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assumes that the cascade component can be expressed in
the form

F(E l)=F(/)E ' (1a)

G(B l)=G(/)E ' (1b)

f(E, /)dE = — ' dE, (2a)

g(E, /)dE = —' ' dE. (2b)

The energy content of the cascade as a whole E can be
expressed as

8=f [f(E, 1)+g(E, l)jEdE„(3a)
gi

where E; is the "crossover" energy between the shower
mechanisms of collisions with nuclei (i.e., twin birth and
radiative collision} and the classical mechanisms of energy
loss by collisions with electrons (i.e., Compton effect and
ionization}.

Substituting (1}and (2) in (3) results in

E=p(l)sJ E 'dE.

Integration and examination of (3b) leads to the con-
clusion that for E to be finite s must be greater than one.
This has been pointed out by Heisenberg. »

It is even more important to know how fast the energy
spectrum can fall oK
2. To shou that s &2.

On integrating out Eq. (3b) for s&1 there results

E=p(E) (3c)

The definition of E; is that it is the energy of an electron
at which it will lose on the average all of its energy in the
next radiation unit of distance by collisions with electrons.
That is, E;=X'0(dE/dx)t where Xo is the length of the
radiation unit in centimeters

—=4 —log —)

and (dE/dx)I is the rate of energy loss by ionization. In
the definition of 1/Xs, X is the number of nuclei of charge
Ze per cubic centimeter. Because of the very slow variation
of 1/Xo with log Z &, Xo can be assumed to vary inversely

where E(E, /) and G(E, l) are the number of electrons and
quanta, respectively, with energies greater than E at a
distance l (measured in radiation units); and considers the
problem as a boundary value problem with the single
boundary condition that the energy content of the cascade
as a whole cannot be infinite, then it follows that 1 &s &2.
The demonstration proceeds along the following lines.

X. 'lo shmv that s &I
Define new functions f(E, /) and g(E, l) such that

f(E, /}dE =number of electrons at l with energies between
E and E+dE,

g(E, /)dE=number of quanta at / with energies between
F. and E+dF..

as the product of Z» by ¹ The term (dE/dX)t is propor-
tional to the number of extra nuclear electrons and thus
to N times Z. Therefore F; is proportional to 1/Z. Utilizing
this fact (3c) can be written

E=~(E) Z -l.
s —1

(3d}

Equation (3d) means that the energy content of a cascade
increases with the Z of the material in which the cascade
is formed. The physical reason for this is that the energy
at which ionization losses become important is much
higher in lead than in water for example, and while a
50-Mev particle would be a cascade particle in 1ead it would
not be in water (E;=10 Mev for lead and E;=100 Mev
for water). Khile it is allowable for the energy content to
increase with Z, this increase must stop as Z approaches
infinity or the cascade will not have a finite energy content.
This means that dE/dZ must go to zero when Z approaches
infinity if not before. The limiting condition is

lim (dE/dZ) =lim (y(/)sZ' ') =0. (4)
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~ ORSE' has given an equation for the potential energy
function of a diatomic molecule as a function of the

distance apart of the nuclei which allows (for 5-states} an
exact solution. The potential has the following form:

U(r)=D. {exp [—2a{r—ro) j—2 exp [—a(r-ro}j), {1}

where D is the dissociation energy and ro the equilibrium
distance of the two nuclei. Morse concludes now that the
energy levels are given rigorously by the equation:

2+a (@+))'

where
A = (2'}&/a 5 (tt, . reduces mass).

(2)

(3)

Since Morse's conclusion has been quoted in many text-
books» it is perhaps useful to point out that Eq. (2) is only
an approximation, although in every practical case of
diatomic molecules a very good approximation, as we
shall see in the following.

The Schrodinger equation has the form:

In order for (4) to be satisfied the exponent of Z must be
negative and the quantity s must be less than 2. Observa-
tions on the cascade component 'lead to a value for the
exponent "s" of 1.8%0.17. This falls in the range pre-
scribed by the foregoing that 1 &s &2.

' H. Euler. Zeits f. Physik 116, 73 {1940).
'W. Heisenberg, Cosmic Radiation (lectures given at Max Planck

institute). Translated by T. H. Johnson (Princeton University Press,
New Jersey).
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Introducing polar coordinates we get in the usual way: that these deviations are only beginning to be appreciable if:

d2cp 2p,—,+—(~- U(~». =0.df2 h2 (6)

EVe look for a solution of (6} satisfying the following
boundary conditions:

p=0 for r =0,
=0 for

(7a)

{7b)

(At this point Morse introduces a diA'erent boundary
condition: y=0 for r= —~ instead of (7a); since r is a
polar coordinate it will, however, never take negative
values. Furthermore, Morse remarks himself that q should
be equal to zero for r=0 but he adds that for the eigen-
values of 8, which he finds, y(0) is very small. This last
fact corresponds just to the outcome that Eq. {2) is such
a good approximation for the energy levels. }

Introducing expression (1) for U(r) into Eq. (6) and
applying condition {7b)we get the following solution for q ..

g{r)=X.."" e " 3I(Ap+'-AQD, 2Ap+1; 2."-), (8)

t (a, x).q(r)/r,

where p(r) has to be solved from the following equation
(restricting ourselves to 5-states):

A gD (exp (aro) —aro-1) &1 (ro&0)
(16)

AQD &1 (&0=0).

QA ~—l'
aro+

0
0.5
1.0

0.90 (0.50)
0.73 (0.50)
0.61 (0.50)

0.5

1.48 (1.00)
1.23 (1.OO)
1.07 (1.00)

2.03 (1.5O)
1.71 (1.50)
1.54 (1.50)

Morse, Fisk, and Schi84 have used the potential (1) for
the interaction between two nucleons and in this case {16)
is satisfied and they use indeed Eq. (11}to determine the
relation between 8 and D; they do not, however, refer to
Morse's original paper' and they do not point out the
fact that for all cases of diatomic molecules Eq. (2) is the
solution of Eq. (11). In Table I we have collected for dif-
ferent values of ro and A( —E)& the solution of AgD
from (11) according to Morse, Fisk, and SchiE4 and the
solution of AgD from (2) (between brackets). As should
be expected, the deviations decrease for increasing A gD
and aro.

TA&LE I. Values of A &D.

where

z=A&D*exp I -a{a—ro) j, (9)

Finally we may add that a similar point arises for the
potential introduced by Rosen and Morse. ~ The boundary
conditions in this case should be (using their notation):and p=(-E)&, E a normalizing factor while 3I(a, p; x)

is the conHuent hypergeometric series, satisfying):

d2M dMx +{p-x)——aM=0.
dx dx

Applying now condition (7a) and using (9} we find the
energy levels of the closed stationary states from the
equation:

3f(A p+j—A gD, 2A p+1; 2A QD exp (aro)). (11)

In all applications to diatomic molecules 2A gD exp {aro)
is large so that we can use the asymptotic expression for
M

35{a,p; x}~ r(p) a —p+1{-x) 1-a +.
r(p —) x

+r(p) ~-p 1+(1 )(p )+ (1 )r{a)" x
and even:

3f{a p x) "'xr(p) .
t t r( )~

which gives the following zero points:

r(a)= ~ or a= —~, m=0 1 2,

Comparing this with {11)we get:

which gives with p= (-8)& just Eq. {2}.We see, however,
that this is an approxintation and not the rigorous solution.
The deviations are, however, so small as to be negligible in
every case of diatomic molecules. From {12)it is easily seen

I' =0 for zt~1 and for zt = ~ (and not for u =0).
I want to express my sincere thanks to Professor N.

Bohr and Professor C. Mgller for the interest shown in
this note and to the Rask-Prsted-Foundation for a grant
which has enabled me to stay in Copenhagen.

I P. M. Morse, Phys. Rev. 34, 57 (1929).' E.g., H. Hellmann, Einfuhrung in die Quantenchemie (Leipzig-Wien,
1937), p. 294; G. Herzberg, Molecular Spectra and Molecular Structure
(New York, 1939), Vol. I, p. 109. (Herzberg gives Eq. (2) and adds:
zvithout any higher powers of n+$ (italics of Herzberg). )I See e.g. , E. Jahnke and F. Emde, Tables of Functions (New York,
1945), Chap. X.

4 P. M. Morse, J. B.Fisk, and L. I. SchiE. Phys. Rev. 50, 748 (1936).
~ N. Rosen and P. M. Morse, Phys. Rev. 42, 210 (1932).
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E have obtained cosmic-ray data above the earth' s
atmosphere by means of an apparatus contained

in a German V-2 rocket. The rocket was fired by the
Ordnance Department, United States Army on June 28,
1946 in connection with a series of tests being made by the
Army at its White Sands, New Mexico, proving grounds.

Data were transmitted back to' a receiving station on
the ground by means of a multi-channel radio equipment.
DifFiculties which developed in this and accompanying
electronic circuits prevented satisfactory records below
200,000 feet. Forty-one seconds of data were obtainable
after this time, all of it on ascent. Maximum altitude ob-
tained was 350,000 feet.


