independent of t. If
the gravitational potentials p, , u depend only on
r a pressure-density relationship always exists
and the problem is usually carried forward by
investigating special pressure-density relation-
ships of physical interest. Since this case has
already been discussed to some extent in other
papers we shall not treat it further here and
shall assume throughout that y/0.

With the above restriction Eq. (2.4) can be
integrated to give

v=2 log p+P(t), (2.5)

where ft is an arbitrary function of "t." Making-

use of (2.5) Eqs. (2.1)-(2.4) take the form

8~p =A—e&"
(
—+—)

—8,
8t &2 r)

p" = L(p+—p)p'j/p,

2p= 3(p+—p) p.

E11Hlinatlng p gives us the single re1atlon

(p+p) p'= pp'

(2.10)

(2.11)

(2.12)

By inspection we can see that j=o or p'=0 are
two solutions of (2.12). If p =0 then (2.11) implies

P+p=0 since we have assumed ii/0. The posi-
tive character of the pressure and density means
that p+ p =0 cannot be satisfied unless p =p =Q.

This could hold, however, only in empty space
and an equation of state for this case would bc
meaningless. The other possibility p =0 implies
p'=0 since we have assumed an equation of
state of the form p=p(p). For this case Eq.
(2.10) gives us p+p=0 or ji'=0. We discard
p+p=0 as before and deal with js'=0. When
this is so (2.4) would require v'=0. Further
investigation shows that this case leads to the
homogeneous universe. In order then to obtain
a more general model than the homogeneous
universe we now know that neither pressure noI'

the density can be independent of t or r.
Jn order to carry through the integration of

(2.12) let us define the function g(p) by means of

ref/rf p =1/(p+ p) (2 15)

This is legitimate because p= p(p). Then (2.12)
takes the form

(2.14,&

The equality of (2.6) and (2."I) immediately,
yields an equation which can be integrated with
respect to t. This leads to the equation

Jr „+"I p" ————(=&(r)r)
where P(r) is an arbitrary function of r.

Since the divergence T;„of the energy. -

momentum tensor must vanish we can obtain
the following two relations,

(e—' 2Yq

(2 3)

(2.8)
log p =q(p)+arbitrary function of t. (2.15)

Equation (2.15) can be integrated by a similar

device used to integrate (2.12) and we find that
p must have the form

(2.16)



v = t+k(r). (2.17)

where v=k(t)+k(r) and h, k are arbitrary func-
tions of their arguments. Moreover a change of
time scale t=k(t) leaves the form of the line
element invariant so there is no loss in generality
in taking h(t) = t. Thus

Returning to Eq. (3.1) we shall make a change
of variable by means of x=r'/2 T. he equation
then becomes

(4I't4 1 /Bt4) ~)
e~~'J --( —

I I =QL(2x) ~]/2x=h(x). (3.3)
&aa 2&ax) )

From (2.11) we have
2 dg'

2p/3(P+R) = p
3dp

Since f is still an unknown function we have
replaced $L(2x)&]/2x by h(x). Similarly the form

(2 18) of tt is given by

This implies t4 = F(v)+s(x), (3.4)
t = —-', g(p)+y(r), (2.19) where

(3.5):=t+y(x)where f(r) js an arbitrary function of r. Thus,
because of (2.16), we have that t4 must have the
form

u = F(v)+f(r) (2.20)

Moreover the form of the second gravitational
potential v is given by (2.5) to be

and z(x) =g(2x)&], and y(x) =kL(2x)&]. ln order
to simplify our notation we shall, from now on,
denote total differentiation by a letter subscript.
Thus F,=dF/dv, y. =dy/dx and so on. Substi-
tuting (3.4) into (3.3) we obtain

v = 2 log (dF/dv)+4b(t) (.2.21)

Ke have by the above analysis obtained the
general functional form which the gravitational
potentials p, ~ must have. In order to 6nd
explicit expressions for p, , v we must still 6nd
explicit expressions for F(v), k(r), f(r), and 4b(t).
These will be obtained in the next section.

pzz pz~z =a$'z,

~zz fez Vfz )

(3 &)

(3.8)

e~r+ ~ 2DF „—Fm)v 2+ F„(y— —y s~)

+s„—$zP] =h(x). (3.6)

Since x and v are independent variables, we ran
satisfy (3.6) only if

3. DETERMINATION OF THE GRAVITA-
TIONAI. r OTENTIAr. a

e~"(F„, ', F„-'+aF„+—b}-= c, (3.9)

h(x) =ce'"y.',

!~z =$'zz: Pz &Pz.

From the preceding section we have seen that
the gravitational potential t4 must satisfy an where a, b, c are constants. From (3.7)
equation of the type

(3.11}

e""I t"————(=4()
2 r) (3 1) Substituting (3.11) into (3.9) we have

2y,y„,—3y„'- = (2b+a') y, '. (3.12)
and further p, must have the form

t = F(v)+f(r) (3.2)

KVhen f(r}=0, the solution of (3.1) is easily
obtained to be t4= —2 log (Ar'+13) where A, 8
are arbitrary functions of "t." For this case the
density is given by (2.8) to be 84rp = 12AB
+43@ &~'~ —A. Thus the density is a function of t
alone. By a result obtained in the previous sec-
tion we see that this can only be so, under the
assumptions we have made, when the solution
can be reduced to the solution corresponding to
the homogeneous universe.

This last equation can be integrated to give

y. ' = (2b+a') y.4+c)y.', (3.13)

where c~ is a constant of integration,
For the remainder of the discussion it is best

to divide up the analysis into several cases
according as c~, a, b, 2b+a~ do or do not vanish.
We shall illustrate the analysis by two cases,
one of which leads to a new solution, and the
other is used to show that for certain values of'

c~, a, b no solution exists which wi11 admit an
equation of state.
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c~ =b =a =0. Thus y„=0 and y =c~x+c~ where

c2, c3 are constants of integration. Since e=t+y
the constant. of integration cs can be taken to bc
zero as it can be absorbed into the time scale.
From {3.11) s, =0. We can take s =0 as a little
consideration will sho~ that the constant of
integration that arises in this case can be ab-
sorbed into the r scale. Thus p=F(v) where
v=t+c~r'/2. Under the restrictions imposed in

this case Eq. (3.9) becomes

e~"(F,, ——,'F,,') =c. (3.14)

The substitution F= log (—c/12tv)-'reduces this
t.'quation to

(3.15)

wh&ch can be integrated to gtve

m„'=4m' —c ~. (3.16)

The solution of (3.16) is w=p(v) where p(v) is

the Weierstrass elliptic function with invariants
0, cg. Thus F=log (—c/12p(v))'. From the ex-

pressions we have derived wc hnd our gravita-
tional potentials are given bp"

p = log (—c,'12p(v))',

~ = log (4p.'/p') + tp(t),

v =/+cpr /2" (3.18)

In our gravltatlollal potentials only one un-

known function p(/) remains. This can be deter
mined by the condition that the density p must
reduce to a function of v alone. From (2.8),
(3.16), (3.17), and (3.18) the density is given by
ihe equation

8r p = 6(0p„p+c, )v+ ', e «'& -6a-c~cst .—1, (3.19—)

where n= (12/c)'. Since v and t are independent
variables, p can be a function of v alone only if

form p =p(p) exists for this case and that (3.21),
{3.22) provide a parametric representation of
that relationship.

Y.= 2/L(x+a)' 1], — (3.24)

where a is constant of integration. From (3.24)
we 6nd

y =log
~
(x+ a —1)/(x+a+1) j

+constant of integration. (3.25)

evince we are using this case only for purposes of
i11ustration we shall take both u and the constant
of integration to be zero. Thus

Similarly s can be determined by (3.11) to be

(3.27)

In the expression for z we have again dmpped;»
constant of integration. For this case then

v =(+log
i (x —1)/(x+1) i,

p=F(v) —2 log (x —1[.

I', 3.28'

(3 29)

Retuflllllg to & q. (2.8) we Ilott.' tllat, the
transformation x=r-'/2 puts this in the form

X
~p= —e

I
2xp, +-p."-+3

+ge-&'" —( (3 30)

Substituting (3.29), Fq. (3.30) becomes

Returning to Eq. (3.13) we take b=0, a=1,
c~ =2. The equation then becomes

&sr = Yx +2/x .

This can be integrated to give

e '=8(ac2c3t+P), (3.20) Sv p =- Lx(SF,.„+2F,.' 4F.+12)—
I'x+ 'j ')"-

N here P = (A+K)/6 and E is a constant. When
this is so the pressure and density are given by

—6(x-'+1)(F,—1)]+43e & —A. (3.31)

Expressing x in terms of v and t hy means of
(3.28) we find that (3.31) can be put into thi

form

Sv p =6ae2(pp„+c3v) +It. , (3.21)

SsP —aLpp, +6cav —5c,(p/p„) j E. (3.22)—
~Ve thus see that an equation of state of the Sir p =A (v)+B(v)e "+P(t), (3.32)



A (&&) = er —(2F„.+,' F,'-' -4F,—+6}, (3.33)

B(&}=e &" "-"—(2F„,.+',E.'+-2F„), (3.34)

&k(t }
—3 e—&t&&) (3.35)

l}sing (3.34) we see that F(&&) must satisfy th&

«differential equation

(3.36}

'W'e already know however that I' must satisfy
(3.9). Putting &i=1, 6=0 this equation can be
@ ritten

F„,——.' I',,"-+F,, =re ("I"-). (3.37)

Subtracting (3.37) from (3.36) we find

-' I' ""=ke(~-"-" —ce—(~/"-' &'3.38)

l }ifferentiating (3.38) with respect to && and
substituting for F„,„ from (3.37) we find

(9.F i 3 F +Bee r/ '}—'-

=ke&' '-"&(F.—2}+t2ce &r'-'&F, . (3.39)

f:liminating F„by (3.38) Eq. (3.39} takes the
fnrn~

-'F '- = ke(~' —-"". {3.40')

From (3.38) and (3.40) we see that c=0. How-
ever (3.10) implies k(x) =0, and in turn (3.3)
gives us &k(r) =0. This case has already been
dealt with and we have seen that P(r) =0 lends
us to a solution which corresponds to the homo-
geneous universe. Thus the second case which
we have discusseci Goes not lead to a nev

solution.
It was pointed out that in order to obtain a

complete analysis of the problem under con-
sideration it was necessary to investigate several
special cases according as c~, a, b, 2b+0'-, do or
do not vanish. The author has carried through a
complete investigation of every case possible and
only two new solutions for the gravitational
potentials exist, one already obtained and the
other will be given in the conclusion of this paper.

Since &&, t, are independent variables (3.32) &mpl&es

that p is a function of v alone only if

8(".&) = constant = 2k, &k(t) = —2ke "-'+constant.

COHCMSIO&

Starting from a l.ine element of the form

ds" =-e"dt-" e&'(—dr' +r'-dtt" +r"-sin-'-t}d&t&')

we have been able to show that the physical
assumptions given in the introduction implies
that the gravitational potentials can be reduced
to one of the following three forms.

1 e" =1, e&=e'&')/(1+r"-/4R')'

{'homogeneous universe) .

2. e'= p„",&2(ac.cst+P)p "(&&), -e&=c"- /1 44'-"( &&)

where v = I,+c2r"-/2.

3. e" =p.'-'/2(ac. cit+(3)p-"(e), e = c-'/144r'f&&'(&))

where &&=t+c2/2r'

The line element corresponding to the third
solution can easily be obtained from that of the
second by the transformation r=1/r. 1t is not
dii%cult to show that the second and third solu-
tions lead to the same equation of state. As a
cosmological model the third solution is not
likely to be of interest because of the singularity
at r=o. In order to determine whether the
second is of interest one should investigate the
physical properties, such as behavior of particles,
light rays, etc. , of a model whose gravitational
potentials are those given by (2). The author
hopes to carrv this investigation out at a later
time.

Even if these solutions do not provide an
interesting cosmology they at.e at least two new
solutions of the 6eld equation that are valid
inside matter. As such they may be of interest
in problems of the type recently discussed by
Einstein and Strauss. ' More than this the
analysis which we have carried through points
the way to determine several more new solutions
of this type. By solving Eqs. (3.7), (3.8), (3.9)
we are lead to several more solutions of the
field equations which will be valid inside matter.
%'e know however that these new solutions will
not admit an equation of state of the form

0=P(t).
The author would like to thank Professor

Tolman for suggesting this problem, and to say
that Eq. (2.9) of the present paper was obtained
from him in a private conversation,


