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The measurement of the absorption of centimeter radiation in water vapor described by
Becker and Autler (preceding paper} is based on the assumption that the thermocouple read-
ings are proportional to the Q of the cavity and its contents. The conditions for this are in-
vestigated theoretically, An expression for the Q of a hole in the wall of the cavity is derived
for use in the measurements of Q's on an absolute basis.

INTRODUCTION

' 'T is to be expected that the wartime develop-
. . ment of strong microwave sources will greatly
increase the opportunities for spectroscopic
studies in the wave-length range about one
centimeter. Besides the physical interest in
problems of molecular structure, the absorption
of microwaves in atmospheric gases is of basic
importance in radar and communication ap-
plications.

Among the methods which are available for
such studies are the following: (1) Absorption of
the radiation from a monochromatic source in a
relatively short path of highly absorbing vapor.
This method was used by Cleeton and Williams'
in their study of the ammonia inversion. The
fine structure due to the various rotational levels
was not resolved due to the large pressure
broadening. (2) Absorption in a long atmos-
pheric path of the continuous microwave radia-
tion emitted by the sun (Southworth'). (3)
Measurement of the thermal radiation emitted
by a long column of atmospheric gases (Dicke').
(4) Field studies using the atmosphere. Either
point-to-point or reflected signalling is used
(Bender' ). (5) Molecular beam and other reson-
ance methods. ~ (6) Measurements of attenuation

of a given density of absorbing vapor in a wave-
guide (Beringer'). (7) Use of a tuned resonant
cavity. This method has been used by Bleaney'
and others to resolve the ammonia fine structure
under reduced pressure. (8) Reverberation time
measurements in a large untuned cavity or echo
box. (9) Steady-state response of a large untuned
cavity. The last two methods will be discussed
in this paper.

The analogs of some of these methods have
been used in acoustics in order to measure the
absorption of sound in gases."A recent survey
article "Sound %'aves in Rooms" by Morse and
Bolt'0 will be found helpful in this connection.

The problem proposed to the Columbia Radia-
tion Laboratory was a determination of the
wave-length dependence of the absorption of
centimeter radiation in atmospheric water vapor.
An account of the experimental procedure and
results is given in the accompanying paper by
Becker and Autler. "The first method suggested
was a measurement of the exponential decay of
the radiation in an untuned echo box between
pulses. The attenuation coefficient could then
be calculated from the time constant of the
decay. This method was soon abandoned on
account of difficulties which will be discussed in
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Appendix I. The method ultimately chosen was
the determination of the steady-state response
of the resonator. In view of the object o'f the
experiment, this cavity was filled mostly with
air at atmospheric pressure. However, for more
fundamental research in which pressure broaden-
ing should be kept at a minimum, it would be
possible to design a cavity, perhaps somewhat
smaller, which could be evacuated of all gaseous
substances except the desired density of absorb-
ing vapor. It would appear that this method is
one of the most sensitive ones available for a
study of weak radiative transitions under con-
ditions of small pressure broadening. It would be
limited on the short wave-length side by the
need for a strong source of nearly monochromatic
power, and on the high wave-length side by the
difficulty in constructing a cavity whose linear
dimensions must be perhaps a hundred wave-
lengths.

In the experiments of Becker and Autler, "
pulsed magnetron power is fed into the cavity
and a measure of the space-time average energy
level in the cavity is obtained by the sum of the
electromotive forces generated in a large num-
ber" of thermocouples placed "at random" in

the box. As described below, such measurements
can be used to obtain the attenuation of the
radiation in the water vapor. The theory of the
measurement in acoustical terms dates back to
Sabine. "A derivation of the fundamental equa-
tion, based on elementary considerations and
stated in microwave terminology, is given in the
text. Use is made of a photon argument. A more
rigorous treatment of the subject based on Max-
well's equations is given in Appendix 2.

DERIVATION OP FUNDAMENTAL EQUATION
USING PHOTON MODEL

The success of the method depends on the
proportionality of the thermocouple response to
the "Q" of the cavity and its contents. As

follows from the wave acoustic theory of Morse
and Bolt,"a necessary condition for this is that
all of the modes of the cavity which are excited
should have essentially the same degree of ex-
citation and of absorption. They obtain correc-

~ See Appendix 4.
~ ~. C. Sabine, Colkcted I'uPers oN Accost&'s (Harvard

University Press, Cambridge, Massachusetts, 1922), p. 43.

tion formulas for the case in which the modes
can be classified as oblique, tangential and axial.
WVe can see the need for such corrections even
within the framework of the classical theory.

Ke consider that the radiation in the vessel
at any time may be replaced by photons. To
represent the different classes of modes, these
may be of several types which may be distin-
guished by a subscript k. Let there be Ni(t)
photons of type k at time t. Let Mq(t) be the
rate of creation of photons by the source. The
photons will eventually be absorbed either by
the walls or in the gas. The rates of these two
kinds of absorption will be proportional to the
density of photons, and to the total wall area 5
or to the volume V of the cavity. The following
differential equations may now be written

dXI,

~~&=~~/Qa(k),

PI, I'= ~~/Qv(k)

The differential Eq. (1) are then

de/dt+(aI, NI,/Q(k) =Ml, (t),
where

(2a)

(2b)

&/Q(k) = &/Qs(k)+ &/Qi (k) (4)

defines the resultant Q for photons of type k.
We must expect that the Q for the wall loss may
depend on the mode type, while that for the gas
loss is much more nearly independent of k. The
frequency variation of either type of loss may be
neglected for the band width associated with the
pulses.

By averaging the differential Eq. (3) over a
number of pulses, we obtain

Q(k),
¹

= (M~(t))A'

where the n~, P~ are constants of proportionality.
It is convenient to introduce the Q's for wall and
gas losses using the definition derived from cir-
cuit theory

f rate of loss of photons

Q a& (number of photons)

for each photon type and for each kind of ab-
sorption. Then
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Averaging Eq. (5) for all k, we find water vapor as to cut the thermocouple reading
in half. The steady state would then be

(6) Eg = QM/(u = —,'¹, (8b)

where n is the number of modes with appreciable
excitation. If all the excited modes have the same

rates of excitation and of absorption as well as
frequency, we obtain

8= (Q/co) Ill, (&)

i.e., the almost obvious result that the mean

level of energy excitation of the box is Q/2s
times the average energy introduced per cycle,
irrespective of the shape of the pulse or the repeti-
tion rate.

Kithout this direct proportionality, actual or
suSciently approximate, the experiment cannot
be made to give accurate values for Qr and hence

for the attenuation in the gas unless very de-

tailed assumptions are made about the values of

Qs(k) and 3Ttl, for the various modes. The pres-

ence. of thermocouples, dew point apparatus,
wall irregularities, etc. , make these values im-

possible to 6nd. Fortunately, the proportionality
of the thermocouple reading to the resultant Q is

to some extent capable of direct experimental
con6rmation. As described by Becker and Autler,

this can be done by introduction of a variable
known loss. %'e will therefore treat all classes of

photons alike in the subsequent discussion.

IDEA&%ED FORM OF EXPERIMENTS

The experiment consists in principle of a com-

parison of the small probability of absorption of
a photon at each collision with the wall'4 and the
small probability of absorption by the gas during

each crossing of the box. The thermocouple

reading for constant average power input and

varying amounts of an absorber in the box is

proportional to the Q of the box and its contents.
To idealize, let us imagine that we could obtain

a thermocouple reading for the box with all

water vapor removed. In this case, the steady
state mould be given by

Ei=Qs18/s) (8a)

Then we would introduce such a density of

"The probability of absorption for normal incidence on
copper is 4.3X iO at j..25 cm.

whence Q=-,'Qs and hence Qs=Qr. If Qs were

known, so would be Qr. The attenuation co-
eScient of the radiation in the water vapor at
the wave-length used could then be determined

by the following argument. If all other losses
were negligible, the radiation would decay ac-
cordingly to the law exp( —art/Qr). Since in time
t the photons traverse a total distance of x=cl„
the exponential factor may be written as
exp( —aux/cQr) so that cQr/ru is the mean free

path for photons in the absorbing vapor. The
same result also follows from the wave theory of
Appendix 3. Hence a value for Qs is needed.

The walls are largely of copper, and it is pos-
sible to derive a theoretical value of the Q for a
very large cavity with metallic walls (Appendix
5).Unfortunately, there are a number of obstacles
to the use of this theoretical result for the de-
termination of the Q's on an absolute basis, i.e. ,

the presence of other lossy substances in the
box: solder, flux, thermocouples, glass, dew point
apparatus, perspiration, oxygen, etc. Also the
attenuation in copper wave guide for 1.25 cm is
believed to disagree with theory by something
like 10 percent. Hence an absolute measurement
of Qs is required. One method, of course, would

be a measurement of the reverberation time, but
the gurgle phenomenon interferes (Appendix 1).
Another way, used in the corresponding acous-
tical problem, '~ is to make a hole in the wall of
the box. If no reflecting material is outside the
hole, all of the photons striking its area will

escape from the box and lower the resultant Q as
measured by the thermocouples. We may ac-
cordingly define a Q& for the hole, and write for
the total Q

&/Q = &/Qs+ &/Qr+ &/Q~

Suppose we again start with a dry box and meas-
ure the thermocouple response. %e then intro-
duce a hole into the side of the box, and increase
its size until the thermocouple e.m. f. is halved.
For this hole size, Qs =Qz. If Q~ can be calcu-
lated, we can determine Qs and hence Qr and

"%'.C. Sabine, reference 13, page 24.



(The chance that a photon is absorbed in any
one trip across the box is too small to infIuence
the angular distribution appreciably. ) The num-
ber of photons escaping through A per second
is then

Ac

2~ ~o
cos 8 sin 8d8=

4V

FIc. 1. Figure used in calculation of Qg.

the attenuation coe%cient for the water vapor
at the wave-length used.

DERIVATION OF EXPRESSION FOR Qg

The photon model ofI'ers a very simple deriva-
tion for the value of Q». According to Eq. (2) it
is necessary to calculate the number of photons
which escape through the hole per second. To
do this, we make the usual assumptions of the
ideal kinetic theory of gases. Consider those
photons moving in a direction which wiIl hit the
area A of the hole in a very short time dh. These
will all be found in a prism whose base area is A,
and whose height is dx=c cos edt (See Fi.g. 1.)
The density of photons, and their angular dis-
tribution of velocities, may be taken as uniform
in the body of the vessel, but near the hole these
quantities may be quite seriously distorted by
the presence of the hole, since many molecules
escape which would otherwise be reflected. This
is the feature which makes dificult the problem
of the efnux of a real gas through an aperture
whose dimensions are comparable to the mean
free path. However, we must sum only over the
photons which are moving toward the hole, and
in the present case, these have been moving in a
straight line since their last collision with a dis-
tant part of the wall or a molecule of the absorb-
ing gas. Provided only that A «5, we may assume
uniformity of their angular distribution of veloc-
ities for

0&8&90'

and a value for the number of photons per unit
volume moving between 8 and 8+d8 of

2x sin 8d8.
4~V

and hence
a]S Sx V

(EAc/4 v) xA
(10)

APPENDIX 1. FLUCTUATIONS DURING
REVERBERATION

In the decay-time method mentioned in the
text, some of the r-f was taken out of the box
through a wave guide and detected by a super-
heterodyne receiver. The video-frequency output
of this was fed into an oscilloscope. According

'I H. A. Bethe, Phys. Rev. 66, f63 {1944).

A calculation using the wave picture gives the
same answer.

A necessary condition for the validity of this
derivation is that a sufficiently large and repre-
sentative selection of the modes of the cavity
should be excited. Otherwise, one might find Eq.
(10) in error, as for example, if the source were
so directional that an appreciable fraction of the
energy were to escape without many refIections.
Another condition is that the dimensions of the
window should be large compared to a wave-
length so that diffraction effects can be neglected.
The limiting case A«)-' has been treated rigor-
ously by Bethe" who shows that very small
holes radiate considerably less than is given by
Eq. (10).On the other hand, if the area, A is too
large, the assumptions regarding uniformity of
the photon distribution will be invalid. The de-
pendence of 1/Q~ on the area A of the hole
should be linear over the greater part of the
range 0 &A & V&, with oscillations for A ) ' and
a gradual change of slope from the law of Eq.
(10) for large A. In practice, only the intermedi-
ate straight part of the curve is likely to be ob-
tained because (1) a small hole gives a very
small change in thermocouple e.m. f., and (2) a
large hole would ruin the box.
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to one authority, '~ the observed decay curve
should look something like that shown in Fig.
2 with the relative amplitude of the "squiggles"
given by I/I&.

The number of modes n appreciably excited
by the pulse of duration 5 is given by

For the box used at Columbia, v=2.4X10"
see ' ) =1.25 cm, 2 =~)&l0 6 sec, U=8')&8'
&8~", m=66, 100 and the relative amplitude
should be 0.4 percent. This would be increased
somewhat by degeneracy of the mode spectrum,
and by variations in the Q's of the different
modes, but the discrepancy with the observa-
tions (100 percent fluctuations) seems to great.

On the other hand, R. C. Jones'' has treated
the same problem (in acoustics) and finds tha. t
the relative Ructuatfons are of order unity and
independent of V for suKciently large volumes.
It is therefore necessary to find the source of the
di8'erence in the two results.

After the pulse has passed, the electric field at
a point x, y, 8 in the box is given as a superposi-
tion of the free damped normal vibrations in
the form

E(xyzt) =pA aAuA(xyz) exp (ia)At (oAt/2QA)—, (11)

where the ug are the vector eigenfunctions for
the normal modes in the box, &yA/2x are the nor-
mal frequencies, and Q(k) is the measure of the
persistence of the kth mode. As these latter do
not dier very much from one another for a
rectangular box, they will here be taken equal.
The amplitudes u& can be exactly calculated
from the theory of the forced oscillations of a
cavity resonator if the current distribution due
to the magnetron pulse is assumed to be known.
However, this would give rise to integrals im-
possible of evaluation in practice. Instead, it is
possible to ask for statistical information about
the values assumed by E at some point x, y, s as
a function of time t, i.e. , what is the probability
that E(xyz, t) will lie in a certain range of mag-
nitude and direction if all values of t in a certain
small range of t are equally likely? Because of the
factors exp(i4&At), the expression (11) is the sum
of a large number of two-dimensional vectors

'~ Radiation Laboratory Text T-2, page 12-31."R. C. Jones, J. Acous. Soc. Am. 11, 324 (1940).

FrG. 2. Expected decay curve of the cavity.

(X)A, =O,

]X]A„=an&,

(X')A, =Pn,

(12a)

(12b)

(12c)

(P ~')'
C(X')"—

I I
XI"I'j'/

I
X

I
"=, (12d)

independent of n. (A similar result, diRering
only in the numerical coefficients n and P was
obtained by Jones in the two-dimensional
problem. )

' S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).

whose phase angles at any time are essentially
oriented at random. The relation to the two-
dimensional random walk problem is obvious.
Jones used its known solution for the probability
distribution of the resultant displacement vector,
which in our case is the electric field E(xyz, t)
whose magnitude, or perhaps its square is in-
dicated on the oscilloscope screen.

A simpler insight into the reason for the large
relative fluctuations may be obtained if the
phase angles of the vector summands in Eq. (11)
are restricted to the two values 0' and 180'.
The problem then becomes that of the one-
dimensional random walk problem: a man walks
left or right with equal probabilities, and each
time through distances distributed in magnitude
according to a certain law. What is the proba-
bility that he is displaced by I from his starting
point after n walks? The result is well known:"
His average displacement is zero, and the average
magnitude of his displacement is proportional to
the square roqt of the number of walks. However,
the relative fluctuation in the magnitude of the
displacement is large:
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The question now arises: How could one ob-
tain the 1/n~ law for the relative fluctuations?
One way would be to evaluate the sgm of the
mcgeifgdes of the distances walked. This is

(13a)

(13b)

box does not have squiggles, so that the Q's

could be measured absolutely. This method seems
feasible, but has not been tried due to the diffi-

culty of obtaining enough crystals.

APPENDXK 2. FIELD THEORY OF
THERMOCOUPLE RESPONSE

Maxwell's equations for the interior of the
box are

BH
curl E+p, =0, div H=O,

Bt
(13d)

&&'&A. —(0)'=@I&IX~I'&A.—((I&'l&A)'I. (13e)
8D

curl H — = J, div E=O,
8$

(14)

The re1ative Huctuation in o is

, (13f)

expressing the 1/e& law. Jones, on the other
hand, discusses the magnitude of the vector sum
of the displacements. This is, of course, the cor-
rect procedure, for actually the magnitude of the
total electric field at a point determines the
measured quantity, not the sum of the magni-
tudes or magnitudes squared of the contributions
of the various modes.

The higher frequency components in the gurgle
could be avoided if one used a video circuit
which eliminated them. (This is apparently what
happens in the acoustical case when the human
ear is used to estimate reverberation time. '0)

However, the exponential decay itself would
thereby be distorted, especially for the stronger
attenuations. Even if the gurgle could be elim-

inated, the spacial interference of the modes
would cause trouble if the walls of the box were
slightly deformable (as they were!). All in all,
the thermocouple method seems preferable.

Krol!2' has suggested the use of a large number
of randomly located crystal rectifiers connected
in series. This would give a measure of the total
energy in the box as a function of the time, and
would not suer from the sluggishness of the
thermocouples. It can be shown that during the
time between the pulses the total energy in the

~o For example, P. M. Morse and R. H. Bolt, reference
10, p. 79, Fig. 6.

~' N. M. Kroll, private communication. The author is
indebted to Mr. Kroll for several interesting discussions.

where m. k.s. units are used, J is the current
density exciting the cavity, D=eoE+P, and
P=xeoE where x is the complex polarizability
of the medium. Since g depends on the fre-
quency, it must be applied as a factor to each
time fourier component of E separately. The
waIl losses are taken into account by the im-
position of a homogeneous boundary condition
at the walls of the cavity.

The simplest proof using the held equations
that the steady state energy density in the cavity
is proportional to Q is based on the energy con-
servation integral which can be derived from
Eqs. (14).

~ ~

E Jd r = (E.D+8 B)dr

P

+ (EXH) .da. (15)
s

This can be rather plausibly interpreted as
equivalent to Eq. (1). The surface integral
represents the wall losses, the integral on the
left the magnetron power input, and the volume
integral on the right both the energy storage
and the losses in the gas.

A more explicit proof assuming excitation of
the cavity by a given current density J(hays, t)
will also be given. Elimination of H from (14)
gives the inhomogeneous wave equation

The homogeneous wave equation, i.e., J=O, has
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solutions of the form since u, b&&1. Hence k~ mill be real if

E(cyst) =u(xys) e-'&', (17)
and

a) =ck (21)

representing damped normal modes, if u satis6es (22)

For positive damping, q must be negative, and
hence b positive.

To solve Eq. (16), we make a space-time ex-
pansion of J(r, t) and E(r, t). If T is the repeti-
tion time,

V2u+k~u =0

k'= p'(1+x)/c'.
with

(18a)

The requirement that u should satisfy the cor-
rect boundary conditions at the walls determines
a discrete set of complex values of k, and hence
of p. Since both boundary conditions and polariz-
ability x depend on the frequency p, the above
solutions of Eq. (18) are not orthogonal. A
complete set of appropriate orthonormal func-
tions may however be obtained by considering
the solutions of Eq. (16) for a real constant &e

equal to some frequency in the magnetron band
width. This set of functions may then be used in
the expansion of the steady-state function of
Eq. (16). In the present applications, unlike the
acoustic, there will be no appreciable difference
between the two sets of functions, as the mag-
netron pulses are so nearly monochromatic that
g and the mall impedance are essentially con-
stant over the band width.

For each damped normal mode, the mall losses
may be "shifted" into the gas by assigning a
different imaginary part of y, in such a may that
the Q of the mode has the correct value allowing
for both kinds of loss. The amount of the mall

contribution to y mill depend somewhat on the
nature of the mode, but for large cavities of
irregular shape, relatively few of the modes have
a Qe sensibly different from the ergodic value.
The eigenfunctions which will be used then obey
Eq. (18) and have vanishing tangential com-
ponents at all walls. The eigenvalues k' are then
real.

Writing x, p in terms of their real and imagin-
ary parts

J(r, t) =Z Z ~ "-"'""'u.(r), (»)
k n~m

where the summation index k runs over all wave
vectors which are eigenvalues of Eq. (18) for
perfectly conducting boundaries of the box. If
the u1, are normalized so that

' dr
( ui, (r) ('= V,

the expansion coe%cients J„I, &re given by

~T
J„,= ' dt dr J(r, t) u~(r)e'~'""r. (25)

VT ~0 &gr

Likewise

E(r, t) =Pi, Q„E(k, n)u&(r)e "'"'~r. (26—)

Insertion of these expansions into Eq. (16) and
comparison of the coe%cients of

(r)e—2m iei/r

gives

(2M') "
E(k, n) —u ——(1+&,) ic' I T)

(27)
T

whence, using Eq. (26)

2'"18

(19) E(r, t) = ti Qg =a+ib,
p = (d+fg, j u (r)e 23ieilr—

X (28)
k' —(1+xi,)(2~/cT)'

me 6nd that

k' = (iu+is)'(1+ a+i b) /c'
where the subscript on X1, denotes that it is '~

(2(us br'')
+z) +.

~
(20) function of the mode k, but that any frequency

c' ( c' c' ) dependence, i.e., on e is neglected.
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It would be a hard task to evaluate the sums
giving E(r, t) even if J(r, t) and the u» were
known, and the result would be exceedingly de-
pendent on their exact values. The time average
of E(r, t) is of course zero. A single thermocouple,
owing to its long relaxation time, would give an
essentially steady e.m. f. proportional to the time
average of

~
E(r, t)

~

' at its position. The reading
would be very dependent on the location of the
thermocouple and sensitive to small deforma-
tions of the walls. Instead, an attempt is made
to space average ~E~'»;, ,„„~,over the entire
box by using a large number of "randomly"
located thermocouples, A further average over
the possible standing wave patterns is achieved

by "stirring" up the modes by rotation of large
copper fans.

The expression for ~E~' averaged over space
and time is fortunately rather simple because of
the orthogonality of the expansion functions,
and one 6nds

(2s'n)»
'

i
(El'd d&=n'Z E I i

I -- ET)

X . (29)
I J'I'

f
b' —(1+x»)(2s n/cT)'/ '

Recalling that

1+x» ——1+a»+ib» 1+ib» s—ince a»((1,

cavity, but not for short pulses. It is therefore
necessary to distinguish between the two cases.

We may calculate the e dependence of J ~ on
the assumption of rectangular pulses of duration
6 by setting

where
J(r, &) = J(r)f(&),

e-' ' 0&t&h
f(t)= 0 a&t&T

,Periodic with period T.

(32)

If(n)l' =
(AT —2sn)'

(34)

This function is mell known in connection with
the spectrum of the pulsed magnetron, and has
a maximum when n=a&T/2s. , i.e., nearly at
n= n»=~ »T/2 s for all the modes which will be

appreciably excited. Its half-width is

An=2(1. 39)(T/sA) =0.885T/h. (35)

The condition that the half-width of the maxi-
mum provided by the numerator is very large
compared to that provided by the denominator
is that

Then J„» J»f(——n) where J» are the expansion co-
e%cients of J(r) and the expansion coeKcients
of f(t) are given by

( 2snp 6
4sin'( ~—

T P2

the expression (29) becomes

(lEI')~=~' Z. E- or in terms of Q

0.885T/M&b»n»

J„(»'( 2sn /cT)'
X (30)

t
k' —(2sn/cT)'j'+ (2s n/cT)'b»'

Q»((o»/2s) (b/0. 885). (36a)

(36b)

The values of Q used in the experiments have ex-
ceeded 10'. A more physical statement of the
condition (36a) is that the pulse duration should
be short compared to the ring time Q/»» of the
cavity.

n = n» =cTk/2m=co»T/2~ .(31).
(Thus n» is equal to the number of cycles of the
wave k during the repetition period T. For the
pulsed source used in the experiments of Becker
and Autler this is of the order of 10".10 =10~.)
The numerator contains the factor ( J„»~ ' which,
as ~e shall see, is rapidly variable for pulses
long compared to the reverbation time of the

Pu1sed Source

In this case, the sum P„may be replaced by
an integration and the factor n~ J~~ rem»oved

from the integral and evaluated at e=m~. The

For 6=$X10 ' sec and ~/2s =2.4X10" sec '

We cons&der the summation over e. Because of this requires that

the smallness of b~ in the denominator the sum- Q»6800.
mand has a sharp maximum of half-width bn

=ef,bI, for
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resulting integral is elementary and gives

or in terms of Q(k) = I/b2

Q, I
z,f(n„) I2

IEI'A, ——

4 jL' (dy

(38)

For the box used at Columbia, using the theo-
retical Q= 1.465 X 10' for copper losses only, n is
only 135, to be compared with the 66,100 terms
in Eq. (38). Hence it would appear that the
ergodic state is more likely to be realized when
a pulsed source is used.

Resolving Power of the Spectroscope

Case of a Monochromatic (CW) Source

In the case of a C% source, the numerator of
the integrand in Eq. (33) is the more rapidly
variable factor. In this case, the pulse length 6
is equal to the repetition period T, and equation
(34) may be written

sin 2r(N —n) '

2r(N —n)
(39)

where X=~T/22r is a positive integer. This has
a half-width in n of order unity, and is essentially
a delta-function with the property

which is of the same form as Eq. (6), and when
the conditions for the ergodic state are met, is
directly proportional to the Q of the box and its
contents.

The water vapor line studied by Becker and
Autler" was so highly pressure broadened that
the spectral width of the source ( 1/6 cycles

4X10' cycles) was much less than the width
of the absorption line. ( 5X10' cycles. ) If the
total gas pressure were reduced until the line
breadth became comparable to 1/5 for the pulsed
source, it would be necessary to correct for the
lack of resolution. The resolving power could be
increased by lengthening the pulse, but only at
the cost of decreasing the number n of modes
excited. As explained above, e given by Eq.
(43) is still appreciable even for a CW source.
In this case, the resolving power would be in-
finite except for the probable appearance of
"ghost" lines due to failure to realize the ergodic
state with the limited number of modes excited.
These questions are worthy of further experi-
mental study.

(4o) APPENDIX & CONNECTION BETWEEN Qv
AND THE ATTENUATION

The sum over n in Eq. (30) then reduces to

C2442I J„I2
n

(N2 —C2$2)2+404b 2

Ke next establish the connection between the

Q of the gas and the attenuation. The homogene-

(41) ous wave equation (18) has spacially damped
monochromatic running wave solutions

independent of N as it should be. Then
where

etE$—sc42 5

I
24 p2C2(d (42)

(4d2 C2)p)2+~4/Q 2

Z2 = (1+X) (ru/c)'.

Separating E into real and imaginary parts

(44)

a result which can, of course, be obtained with-
out the time Fourier analysis, since all of the
forced normal modes osci11ate with the same fre-
quency. Under ergodic conditions, this sum will

also be proportional to the Q of the cavity. The
number of terms involved in the sum (42) is the
number of cavity modes within the half-width of
a cavity resonance. The expression for this num-
ber is

2' j
Z=—+—

X 2A.
(45)

and comparing with the exponential decay factor
e ~'~ involving mean free path A. in kinetic the-
ory, one obtains a mean free path

n =82r V/X2Q (43) as stated in the text. The absorption cross sec-
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tion r of a molecule is then defined by the
equation

0 = I/n)A (4&)

where n~ is the number of absorbing moleeules
per unit volume.

APPENDIX 4. NUMBER OF THERMO-
COUPLES NEEDED

Granted that the value of
~
E ~'A„ is directly pro-

portional to the Q of the box and its contents,
the question arises: How well do a large but finite
number of thermocouples simulate a genuine
space average of

~
E ~'P If there are n thermo-

couples located at positions r;, i = j., 2, . . . n,
the e.m. f. mill be proportional to

1 —Rri =
p'+ pe+ (x'/2)

(50b)

for the two kinds of polarizations. Here p=cos 8
and the parameter x=(2eoio/0)& is much less
than unity for metals at microwave frequencies.

The number of photons lost per second to an
area A of the wall is

over the angles would have to be done nu-
merically for each particular case. In the case
of a good conductor, however, the expressions
become considerably simpler, and the integra}s
can be done with sufficient approximation. The
reHection coefficients R~ and R» are given by"

(50a)

R=g;(E(r;) ('. (48)
2+nAc

d»l I(& —~ )+(~—~.) I
4g

The average of R over all possible thermocouple
poslt1ons 1s

Et =n [ E /
'A„. (48a)

For any actual distribution of the thermocouples,
the reading may dier from 8 by a fractional
amount of the order

APPENDIX 5. USE OF THE PHOTON MODEL TO
DEMVE Qg FOR A LARGE METALLIC CAVITY

This calculation diifers from that of Q~ only
in that there is a non-zero reHection eoe%cient
dependent on the polarization and angle of in-
cidence of the photons. For a dielectric, this de-
pendence is so complicated that the averaging

(~')"-(~)"' ' & (&').-(~')"' '

(R)A,2 n& (8')A,2

as in Appendix 1, and decreases with the in-
verse square root of the number of thermo-
couples. In practice, the error can be made even
less by the use of copper fans which stir up the
standing wave patterns.

( 2x)=,'nAc, ~~ 2~+—
~d& (5&)

&p 4 p)

where the approximation x&&1 has been made.
The Q for the area A of metallic surface is then

Q=co(nV)/L2nAcx/3j=3n V/AXx, (52)

or in terms of skin depth

one has
h = (2/(oooo) &

Q=-,' V/Ab

(53)

~ J. A. Stratton, Ekctromageetic Theory, Ch. IX, Eqs.
(8&) (88)

which agrees with the result derived from the
Field theory.

The author has profited from many interesting
discussions with Professors J. M. B. Kellogg and
A. Nordsieck and his other colleagues in the
Columbia Radiation Laboratory.


