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The Theory of the Synchrotron
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In accelerators of the type discussed by Veksler and McMillan (e:g., the synchrotron and
synchro-cyclotron) the motion of particles can be described in terms of stable oscillations
about a synchronous orbit. Expressions are worked out for the frequencies of these oscillations,
and for the way in which their amplitudes are damped as the energy is increased. The e6'ect of
radiation losses on the damping is discussed. It is shown that the synchrotron can advantage-
ous)y be operated as a betatron until the electron velocity is close to that of hght; the dee
voltage is then turned on and the machine works as a synchrotron for the remainder of the
acceleration. The transition from betatron to synchrotron operation proved to be quite eS-
cient. Formulae are given for the distortions of the orbits by azimuthal asymmetries of the
magnetic 6eld. The results are illustrated in terms of the California synchrotron.

THEORY OP THE SYNCHROTRON

L Introduction

it did not come to the attention of the authors
until after the work reported here had been
started. )

The basic idea of the method involves the oc-
currence of what may be called "phase stability"
in the motion of a charged particle in a cyclo-
tron-like combination of electric and magnetic
6elds. The angular velocity of a particle of
charge e and mass m in a magnetic field H is
given by:

' 'N the cyclotron, ' ions revolve with approxi-
~ ~ mately constant angular velocity in a mag-
netic 6eld, passing through accelerating gaps
across which an alternating electric field is ap-
plied. The frequency of the electric field is chosen
to match the angular velocity of the ions, so
that many successive accelerations can occur.
However, when the velocity of the ions becomes
appreciable compared to that of light, the angu-
lar velocity diminishes; as a consequence of this,
the iona fall out of step with the alternating
electric field, and only a finite number of ac-
celerations can be achieved. '

This paper is concerned with a method of
acceleration in which the cyclotron principle is
used, but with such modi6cations that the ap-
parent di%culty mentioned above is converted
into an aid, allowing a theoretically unlimited
number of successive accelerations. The method
was proposed independently by McMillan' and
Veksler. ' (Veksler's publication was earlier, but

&o eH jrrtc =ecH/E.

'E. O. Lawrence and M. S. Livingston, Phys. Rev.
40, 19 {1932).

I M. E. Rose, Phys. Rev. 53, 392 (193'l). R. R. %ilson,
Phys. Rev. 53, 408 (1937).

~ E. M. McMiilan, Phys. Rev. 68, 143 (1945).
'V. Veksler, J. Phys. U.S.S.R. 0, No. 3, 153 (1945).

Since this work was submitted for publication, another
paper on the synchrotron has appeared: D. M. Dennison
anJ T. H. Berlin, Phys. Rev. Vo, $8 (1946). There are,
however, considerable differences in subject matter and
method of treatment between this paper and the present
paper. See also: ¹ H. Frank, Pgys. Rev. 59, 689(A}
(1946); D. S. Saxon and J. Schwinger, Phys. Rev. 50,
702(A) (1946).

2

The mass in the above equation is the total
relativistic mass, E is the total energy including
the rest energy. Thus &o decreases as the energy
increases. Suppose now that the particle is mov-

ing with a given energy, and that the frequency
of the applied electric 6eld just matches the
angular velocity corresponding to that energy.
The electric field will either add or subtract from
the energy depending on the time of crossing
the accelerating gaps with respect to the cycle
of 6eld variation. If this time is such that the
energy is increased, the angular velocity mill

start to decrease; the time of crossing the gaps
will become later and later until 6nally the par-
ticle is being decelerated; this wi11 continue until
the energy is brought back to the original value.
The energy will then go through a similar devia-
tion in the opposite direction, after which the
cycle will be repeated. Thus the time of gap
crossing (to be described later in terms of a phase
angle) and the energy can undergo stable os-
cillations, and the particle will try to stay in or
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near the stable orbit if small disturbances are
apphed to it.

The most signi6cant disturbance is that caused
by a sma11 change in the magnetic 6eld or fre-
quency, since these lead to a net change in

energy, allowing the attainment of the desired
acceleration. Suopose for example that a small
increase in H is made; the angular velocity will

now be too great, which is the same as if the en-

ergy were now too small; following the argument
given above, we see that the energy will now os-
cillate about a new equilibrium value for which
et has been increased in the same ratio as H. A
parallel argument applies if the frequency is
decreased.

Generalizing the above to continuous varia-
tions, we see that acceleration can be accomplished

by varying sknuly the magnetic field or tke fre
patency in ts cyclotron like c-ombination of electric
and magnelic /sids. If the rate of variation is
slow enough, phase stability is maintained
throughout the acceleration. This stability means
that no precise control of 6eld or frequency or
their rates of variation is necessary even though
the particle may make hundreds of thousands of
revolutions during the course of the acceleration.

A pplication to Electron Acceleration
(Synckrolron) '

Equation (1) shows that the ratio of magnetic
6eld to frequency must vary as m during the
acceleration. In the acceleration of electrons to
high energies, m changes by a large factor; there-
fore it seems more practical to use magnetic
6eld variation for this case. Since the frequency
remains constant, the radius of the synchronous
orbit will be proportional to the velocity, and if
the electrons are injected at a velocity near c,
the radius will remain nearly constant during the
acceleration. The magnet must therefore produce
a varying 6eld over an annular region, and will

be similar to a betatron' magnet with the central

«In the original letter (reference 3) the name "Syn-
chrotron" was meant to apply to all modilcations of this
principle of acceleration. This, however, can be confusing,
and it is proposed to limit the term "Synchrotron" to the
case of magnetic 6eld variation applied to electrons, and
to introduce the term "Synchro-Cyclotron" or "Fre-

uency Modulated Cyclotron" to describe the case of
requency variation applied to heavy particles. The mathe-

matical treatment in this paper, up to and including Eq.
(23), is valid for both cases or for any combination of them.

~ O. %. Kerst and R. Serber, Phys. Rev. 60, 53 (1941);
D. %. Kerst, Phys. Rev. 60, 47 (1941).

core omitted. The conditions for radial and axial
stability of the orbits will be essentially the same
as in the betatron, and therefore the same kind
of radial 6eld dependence can be used. The elec-
trodes providing the high frequency accelerating
6eld, and all other metal parts near the orbit,
must be designed so that no eddy currents of
sufficient magnitude to disturb the field dis-
tribution seriously can Row in them.

In the original proposal' it was planned to
inject electrons at 300 kv directly into the syn-
chronous orbit, but a better method of injection
has been suggested independently by Wilson
Powell and D. Bohm~ of this laboratory and by
J. P. Blewett and H. C. Pollock' of the General
Electric Company. This is to allow operation as
a betatron up to about 1.5 Mev; the oscillator is
then turned on at an appropriate moment, catch-
ing the electrons in a synchronous orbit. The
central Aux necessary for the betatron operation
is provided by bars of laminated iron which satu-
rate after their fIux change is no longer needed.
The "betatron injection" has the advantages
that a high voltage injector does not have to be
developed, the change of radius during accelera-
tion is reduced, and a larger fraction of the in-
jected electrons can be caught.

One of the difhculties that must be considered
in accelerating electrons is the radiation caused
by their circular motion. ' In the synchrotron
this is automatically compensated for if the ap-
plied high frequency voltage is su%ciently greater
than the radiation loss per turn. Therefore the
synchrotron should be able to reach higher ulti-
mate energies than the betatron; also the magnet
requires less laminated iron for a given energy,
because of the absence of the central core.

A pplication to Heavy Particles
(Synchro Cyclotron) i-

If a deuteron is given a kinetic energy of 200
'Kiev, its mass increases by only 10 percent.
Therefore it is practical to consider frequency
variation for the deuteron and other heavy par-
ticles, which has the great advantage of avoiding
very massive structures of laminated iron (a

~ Unpublished.
8 H. C. Pollock, Phys. Rev. 60, 125 (1946),'D. Iwanenko and I. Pomeranchuk, Phys. Rev. 65,

343 (1944). E. M. McMillan, Phys. Rev. 68, 145 (1945);
L. I. Schiff, Rev. Sci. Inst. 2V', 6 (1946).
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200-Mev deuteron would have an orbit radius
of 2 meters at 14,000 gauss). The radius of the
orbit will vary mughly as the square root of the
kinetic energy, and therefore the magnetic field

will have to extend to the center. It is apparent
that the machine is then just like a cyclotron
with the added feature of frequency modula-

tion, "which can be accomplished, for example,
by means of a rotating condenser. "The simplest,
and probably the best, way of intmducing the
ions is to let them start from rest near the center,
as is normally done in the cyclotron. A detailed
discussion of this modification will be given in
a later paper.

Other Modificatiorts

Other arrangements in which magnetic field
and frequency are varied together are also pos-
sible. For instance, frequency modulation couM
be applied to the synchrotmn to vary the radius
of the orbit as an a,id in bringing the beam out,
or field variation could be added to the synchro-
cyclotron to extend its range beyond what may
turn out to be a practical limit to the amount of
frequency variation attainable.

Removal of the Beam

Many of the desired experiments can be done
with an interna} target, as for example the pm-
duction of x-rays and mesotrons, and studies of
induced radioactivity. However, if it is desired
to bring the beam out, difficulty is encountered
because of the close spacing of successive turns
in these devices. In spite of this difEiculty, cal-
culations by Crittenden and Parkins" indicate
that a large part of the ions can be brought out
in a collimated beam by suitable arrangements
of 6elds which will not be discussed in detail here.

II. Description of the Motion

A particle in a machine of the kind we have
been describing, if started at the proper radius
and with the proper velocity, will move in a
circle with a frequency given by (1). The rela-

' J R. Richardson, K. R. MaeKenzie, E. J. Lofgren,a«B. T. Wright, Phys. Rev. 59, 669 (1946).
n To be pubbshed.~E. C. Crittenden, Jr., and W. E. Parens, J. App.

Phys. tV, 444 (&946); ~ al~ I..S. Sk ggs, G. M ~y.
D. W. Kersg, and L. H. Lgnzl, Phys. Rev. 'N, 95 (1946)-

tion between the proper radius and momentum
is the familiar one,

P =eHr/e. (2)

For a suitably designed magnetic 6eld, ' the orbit
described by (2) is stable, in that all neighboring
orbits execute rapid horizontal and vertical oscil-
lations about it, with an oscillation frequency
comparable to the frequency of rotation. In
consequence, the orbit will follow any slow
change of the magnetic field with time in such a
way that (2) continues to hold. The condition
for a slow, or adiabatic, variation is that the
6eld should change by only a small fraction of
itself during a period of oscillation.

A similar situation exists with respect to the
phase oscillations which have been discussed in
the preceding section. The "synchronous" orbit,
about which oscillations occur, is described by
(2), and (1) with &u =&a„ the angular frequency of
the applied electric 6eld. A particle starting in
the proper phase with respect to the electric
6eld will move in this orbit. If the phase is
wrong, it mill oscillate about the equilibrium
phase, with a frequency small compared to the
frequency of rotation of the particle.

Since the energy, and therefore the momentum,
varies during the phase oscillation, the radius of
the orbit will, according to (2), also suffer an
oscillation which is coupled to the phase oscilla-
tion. However, just because the period of phase
oscillation is long compared to that of rotation,
this motion is essentially independent of the
"free" radial and vertical oscillations previously
described: the phase can be considered constant
during a free oscillation, while, conversely, the
e6ect of the rapid free oscillations on the phase
motion averages to zero.

The energy of a particle in the synchronous
orbit follows from (1),

and the energy (and motion) will follow any
variations of H/ru, which are slow compared to
the period of phase oscillation.

The Free Oscillators

The free oscillations have been studied by
Kerst and Berber', we need only quote their re-



suits here. They find for the frequencies of radial of this relation is
and vertical oscillation

(eV/2s) sin p, =r,j,+L,/2v-er, e,.
io, = (1-e)&co, e, e4,

where co is the frequency of rotation of the par-
ticle and

The I'hase Equation

The equation for the rate of change of angular
momentum of a particle is

e = —d(ln H)/d(in r). (5)

In either case the amplitude of oscillation de-
creases as the magnetic 6eld is increased:

d( e p eV L—
(

rp+-rA (=—siny ——,
dt E c ) 2s 2ir

(10)

Tke Syeckroeogs Orbit

where A is the 8 component of the vector poten-
(6) tial. The magnetic and electric fields, and the

total flux enclosed by a circle of radius r, are
given in terms of A by

The synchronous orbit is defined by (3) which
gives its energy, (2) which gives its radius, and
by its phase relative to the electric field. We
suppose that the potentia1 on the ith gap, lo-
cated at azimuth 8;, is

If the azimuth of the particle in its orbit is 8,
we de6ne the phase to be

To solve (10),'we write r=r, +Br, and sup-
pose that hr/r. is small. The associated devia-
tion of p from p, can be computed from (2),

lip hr rhH—=—+ =(1—e)—,
p, r, H, rs

since, according to (5), LP/H, = e&r/r, . S—imi-
larly, we find from (1)

ha&/ao, =~/H. M/8, . —

We also have

(13)

On crossing the ith gap the particle gains an
energy e V; sin (8;+a~+a —p), and the total en-
ergy gain per turn is obtained by summing over i.
A suitable choice of e wi11 reduce the expression
for the energy gain per turn to the form

AB v,hp v,p, hr v,' hr= (1—n) —= (1—e)——, (14)
8, r, c rg

and, differentiating (7), and remembering 8=a&,

eVsin p„
Thus (13) becomes

where V= —& V; cos (8;+a;+a) is the maxi-
mum possible gain. $/re. = EKE/8„— (15)

The phase, @„of the synchronous orbit is
determined by the energy balance; the energy (16)
gain per turn, EE,=2sk, /a„required by (3),
plus any radiation loss, I., per turn, must be
supplied by the electric field s due to the Returning to (10), we exPand the left-hand

changing magnetic flux, plus the contribution of
the applied voltage. Thus we must have

rp+mA =r.p.+~+.+rI~p+~ p. H.ra l~r. —-
s V sin p. =dZ, +L, 2~,ee,. —

Since g, v,p, and cy, =v, /r„an alternative form The last term vanishes, in virtue of (2). Differ-
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THESE OÃLVES ARE SYllNETRICAL
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F1'G. 1. Difference between particle energy and synchrotron energy, as a function of phase angle,
for the limiting case of stable motion.

entiating with respect to time, and again using
(11),

d f 8—
(

rp+wA )=r,p, —er, »,
Ch( c

With the aid of (9) and the relation AZ=s, AP
= ««,r,hp, (10) becomes

of inertia I=8,/««', Z, and restoring torque
= (e V/2s) sin p, which is acted on by a constant
torque (eV/2s) sinit, . The rest point of the
pendulum is at p =p„and beyond p =~—p, the
pendulum goes into accelerated circular motion
due to the action of the constant torque.

If we neglect the slow variation of I and p,
(and possibly V) with time, we find from the
energy equation of the pendulum.

eV I,' eV—(~/««, ) =—(sin p, ) — Ar ——sin Ih,
dt 2x 2x 2m

U(p) = —Leos p+p sin g,j
where I'=BI./Br. Finally, using (14) and (15),

& ( 8, q r,l.,'c' sV
0 (+ It+—sin ih

Ch i(«PZ ) 2s (1—e)Zs, 2«4 2s.

eV
=—sin Qs.

2g

gives the angular dependence of the pendulum's

potential energy, and p is the maximum ampli-
tude of the oscillation.

During the phase oscillation the particle en-

ergy will vary about the synchronous energy by

(17) an amount given by (15) and (18),

This is identical with the equation given by
McMillan' if we omit the I ' term and set X= 2,
corresponding to e=0. The connection between
McMillan's variable 8 and our t is codt =d8.

For small amplitudes of oscillation this gives for
the amplitude of energy variation

&&= - (e VZ, cos p,/2sZ) &ip, (19a)

The I'hase OsciNatioes
wl th ft» = /gal f».

Aside from the radiation loss term, the phase In Fig. 2 the values of the dimensionless

equation, (17) is that of a pendulum of moment quantity, (mZ/s VZ,) EZ, for the limiting cases
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The frequency of phase oscillation is

(eUZ cos p, ) &

I *[1 h&-'j-.
2~E. )

For small oscillations

2(uPZ
+I (

J& sin I auPt, (22)
&se VE, cos $,J

t' eVcosy. ) & r

J& cos coPt . (23)
5 2m"(o.2EP Z)

and M/r, is given by (14). In these equations J
is a constant, and the explicit dependence of the
amplitudes on E„co„V,and X is exhibited. For
the synchrotron at relativistic velocities (au,

=const. , s,%' 1) the amplitudes are propor-
tional to:

[(1 n) VE.—] &,

hE/E, [(1—n) V/EP ]&,

Dr/r, [V/(1 —n)'E.'j&.

(24)

These results, together with the corresponding
ones, (6), for the free radial oscillations, demon-
strate the principal characteristic of such ma-

chines; the stability of the synchronous orbit. A

particle once trapped is trapped for good; its
orbit shrinks down on the synchronous orbit.
Moreover errors in the fields tend to be auto-
matically compensated, and, because of the
positive damping, their effects tend to disappear.

of stable motion, @ =x-qb. , are plotted against

p for several values of p, . Any point within a
curve belongs to a stable motion. The corre-
sponding radial amplitudes can be obtained
from (14).

The eEect on the motion of adiabatic changes
of I, p„and V can be determined from the action
integral, J=J'I+&, which is invariant under
such changes. If we evaluate the integral by ex-
panding U in powers of P =P —4., we find

(s eVE, cos p,) &

2(uPZ )
1 S

X, 1 —-tang, 4 —~ '+- . . (20)
3 96

An Exam@le: The California Synchrotron

To give an idea of the magnitudes involved,
we shall quote some figures for the synchrotron
at present being planned by McMillan.

The magnet mill operate at 60 cycles, with a
maximum field FXf = 10,000 gauss. The syn-
chronous radius at high energies is r, =1 meter.
The maximum energy is B,=300 Mev. The r-f
voltage will be V=10 kv, at a frequency of
47.75 mc (rue=3X10'). The value of n is g.

The electrons are injected with 70-kev kinetic
energy at a radius rz =93.S cm. The initial oper-
ation is as a betatron, with an equilibrium radius
r~ =96.8 cm. There is thus about 3.3 cm clearance
between the injector and the equilibrium radius.
Since electrons which are injected so early that
their instantaneous radius is still outside the
equilibrium radius are unlikely to clear the in-

jector, this gives the maximum amplitude of
radial oscillation of the electrons which can be
caught. Free radial oscillations of an initial am-
plitude of 3.3 cm, will by the end of the accelera-
tion be damped, according to (6), to a final
amplitude of 0.1 cm.

The dee voltage is turned on when the elec-
trons reach a kinetic energy of 1.5 Mev (E,=2
Mev). At this point r, =re. The magnetic field is
now 67 gauss. During the betatron operation,
the rate of increase of the magnetic field is slowed
down by the presence of the betatron flux bars.
The effective frequency is reduced from 60 to
21.S cycles. At this rate of increase of H, the
magnetic field, as we shall see in the following
section, is supplying energy to the electrons at a
rate of 800 ev per turn. The additional energy
required of the electric field is only 17 ev per
turn. If it takes 1000 cycles to complete turning
on the r-f field, the energy of the electrons will

have increased to E,=2.8 Mev, and the syn-
chronous radius to r, =98.4 cm. There will then
be S-cm clearance between the synchronous orbit
and injector.

According to (19) and (14) the amplitudes of
energy and radial oscillation will be

= —54.5(1—cos p )& kev
&r„=—6.14(1—cos y„)& cm.

Since we must have
~
Ar„~ & 5 cm, the maximum

amplitude of phase oscillation allowable is
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p =70'. The energy spread in the beam is then
hB =~44 kev. At this point the frequency of
phase oscillation is ar„=0.04ieu, .

The betatron Aux bars begin to saturate when
the field in the gap is 80 gauss. %hen the rate of
rise of the 6eld again corresponds to 60 cycles,
the energy gain per turn is dE, =2400 ev. The
electric 6eld must supply about three-quarters
of this, which gives p, = i0'. At the end of the
acceleration, p, is determined by the radiation
loss. Taking I,= j.,000 ev, we 6nd P, =6'.

The 6nal magnitudes of phase oscillations can
be calculated from the values just after the
transition to synchrotron operation, and the
damping laws, (24). At 300 Mev we find f = 19',
an energy spread in the beam AE = &164 kev,
and a radial spread hr = ~0.15 cm. Adding the
spread due to free radial oscillations we have
hr= +0.25 cm. The frequency of phase oscilla-
tion is co~ =0.004&v, .

Damping Due to Radiation Ioss

At very high energies, the radiation loss may
introduce an additional damping of the phase
oscillations. The energy loss per turn due to
incoherent radiation is, at high energy,

4se' /E )4

3 r (me'J

Differentiating, we find, with the aid of (14)

rg, ',/L„= 3 4n. — (25)

For @&~3, the radiation loss of a particle with
too large an r (or E) is greater than that of a
particle in the synchronous orbit; there is a
consequent damping which is described by the
second term in (17). Inclusion of this term has
the efkct of multiplying the amplitude of phase
oscillation give in (22) by a factor

t' rgLI clue
exp Ch.

2 4 2s(1 —n)E,Ko,'I

Using (25), and setting s,/o= 1, we find for the
decrement in amplitude per turn

ail„/f =$(3 4n)L, /E, . —

By the end of the acceleration, the phase oscilla-

tions which exist during the early part of the
acceleration are reduced, in addition to the
damping described in (22), by a factor

2 f 4 $ ro ( Ef ) i (cu, $

3( 3 )r, (mc') bate I

where ro=e'/mc', 0 is the angular frequency of
the magnetic field (II=Hq sin Qt), and Eq is the
final electron energy.

The damping is not important for the Berkeley
machine, the amplitudes being reduced only by
3.6 percent; however it is an efkct which might
be used to advantage in a very high energy
accelerator.

TransiSion from Betatron to Synchrotron Operation

The primary purpose of the initial betatron
acceleration of the electrons is to avoid the in™
crease in r, involved in reaching relativistic
velocities, since r, =~,v, . During the betatron
operation the orbits are pulled clear of the in-
jector and well out into the doughnut. One might
therefore expect that if the transition from beta-
tron to synchrotron operation is reasonably
efticient, a larger range of phase oscillation will
be available than with pure synchrotron opera-
tion, and in consequence higher currents could
be obtained. The central question in determining
the efticiency of the transition is whether it is
possible to turn on the radiofrequency 6eld
suSciently rapidly to catch particles in the syn-
chronous orbit. VVe shall see that this is not at
all dificult.

The radius of the synchronous orbit, r„starts
out smaller than the equilibrium betatron radius,
rp, increases, and eventually becomes larger. The
transition to synchrotron operation takes place
when r, =rs (and E,=Es). In terms of the pen-
dulum model, the phase during betatron opera-
tion is being uniformly accelerated by the con-
stant torque; $ is initially negative, is reduced
to zero at r, =rs, and subsequently (if the r-f
voltage were not turned on) would continue to
increase. While $ 0, it is necessary to turn on
the voltage suSciently rapidly to trap the par-
ticle in the trough of the restoring torque
potential.

The dee voltage necessary to make up the dif-
ference between k. and ks is actually quite small.
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For the synchronous orbit ~, =s,/r, is constant;
thus r', /r, = ti,/s„or in terms of E„

c' pmc'y'k,

r, s,'(E i E,
(26)

From (3), E,/E. = DaH/Bt)+(BH/Br)r', j//H,
whence, using (26),

E, 1 BH/

E, c' (mc') ' H

v,ni, E, &

fmc')' 8H—1—
rid (E.J Bt

H, (27)

At the time of transition (E,=Es), the energy
per turn which must be supplied by the applied
held is

2s. t'mc'q '
cI sin 4, =—(h, —ks) =(1—n)~

~
ZEn (28)

EE, J

where DEs=(2s/&u, )Es is the energy supplied
per turn by the betatron Aux. In the California
synchrotron, the transition takes place when the
electron kinetic energy is 1.5 Mev. Using the
figures for the California synchrotron, we find
~p=800 ev, eVsin @,=17 ev. Since it is quite
feasible to reach the full r-f voltage of 10 kv in
1000 cycles, only two turns elapse before the
requisite voltage is available, and a few more
turns sukce to make p, small.

Thus if the field is turned on at just the right
time, an electron is easily trapped in the syn-
chronous orbit, The pertinent question now is
the eHect of errors of timing, and of the energy
spread of electrons in the beam. It is expected
that timing errors will be kept less than &1
microsecond. This corresponds to 50 turns, or an
energy spread of 50 X 16 ev =850 ev. The remain-
ing spread of energies in the beam can be esti-
mated in the following way. The spread arises

the latter form being valid for mc'/E, «1. For
the betatron energy we have, from (2), and re-
membering that rp is constant,

Ep spPp sp 8H
H.

Bp Ep c' Bt

from the finite interval of injection times: this
interval lasts from the time the radius, r j,, of the
instantaneous orbit' for electrons of the energy
of injection crosses rp to the time it crosses rz,
the injector radius. Electrons injected when r&

=rp remain at this radius. The instantaneous
radius of electrons injected at r; =rz approaches
rp, while the field is increasing from its initial
value Hz to a value H, according to the law
given by Kerst and Serber,

br; r; rs H—r pr

»I rl rs H pi

where pi is the initial momentum. The difference
in energy between a particle at ri and one at rp

is, for s/c 1,

tiE/Es = t'ip/ps = (1 )»i/r—s

as in (12). Thus

pgEp»r 8rz
bE = (1 n) ——= (1—e)(2mc'2 )&—,

Pp rp tp

with T the kinetic energy of injection. %ith the
previously given specifications, we find 68 =3.1
kev. The spread about the mean energy is
~88=~1.65 kev. The requirements are thus
that we trap particles of an energy spread of
+2.5 kev.

Consider a particle which, at the time of
turning on of the r-f voltage, has a phase &0 and
an energy discrepancy ABC which, according to
(15), determines a value of $0. For definiteness,
let us suppose $0 and $0 are positive. The effect
of the applied voltage is to reduce @. If $ is
brought to zero before p =x, the particle will be
caught, since subsequently the amplitude of
phase oscillation will be damped, according to
(24), by a factor V &. (For large amplitudes, we

see from the sign of the correction terms in (20)
that the damping will be even more rapid. ) The
amplitude of radial oscillation, however, continues
to increase, with V&, until V reaches its final
value. A particle which passes @= m is not
necessarily lost; since V is sti11 increasing it
may still be caught, say between x and 3m.

However, such orbits will, for the most part,
end up with large amplitudes of phase oscilla-
tion, and in consequence such large radial ampli-
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tudes that they may well be lost for this reason.
In any event, we shall not overestimate the ease
of' catching by ignoring such possibilities.

In order to make an estimate of the magni-
tudes inyolved let us suppose that the voltage
rises linearly with time, and reaches its final
value, Vf in Sf cycles. If S is the number of
cycles after the voltage is turned on, V= VIS/Sr.
In terms of dS=cugt/2w, the phase equation,
(17), becomes

2mS e VqE
slli f=0.

dS' Sg E,
(29)

( 2SI( ~~o)'—)'
I +~o,

3 t.s VfE,s(sin P)A, )
(31)

when S=S,
(2'(—~~o) ) '

i.
I sVr(sin y)A, &

In (31) and (32) $o has been expressed in terms
of ~o by means of (15). It should be remarked
that, for fo)0, tile case Qo&0 (i.e., AZo&0) is
the critical one. If ho&0, 4 is initially decreas-
ing, rather than increasing, and more time is
available for catching.

We now ask under what conditions particles
with phase angles of initial magnitude less than
tr/2 are caught. We must have P„—4o &sr/2. If
for (sin p)s, we take its linear average,

(sin g)s, =(2/s) sin +&=2/w,

The radiation loss term is negligible at these low

voltages, and as we have already remarked,
e V sin p, is small. It can easily be verified that it
may be omitted. Also, during the short times
under consideration, E, and au, can be taken
constant. To study the initial motion, just after
the voltage is turned on, we replace sin p by a
suitable average, (sin&)s„, the nature of which
we shall determine later. The solution of (29) is
then

ore VfZ(siii p)Av 2or
S'+ boS+—4 o (30).

3SgS; cue

When $o)0, $ reaches its maximum,

ESP

- 2(—AFo) -
y

4m.
sin ye Vga

The corresponding amplitude of radial oscilla-
tion can be determined from (13) and (14). It is
approximately proportional to ( V/E. )iver.

A primary advantage of a large value of 8, at
the time of transition to synchrotron operation
is to reduce the amplitude of this radial
oscillation.

The argument leading to (34) fails if P is
reached while Vis still too small for the adiabatic
theorem to be applied. It is easily seen that the
condition for the validity of the adiabatic theo-
rem is

S&S„=(SfE,/8rre Vr)t

Thus, for (34) to be right we must have S~&Sa,
or

(sin p)a, (B,sVI) ~

I
~

8 E wsSr i
(35)

For -AEo smaller than this, a 6rst approxi-
mation is obtained by replacing —AEo in (34) by
the minimum value set by (35).A better approxi-
mation can be obtained by fitting the asymptotic
solutions to (30) for a value of S greater than
S~, rather than at p .

Another approximation, good for
~ p( &60, is

"For greater accuracy the damping should be obtained
from Eq. (20). Even for these large amplitudes, however,
the higher terms are not very important and may be neg-
1ected.

(31) gives us
9 eVgB, &

-AP. &
64m E~Sy

With eVf ——10 kev, E,=2 Mev, X=3 (corre-
sPonding to n= so), Sr =1000, we find —&R&5.8
kev. The number of turns required to eliminate
an initial energy discrepancy of this amount is
S =43.

Although this treatment is somewhat rough if
p is allowed to approach ~, it is fairly accurate
for phase angles between tr/4 and 3s./4, since in
this range 0.7 & sin 4 &1, so an average (sin p)s,
=0.85 is never far oB. The maximum phase
angle reached is determined by (31); the subse-
quent motion is an oscillation with an amplitude
damped" by a factor V & or S &. The final
amplitude of oscillation will be
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TmI.E i. Values Of ~ and py for various
vshles Of pp and LEp.

dB
kev radians
0 0
1 0.234
2 0.468
3 0.702
4 0.936

0
0.100
0.200
0.300
0.400

drm
cm
0

0.045
0.090
1.35
1.80

0.78
0.89
0.'99
1.39
1.56

po ~45u
@tg egg

0.285 1.33
0.348 1.66
0.401 1.80
0.590 2.65
0.690 3.10

1.57
1.67
1.76
2.07
2.34

0.570 2.55
0.650 2.91
0.715 3.21
0.880 3.95
1.03 4.60

obtained by replacing sin gt, in (29), by P. The
solution of (29) is then

)4y t'2gr VfEq -"' 2gr—4ou'Jg~g(~»gg2)
(3J ~ StZ. J au,

+1'(k)3 '"gt ou'~-gg3(IIu"') (36)

where tg=(2grVJE/SfZ, ) &S For .given initial
conditions @ can be determined from tables of
the Bessel functions. '4 The 6nal amplitude of
oscillation can be evaluated from the asymptotic
forms of J+$,

(3)$( P )1/12

1

Egr) &2gr, VJZSJ')

the r-f voltage of 1000 cycles, at least half the
particles accelerated during the betatron phase
of operation will be trapped in the synchronous
orbit.

Asimutha/ Asymmetries of the 3lagnetic Field

A question of considerable practical import-
ance in the design of an accelerator such as the
synchrotron is the eR'ect on the orbits of small
azimuthal asymmetries in the magnetic field.
In particular asymmetries may be expected to
be appreciable at the injection time, when H is
small, because of eddy current and hysteresis
eSects.

The eRect of an azimuthally varying 6eld on
the radial motion will be to introduce forced
oscillations. Since these have the same period
as that of rotation, the result is to slightly distort
the orbit from a circle. Because there is no reson-
ance with the period of free radial oscillations,
the amplitude of the forced oscillations remains
rather small.

Suppose that

t4q I| SIR. egg'

&3i i2~e V,Z) H=H(r) 1++ hg cos (l8+ggg) . (39)

2 (2 Ss)
x—yo cos

1

-uggg' ——
1(3 12)

(2) f2 s')
+3-"'&1 —140 cos

1

-ur'" —
1 (3&)

The 6nal amplitude of radial oscillation is, from
(19a) and (14),

hr& t eV
1 gtf (38)

&2~Z(1 —u) i
In Table I, p and py are tabulated, for various

values Of &0 and ABO. These calculations refer to
the 300-Mev synchrotron. The 6nal amplitude
of radial oscillation is also tabulated. For &0=0,
and for A I'-6=0, the small oscillation approxima-
tion was used. The remaining values for po ——gr/4

and Pgg=s/2 were computed from (31) and (34).
Even particles with hE =4 kev and $0=90' are

within the range hr= ws cm.
It thus appears that with the expected energy

spread of 2.5 kv in the beam, and a rise time of
~'G. N. %atson, A Treatise oe the Theory of Jjcssel

Fsmtiees, Cambridge, 1944.

Let r =r1+x, where r1 is the radius of the in-
stantaneous orbit, defined by (2), and x is the
deviation from the instantaneous circle. The
equation of motion for x is

—(mx) +(1—I)ge'x
dt

m&u'r, g hg cos—(l8+ggg). (40)
1

Setting 8=cot, we readily ind

x
cos (l8+ng),

r; g gP+» —1
(41)

an equation which can be used to estimate the
permissible magnitudes of asymmetries.
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