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fracting areas to a dark gmin. The tilting was
done in the plane containing the diEracted beam,
i.e., the axis of tilt perpendicular to the line
joining the white and dark areas for a given
crystal. As far as analysis of individual diffracting
areas is concerned, two cases were observed: in
some, the pattern remains in position and does
not change in intensity for a few consecutive
positions of the foil and then disappears abruptly;
others change shape and disappear gradua11y.
The first may be interpreted as due to advanced
lattice distortions in which the continuity of the
lattice may have been spoiled. Their persistence
over an appreciable angle is due to the imper-

fectly parallel x-ray beam. The other type of
spots indicates a gradual continuous change of
orientation of the lattice.

Naturally it was attempted to obtain thin
foils of strain free copper. For that purpose a
we11-annealed disk of copper was electrolytically
reduced to the proper thickness and polished on
both sides. The resulting microradidgraphs are
shown in Fig. 6 in two positions of the foil.
There is practically no deformation present as
far as comparison with the other microradio-
graphs is concerned. A few grains show a faint
criss-cross pattern indicating a slight deforma-
tion.
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Comparative measurements at large and small distances have been made on the pressure wave
from a small underwater explosion. It is shown that: (1) there is a small departure from the 1jr
law for the peak pressure, (2) there is no detectable change in shape or "spreading" of the pres-
sure wave with propagation, and (3) the shock front is discontinuous within the limitations of
the apparatus. A theory is developed which is in quantitative agreement with (1)and {3}but in
disagreement with (2). The theory predicts a small spreading of the pro61e of the wave which is
large enough to have been detected. The theory shows that a spherically diverging wave of any
amplitude always becomes discontinuous eventually. In practice the distance over which it must
propagate before becoming discontinuous may be enormous.

INTRODUCTION

' 'T has been known for a long time that elastic
~ - waves of finite amplitude propagate with
change of shape, and in air the effect is large. In
water the medium is linear (for positive pres-
sures) over a much greater range of pressure than
is air, and the effect is correspondingly smaller.

In this paper experimental data will be given
on the propagation of underwater shock waves,
and compared with a theory developed for the
expected change of shape of a wave of finite
amplitude in water. An estimate ariel also be made
of the distance a. spherically diverging wave must
propagate before becoming discontinuous.

A submarine explosion (and also a subterra-
*Vibrations Section, Sound Division.**Crystal Section, Sound Division.
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Fi('. 1. Cross section of circular housing for oil-im-
mersed tourmaline crystal pressure gauges.

nean explosion) emits a pressure wave with a steep
(essentially discontinuous) shock front, followed
by a gradually diminishing tail. The dependance
of the pressure at any given point on time
is approximated by p= p exp (—(co)/s(&&0),
p=0(t&0), t being measured from the time of
arrival of the shock front. This disturbance
propagates with the velocity of sound c&, except
very close to the explosion. 0 is the "space con-
stant, " or distance from the shock front over
which the wave falls to an eth of its maximum.
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EXPEMMEHTAL PROGRAM

In the experiments described below the ex-
plosions were produced by No. 6 Dupont blasting
cap, with powder fuse. These are thin-walled

copper cylinders containing a charge of approxi-
mately 0.3 gram of mercury fulminate and tetryl.
The charge has a diameter of 0.56 cm and length
1.4 cm. Oscillograms of the pressure waves from
this charge at distances from 1 ft. (30.5 cm) to
31.3 ft. (956 cm) were obtained by use of
tourmaline pressure gauges, a broad-band tele-
vision amplifier, and cathode-ray oscillograph.
The experiments were performed in the Potomac
river, at a depth of 4~~ ft. Except for the gauges,

the apparatus was essentially that described in

reference j..
The gauges were of two types. (1) Single slabs

of tourmaline with metal foil electrodes coated
with various kinds of plastic, usually an air-dried
synthetic rubber, as in reference 1. (2) Slabs and
foil electrodes for which the dielectric was oil,
held between two thin sheets of neoprene (thick-
ness 0.0035 in. ) as shown in Fig. 1. In this second

type, the dieIectric was reduced to a minimum
and the results were somewhat more consistant
than with the 6rst type. This second type was
intended to represent over the interval of obser-
vation ( 30 ysec. ) a crystal suspended in an
inhnite medium, with a minimum of mechanical
"loading" of the crystal, other than its electrodes.
The tourmaline crystals were 0.020 in. thick in all
cases. The absolute value of the pressure in the
explosion wave was determined from gauges
calibrated in continuous waves. This calibration
was in fair agreement with the theoretical cali-
bration as computed from the piezoelectric
constant of tourmaline.

Since the non-linear effects in water are quite
small, it is necessary to compare oscillograms of
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M. F. M. Osborne and S. D. Hart, Transmission, reflection and guiding of an exponential pulse by a steel plate in
water, II. Experiment, "J.Aeous. Soc. Am. 15, 170 (f945).
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the explosion wave over as large a range of
distance from the explosion as possible, com-
patible with the durability and linearity of the
gauge, and the sensitivity of the recording appa-
ratus. In most cases observations at only the two
extremes of distances stated above were made
since the change in shape of the explosion wave
with distance is very small. In making observa-
tion, the crystal face was always oriented with
the normal to its face in the direction of propaga-
tion, i.e., "face-on. "The measured quantities are
illustrated in Fig. 2.

EXPERIMENTAL RESULTS

The results of the measurements indicated in

Fig. 2, comparing the explosion wave at 1 ft. and
31.3 ft. , are shown in Figs. 3 and 4, and sum-
marized in Tables I and II. In the case of
the peak voltage measurements, the ratio
(p.v. Xdist. ) y /(p. v. Xdist. ) aq. s is given, since for
perfectly linear propagation (1/r law for pres-
sure) this ratio would be unity, and hence de-
partures from unity indicates non-linearity. Each
of the points in Figs. 3 and 4 represent the mean
of 3—6 observations with a single, diR'erent gauge.
The errors are standard errors, computed with
each point as a single observation.

It will be observed that the dispersion of data
from the plastic-coated crystals is greater than
for the oil-immersed crystals. No significant

TABLz I. Theoretical and observed increase of time scale from 1' to 31.3'.

3.
Theoretical
increase of

time interval

4
Theoretical

increase according
to Kirkwood and Bethe

S
Observed

oil-immersed
c~stals

6
Observed

plastic-coated
~stals

o'( )(1—n)/ ~

pSCC.

0
+1.3
+2o6
+3.9

—1 Hpln (1/q)

JtLSCC.

Hp ——cr/cp

0
+1.4
+3.5
+Z.O

pscc.

+0.12&0.17—0.3 a0.5
+2.1 +1.0-0.3 ai.4

psseC.

+Oo8&0.5
+1.8w1.0
+2.1&1.Z
+2.1~2.3
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change in time scale with distance is indicated by
the latter data; the former show a very small
increase both in the time scale and time of rise
measurements at 31.3 ft. over that at 1 ft.

Figure 5 indicates, as might be expected, for a
discontinuous shock front, that the time of rise
is primarily an instrumental eR'ect. Since the
crystal slabs were of irregular shape, the square
root of the area was taken as a typical dimension.
The time of rise increases with the square root of
the area, probably because of imperfect orienta-
tion of the gauges "face-on. " The extrapolated
time of rise for crystals of zero area is 0.4 psec. ,
which is of the same order of magnitude as the
sum of the time constant of the amplifier

( 0.1 psec. ) and the time required for sound to
traverse the thickness of the crystal (0.1 psec. ).
The theoretical limitations of the apparatus are
thus very nearly reached. The data of Fig. 5 are
from the oil-immersed crystals only, at both
distances. The plastic-coated crystals indicated a
considerably longer time of rise (Fig. 4) than the
oil-immersed crystals, perhaps caused by a
cushioning of the shock wave in the plastic
dielectric.

In view of the results of Fig. 5, showing that
the shock front is truly discontinuous, at least a
part of the increase with distance of time scale for
the plastic-coated gauges must be instrumental.
This part is that due to the increase in the time of
rise, +0.8+0.5 psec.

The peak voltage ratios indicate a small but
definite departure from the 1/r law. The peak
pressure at 1 ft. is 30 percent 4rger than its
value as given by the 1/r law and the observed
value at 31.3 ft.

In summary therefore the observations indi-
cate (1) practically no spreading of the explosion
wave with propagation, (2) the peak pressure
falls off slightly faster tha, n 1/r, and (3) a shock
front which is discontinuous within observational
accuracy.

TABLE II. Theoretical and observed values of
(p.v.Xr)&'jC;p.v.X«) g&.g'.
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FIG. 5. Time of rise of shock front vs. linear dimension
of crystal. Oil-immersed crystals.

THEORY. FORMATION OF SHOCK FRONTS

In order to obtain a theoretical estimate of the
variation of peak pressure and time scale with
distance it is first necessary to determine over
what distance an initially continuous wave of
finite amplitude must propagate before becoming
discontinuous, and second, what changes in shape
thereafter obtain. According to the Riemann
theory for plane shock waves, points of constant
pressure propaga, te with the velocity (c+u),
where c is the local velocity of sound for the
pressure in question, and u the particle velocity.
In order to estimate c+u, one can approximate
the dependence of c on pressure by a Taylor
expansion, and use the acoustic approximation
for u. This is done as follows. If the density is a
function of the pressure alone, the local velocity
of sound is given by

c'=dp/dp=(dp/dp) p=po

+(p po) (d'p/d p'). =~—o (1)

where p=poat p=0. Let p —po=dp corresponding
to p —O=hp and (dp/dp)P=PO co' Then (1) can
be written

Theoretical
Eq. (1S)

first
factor

1.39

Theoretical
Eq. (19)

Kirkmood
and Bethe

Observed
oil-

immersed
crystals

1.31~0.04

Observed,
ylastic-
coated,
crystals

1.25+0.03

= oL1 —( o'/2)(d' /dp') ~pj
=cp(1+4'Ap). (2)

The value of k' from various estimates (experi-
ment, second differences of p ss. p data) will be
taken as 1.1X10 "c.g.s. units. From the acoustic
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approximation u is Ap/pea so that finally

c+g=co(1+1.6 10 'OAp) =co(1+kAp). (3)

Consider two points of given pressure p.4 pB at
points on the front side of a plane wave of finite
amplitude, separated by a distance As, Fig. 6.
The rate of change of As at any instant is given
by

d(As)/dr = kAporoj r,—
As= kAp, r,—ln (r/ro)+As, .

(6)
(7)

Aso is the value at r =ro. It should be noted that
in the Riemann theory for plane shock waves the
points A and 8 on the profile are identified as
points of the same pressure as the wave pro-
gresses. In the case of spherically diverging
waves, they are identified initially at a particular
distance ro and subsequently identified at pres-
sures diminished by ro/r —this constituting an
approximation.

Equation (7) can be used to make an inter-
esting estimate of the distance over which a wave
of finite slope on its front propagates before
becoming discontinuous. Let po be the height of
the peak at distance ro from the source and iso
the distance of rise when the wave is at ro

r/ro=exp [—(As Asp)/kporo j—.
At, As=(),

r&~;„,, =ro t.'xl& [Aso kporo],

rq;„being the distance at which the wave front
becomes discontinuous. Thus it seems that a
spherically diverging wave always becomes dis-
continuous eventually, though it can be readily
verified that, for ordinary acoustic amplitudes,
rqi„ is of more than astronomical magnitude.
Evidently the critical quantity which determines
whether or not a given wave will become dis-

d(As)/d~ = (c+u)& —(c+ ii), = —kc,Ap.

Jf one makes the change of variable r =cot then

d(As)/dr = —kA p.

If in addition one makes the assumption that,
for spherically diverging waves, Ap is given by
its acoustic approximation AP =APoro/r where
Apo is the value at some given distance ro from
the explosion, then

FIG. 6. Formation of shock fronts in a continuous
wave of 60ite amplitude.

continuous in any reasonable stretch of propa-
gation is the exponent in Eq. (9). If the exponent
is of the order of or less than unity, the wave
front becomes discontinuous after an interval of
propagation not much greater than ro. However
if the exponent is very much greater than unity,
the distance at which the wave front becomes
discontinuous is a perfectly enormous factor
times ro. Two examples will illustrate the force
of these statements.

By use of figures commonly realized in labo-
ratory practice, a one-megacycle wave of double
amplitude 10' dynes/cm' at a distance 1 ft.
(30 cm) from the source (p0=10', Aso=0.075 cm,
ra=30 cm) will become "sawtoothed" at rs;,.
~10ssoo cm a colossal distance

On the other hand, for an explosion wave, it
would seem reasonable to use as the initial
thickness of the shock front an average dimension
of the charge. It is over such a distance that the
pressure difTerence at the shock front must exist
at the instant of detonation. For ro one can also
use this same average dimension as the "distance
from the center of the explosion. "A lower limit to
the corresponding po can be obtained by extra-
polating backward using the 1/r law and some
observed pressure at a safe distance from the
explosion. The observed pressure at a distance of
1 ft. was 71&10' dynes cm, the equivalent
spherical radius of the cap (see below) was 0.436
cm. Thus the distance from the cap at which the
explosion wave must develop a shock front is
approximately

r~;„=0.436e' '"= 1.i6 cm.

The actual value must be less than this, since the
pressure obtained from the 1/r law was a lower
limit.

If instead of the 1/r law, one assumes a 1/r"
law, n & 1, Eq. (6) can be integrated to show that
a wave front may or may not become discon-
tinuous, depending on the initial amplitude.



P ROPAGATI ON OF UN 0 E R W'ATE R SHO C K WA YES

There is nothing in the derivation of Eq. (6)
which requires that Dpp or As be restricted to
small values, so long as the Taylor expansion for
c+I is good. One can write therefore

s= kpo—ro ln (r/r, )+sp.

In this expression the distance coordinate s in
the profile is expressed in terms of po, sp, and r.
This is a type of Lagrangian solution. pp and sp

are initial conditions, r is a field variable. For the
particular case of the explosion wave about to be
discussed, pp is given as a function of so so that
there are only two independent variables, sf) and r,

For an explosion wave, pp=Pp exp (—so/o),
where I'0 is the maximum pressure when the
wave has traveled to a distance ro from the
explosion. cr is the "space constant" observed at
this distance ro, i.e., it is the distance from the
shock front (so=0) over which the pressure wave
pro6le falls to an t!th of its maximum. Then

s= kPp exp {——sp/o)rp ln (r/ro)+so (11)

This expression indicates that s becomes negative
for r & ra and so small. s is measured from the real
shock front, negative values of s refer to those
"points" (ideritified as above) near the shock front
or head of the wave when it was at ro which have
progressed forward through the shock front.
Another way of expressing this is that when the
wave is at r&ro, the shock front has "eaten
back" to a point {s=0) corresponding to a point
so=so'on the wave when it was atr =re, i.e., s=0
at sp sp in Eq. (11).The value of so' can give an
estimate of the departure of the peak pressure
from the 1/r law. To determine so'.

s(sp') =0
kPp exp [——sp'/a]ro ln (r/rp)+sp'. (12)

For values of so'&(o (numerical estimates verify
such to be the case), one can expand the expo-
nential factor and get

so'(r) = kPoro ln (r/ro)/
[1+kPorp ln (r/rp)/n]. (13)

Note that so' is a function of r.
It is now desired to determine the way in which

observed time intervals 0—+4, 0-~, 0—~ should vary
with distance, on the basis of the above theory.

By initial assumption the pressure at any point
(identified as above) in the pressure wave in
terms of its distance so from the shock front when
the wave was at ro is

p =Pprp exp ( sp/&r)—/r.

Siilce sp:sp (r)+sp —sp (r),

(14)

exp [—[sp —sp'(r)]/o']=y

for so„. The solution is

sop = so (r) —tT 111 g.

(16)

The values of s, s„corresponding to so„ therefore
are, by use of (11) and (12),

s„=—kPp exp [—[sp (r) —o' lil rl]/o']
Xrp lil (r/rp)+sp (r) —rln tg, (18)

s„=sp'(r)(1 —g) —0 ln q

—o ln ol is the distance interval 0—,', 0-$, 0-~i as
measured at r=ro so that so'(r)(1 —q) is the
increase in these intervals measured at r over
those measured at ro. The corresponding values
of the time are sp (1—g)/co. If rp=i ft. , r=31.3
ft. , Pp=71X10o dynes/cm', a =2.34 cm corre-
sponding to a time constant /c oaspindicated on
Fig. 3 then the values of the time intervals
sp'(1 —g)/cp are as given in Table I, column 3.

As previously stated, the observed values indi-
cate that the spreading is zero, or at least a good
deal smaller than that required by theory. Part of
the increase indicated by the plastic coated
gauges is instrumental. If the intervals 1—q, I—~,
j.—,' are used, i.e. , if the interval 0-f. or time of
rise is subtracted from the observed values above,
the observed spreading is even less. This corre-
sponds to using the peak, rather than foot, of the
shock wave as origin of time interval measures,
or subtracting 0.8~0.5 from all the entries in the
last column.

p = (P,r, exp [ so'(r)—/~]/r)
X(exp [—(so —so( )r)/~]) (1~)

Again note that the independent variables are so
and r. The first factor in Eq. (15) represents the
variation of the peak pressure with distance, the
second the shape of the pro61e behind the real
shock front [so& sp'(r) ]. The corresponding
values of so, so„at which the pressure has fallen
to a specified fraction g= o, ~i, $ of the value at
the peak are therefore given by solving
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No explanation could be found for this disa-
greement between theory and observation for the
spreading. All known or imagined sources of
experimental error would have added to rather
than diminished this spreading, and would have
also affected the peak volts. Air around the
crystal was a potent source of false spreading.

DEPARTURE OP PEAK PRESSURE PRON 1/r LAW

The factor Pprp exp [ so'(r)—/p]/r in Eq. (15)
gives the variation of the peak pressure with dis-
tance. The numerical predictions from this factor
fortheratio(peakvoltsXdist. )~ /(p. v. Xdist. )p~, p

agree fairly well with the observations, as indi-
cated in Table II. r, I'0, ro, and r take the same
values as before.

COMPAMSON %FATH OTHER THEORIES

J. G. Kirkwood and H. A. Bethe of Cornell
have derived a theory (as yet unpublished) which
gives the variation of the pressure with time,
measured from the shock front, and with distance
r from the explosion. They give

p =const. ~ r p exp [—t/8(r)]/r[ln (r/ao) 7&, (19)

where
8(r) =const. p [ln (r/ap)]~.

co is the equivalent spherical radius of the charge
taken as (3 V/4pr) & the volume V being measured
as 0.346 cm' for a No. 6 cap.

The numerical predictions of this formula are
given in column 4 of Table I and column 2 of

Table II. It will be seen that it predicts slightly
larger values for the time scale increase and
slightly smaller values for the peak volts ratio.
Mathematically the two expressions for the peak
pressure are practically equivalent as can be
shown by expanding them in powers of ln (r/rp).
They agree to the first and second order of small
quantities, and do not difkr appreciably in the
third. Equation (15) gives, where a=kPprp/o,

p, =Pprp exp [ so'(r—)/n]/r
=(Pprp/r) {1—a ln (r/rp)

+ (3a'/2) [In (r/rp) ]'
—(13a'/6) [In (r/rp) ]'+ I. (20)

On the other hand, Eq. (19) gives

=c&rp/r[In (r/ap)]
=cqrp/r[ln (rp/ap) ]&

X {1 —(1/2) [ln (r/rp)/ln (rp/ap)]
+(3/8) [(ln (r/rp)/ln (rp/ap)]'
—(15/48) [In (r/ro)/ln (rp/ap)]'}. (21)

Note that by (19), c~/[ln (ro/ao)]~ =Po, the peak
pressure at r=rp Let 2 ln. (rp/ap) =b, and (21)
becomes

pmsx = (Poro/r)
X {1—ln (r/ro)/b+(3/2b')[ln (r/rp)]'

—(15/6b') [In (r/ro)]'+ . . }. (22)

Thus it is seen that if one identifies the two
constants a = 1/b, the form of the two expressions
(22) and (20) including term of the second order
in In (r/ro) are the same and they dilfer only by
about 15 percent in terms of the third order.


