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by pr evious inve8tigatofs:

exp"' —j.4.956; Guillemin and Zener8 —14.837;
Wilson' —14.838.

%e see that the improvement in the energy
value is considerable. The percentage error is
reduced almost by a factor 3. Yet it is not as
good as one might have expected, for the result
still falls short of the accuracy obtained with
the simplest Hylleraas functions for two-electron

~ Bacher and Goudsmit, Atomic Energy States.
'Condon and Shortley, The Theory of Atomic'c Spectra

(~935)„p. 3S2.

problems. And previous results with 1s2s con-
figurations also show that the use of the simple
2s function cannot be wholly responsible for the
discrepancy. So the inaccuracy is caused probably
by the way we have omitted the products of the
variable terms in constructing the trial wave
function. It is uncertain if it can be improved in
such a way as not to add materially to the labor
of calculation.

In conclusion it is a pleasure to thank Pro-
fessor Ta-you Ku for his interest and encourage-
ment during the course of this work.
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In Part I a method has been developed for the integra-
tion of the electromagnetic 6eld equations in the presence
of Ruid motions in a spherical conductor. This analysis is
here applied to an interpretation of the secular geomag-
netic variations. A very brief survey of some of the ob-
served features of the secular variation is 6rst given. It is
pointed out that not only the phases but also the magni-
tudes of the harmonic components, including the main

dipole, are subject to large changes at the present time.
There follows a brief study of the skin eBect which indi-

cates that the observed variations of the dipole terms orig-
inate in a layer adjacent to the core's boundary several
hundred kilometers deep; those of the higher terms
originate in a layer no more than 200 km deep. Next,

the "coupling matrix" introduced in Part I is evaluated in

form of a table of all matrix elements that contain vectors
of dipole and quadrupole type but no higher harmonics.
It is shown that a zonal Ruid motion (zonal toroidal Row

in the terminology adopted here) produces rotation of the
tesseral magnetic dipole terms and also oscillatory changes
in amplitude of these terms. There is one and only one type
of matrix element that represents an interaction of the
main magnetic dipole with itself; the corresponding Ruid

motion is a meridional Row (poloidal Rom) of quadrupole
symmetry. With this term amplification or de-amplihca-
tion occurs, depending on the sign of the velocity. The
theory thus can account for all the observed components
of the secular variation.

' 'N Part I of this paper the mathematical
~ ~ treatment was brought close to the point
where a comparison with observational data is
feasible. We shall now first give a brief glance to
some of the observed features of the secular

magnetic variation.

OBSERVATIONAL DATA

There is no need for a complete review at this
place since a few years ago two extensive refer-

~ The completion of this work which was begun prior to
the writer's joining the RCA Laboratories, has been de-
)ayed because of the war.

~*part I of this paper: W. M. F.lsasser, Phvs. Rev. 60,
8'l6 (j.94j).

ence works'- "have appeared in short succession.
The reader is referred to these for all details.

It is always possible to separate the fields of
internal and external origin and in this paper
we consider only the part of the field of internal
origin. The separation of the two fields can be
carried out by a straightforward mathematical
procedure based on the principles of potential
theory; but the external 6eld is so small that its
contribution to the first few harmonics is negli-

J. A. Fleming, ed. Terrestrial 3Iageetism aed Bkctricity
(McGraw-Hill Book Company, Inc. , New York, 1939).

2 S. Chapman and J. Bartels, Geofgagnetism (Clarendon
Press, Oxford, 1940), 2 volumes.
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gible for most purposes, especially if the external
field is averaged over the short period fluctua-
tions of' the order of a few hours to a few days.

In Part I we used sets of fundamental vectors
expressed in terms of spherical harmonics. %'bile
this development is convenient as a mathematical
tool, the observed distribution of the magnetic
6eM does not lend itself readily to the same type
of analysis. The observational data are in general
summarized in the form of magnetic maps, and
rightly so since the spherical harmonic series for
the actual 6eld converges very slowly. It can
therefore hardly replace the maps in practice
even for the broad outlines of the field. Moreover,
an accurate determination of spherical harmonic
coefFicients from observation would presuppose
data available from all over the globe while in
practice data originating in latitudes above 60'
are extremely scarce. This fact does not preclude
the formal determination of spherical harmonic
coefFicients from observations, but it introduces
a considerable degree of inaccuracy into these
coefFicients. If nevertheless we have used the
method of spherical harmonics in this paper, it is
mainly on account of' its mathematical conveni-
ence.

There exist two extensive analyses of the field
in terms of spherical harmonics, that of Schmidt'
for the year I880 and that of Dyson and Furner'
for the year 1922. Both include coefFicients up to
n =6, but the sixth-order terms involve too large
errors to be signiacant. The distribution in
magnitude of these coefFicients is apparently
random except for an over-all decrease with
increasing e. It can be shown that a rather
regular convergence obtains for the series whose
coeScients are the root-mean-square values of all
the coef6cients having the same zonal index n. If
we assume that there are no important sources
of the magnetic 6eld above the boundary of the
core, it may be concluded from the convergence
of this series that the bulk of the sources of the
higher harmonics (quadrupoles and above) is most
probably located in the top strata of the core. '

Although the two analyses quoted are some
40 years apart, it is not advisable to use them

'Ad. Schmidt, Abh. Bayer. Akad. Munich 19, 1 {1895).' F. %'. Dyson and H. Furner, M.N.R.A.S., Geophys.
Suppl. 1, 76 (1923).' W. M. Elsasser, Phys. Rev. 60, 876 I,'1941).

for the purpose of finding the secular variation
of individual components except for a few leading
terms, because of the errors inherent in this
method. The material available for the dipole
terms alone is somewhat more ample. ' In Fig. j.
are plotted the relative magnitudes of the dipole
terms parallel and perpendicular to the earth' s
axis, from eight separate determinations. The
large scatter of the points is indicative of the
inaccuracies of the method of computation, but
the general trend is unmistakable. The relative
values have been adjusted so that both coeffi-
cients are unity in the year 1900; the straight
„lines have been drawn from a visual estimate.
The slope of the parallel dipole term represents
a variation of —4.3 percent per century, that of
the perpendicular dipole term, —3.6 percent per
century. Similarly, the phase of the perpendicular
dipole can be plotted against time. The resulting
points scatter somewhat like those of Fig. 1; a
mean curve corresponds to a rotation of the
dipole, in the same sense as the earth itself, at a
rate of 4.5 degrees per century, corresponding
to a period of revolution of 8000 years. This is
one of the slower components of the secular
variation.

The objection may be raised that the primary
data vary in time with the progressively greater

PERCENT CHANGE

I
1850

FIG. 1. Relative magnitude of dipole terms from eight
diferent determinations.

' See the article by McNish in reference 1.
~ See Chapter 18 of reference 2.
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extent of the observations, and that nearly
simultaneous observations, although made by
djfferent authors, are likely to be based on

nearly the same material, thus introducing a
systematic error into the results. This is prob-

ably true to a certain extent, but only a fraction
of the observed decrease of the dipole 6eld could

be attributed to this cause. *

The data found in the literature" indicate
that for the quadrupole and higher terms the
rates of relative change and the corresponding
rates of rotation are even larger and that periods

of the order of a thousand years or less are not
uncommon. As has been pointed out before, the
spherical harmonic series is not well adapted to
the evaluation of the more detailed variations.
Instead, a glance upon charts showing lines of
constant annual ocular variation' ' is instruc-

tive. Most of these lines consist of several closed

curves that surround some seven or eight princi-

pal "foci" of geomagnetic activity. The regions
of intense change around the foci have diameters

of several thousand kilometers, so that their

appearance on the surface of the earth is well

compatible with the assumption that the sources
of these variations are located at or below the

boundary of the core which is 2900 km be-

neath the earth's surface. The rate of change
of the field in such regions is of the order of
0.5—1.5&10 ' gauss per year, as compared to an
absolute magnitude of the fieM of 0.3—0.5 gauss

(both values referring to the earth's surface).
Hence Fourier components with periods of the
order of several hundred to a few thousand years
are indicated.

The regional distribution of the 6eld variations
and of their secular change seems to be capable
of, at least, a semiquantitative simple interpre-
tation. McNish" has shown that the instantane-
ous non-dipole part of the field can be represented
with some accuracy by means of 14 elementary
dipoles of suitable intensities located at a depth
of one-half of the earth's radius, that is, slightly
below the boundary of the core. The same author

*¹teadded in proof: A harmonic analysis of the 6eld
for the year 1942 which has just appeared corroborates
the general decrease of the dipole field as expressed in
Fig. 1:V. I. Afanasieva, Terr. Nag. 51, 19 (1946).

~ See the article by Fleming in reference 1.
9 See chapter 3 of reference 2.
'OA. G. McNish, Trans. Am. Geophys. Union 2, 287

(1940).

~ &8—poE=pov x 8,
w x K+88/8t=o, p"8=0.

(1)

(2)

On taking the curl of (1) and substituting from

(2) we obtain

—~'8+boa 8/ar =q~v x (v x 8). (3)

Subsequently we shall assume, in addition

QV=O. (4)

On using (4) and the second equation (2), the
right-hand side of (3) can be transformed by a
known vector identity into:

88//Bt= (yo) 'y'8 —(v p') 8+(8 v)v. (5)

If in this equation we put v=0, we are left
with an equation for the magnetic vector which

has the form of a diffusion equation. This
equation describes the gradual march of the 6eld
across a conductor and gives rise to the familiar

phenomenon of the skin effect. It should be
pointed out that the analogy with diffusion is

rather limited since the boundary conditions at
the surface of a conductor are different from the
boundary conditions of a diffusion problem; the
analogy with diffusion applies, therefore, mainly

in the interior of an extensive conductor where

the effect of the boundaries is small.
Assume now, in the second instance, that the

velocities are very large so that the "diffusion"
term can be neglected. The second term on the
right hand side of (5) represents the convection
of the field with the Huid. The held equations
can now be written

d 8/dt = (B.g)v, (6)

where the total derivative has the usual signi6-
cance, indicating the rate of change of the field

with respect to a moving particle.

indicates that the regional secular variations
can similarly be represented by a set of dipoles
at this depth whose intensities change at certain
given rates.

THE FIELD EQUATIONS

Resuming now our mathematical analysis we
return, for a moment to the electromagnetic field

equations. In the presence of Quid motions in the
conductor they are, by (1) ance (31) of Part I:
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The term, finally, which appears on the right-
hand side of (6), represents the induction
effects proper. Equation (6) is capable of a simple
kinematical interpretation. Introduce a cartesian
system of coordinates whose x axis has the di-

rection of 8 at a given point and instant. We
then have, by (4),

where f is a constant. Apart from this surface
the magnetic fieM fulfills the equation

v~B+iu)inB =0,

(12)~2$+iq'/ =0, q = (a))«o)&.

A particular solution of (12) is

and the same equation applies to the generating
scalar, f:

Hence the rate of change of 8 for a fIuid particle
is equal to the instantaneous two-dimensional
convergence of the velocity in a plane normal ta
the direction of B.

Following now the analysis of Part I further,
we set

B=~ x A=@' x(g„c~T(y)),

and for the velocity

v=P (v S(n)+u) T(a)).

By standard procedures we arrive at the
system of difFerential equations:

dc, /dh+A, c„=g,&) c&)R '(&) [T, ~ S-s x T,*j
+(c,[S ~ S&) x T~ 7), (10)

where by (36), Part I, a square bracket stands
as an abbreviation for the integral over the
volume of the conducting sphere. The A' s, which
in Part I have been identified as the coefticients
of free decay, arise from the "difFusion" term of
Eq. (5). The "diffusion" effects will now be
dealt with in a form appropriate to our special
problem.

SKIN EFFECT

On applying to the currents flowing in the
core harmonic analysis, both in time and in

space, we are able to confine our attention to a
system of currents with the following properties:
It varies in time as exp (—i&et), and it is two-
dimensional, the currents fiowing in a spherical
surface of radius ro where they are defined by
the following toroidal vector held"

f ()Ywa gYm
II&a)

—— , II(„)—— f, —(11)
sin 8 By M'

'& According to the discussion in Part I the magnetic
6eld is purely poloidal, hence the electric 6eld and current
Ifensity are p&&rely thyroidal.

/ =const. r &J„+—i(i&qr) Y„"(0,q).

Now for values of co corresponding to periods of
several thousand years or less the argument qr
of the Bessel function is numerically large except
for points near the center of the sphere. Hence
in the upper strata of the core we may replace
the Bessel function by its asymptotic expansion.
We now set, as a solution for the interior region,
r ~ro, valid everywhere except near the center,

P&') =ar-' exp (i—&qr) Y„",

where a is a constant. In the region intermediate
between the current-bearing surface and the
outer boundary of the core we must use a
combination of two linearly independent solu-
tions of the Bessel diR'erential equation. Intro-
ducing at once the asymptotic expressions, we
may use two conveniently chosen linearly inde-
pendent solutions without reference to the special
cylinder functions from which they originate.
We thus set in the middle region, ro —r —R

f&~) =r '[I) exp (i &qr)+c exp ( i )qr)—]Y„,
and for the external space, r—R, we set

P(e) dr —a-I Y m

where b, c, d are constants.
From the generating function P the field

vectors are derived by diRerentiation. The field
equations are fulfilled if

A= T, E=i&OT, B=R-'S.

Equations (10)—(14) of Part I give the explicit
expressions for these vectors. The boundary
conditions are as follows. At the inner boundary,
r=ro, we require continuity of E and 8(„), and
further,

~(~) ~(~) —0+(w)

= —P&(~) ~
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At the outer boundary, r =R, we require

continuity of E and of B(„~, and
continuity of B~o~/Io and B~,~/p.

OIPOLF 0 UAD RUPOLQ

As before, p, mill be assumed constant throughout
space, so that the latter boundary conditions
reduce to the requirement of continuity for both
6eld vectors. The boundary conditions lead in
the usual way to a system of linear equations
among the coeScients, u, b, c, d, f If t.he 6rst
three coefficients are eliminated one obtains the
following relation for the strength of the 6eld in
the external space expressed by the intensity of
the two-dimensional currents:

d, = (n+i ~gR) 'R"+'roof exp [ i ~g(—R ro)$—

DIPOLE Q UADRUPOlE

Fir.. 2. A toroidal dipole and quadrupole, in perspective.

We may evaluate this expression by comparing
it with the strength of the field that would be
produced by the same system of surface currents
in empty space, that is if we had 0=0 every-
where, apart from the current-bearing surface.
The generating scalar of this 6eld in the external
space is given by

where, after some simple calculations, we find

do ——(2n+1) 'ro"+'pf

Therefore, finally,

d 2n+1 pR q
"+'

exp t
—i 'a(R —«)j (13)

do n+i &gR(ro)

If n is not too large the behavior of (13) is

swamped by the real part of the exponential,
which is

exp L
—(ooooo)(R ro))'—

The factor under the square root is known from
the usual theory of the skin eA'ect. Assuming
~=2.5 10 ", corresponding to a frequency of
one cycle per 8000 years we obtain a "skin
depth" of

(ooopo') ~=250 km.

It may safely be concluded that the secular
variations of the dipole terms originate within
the upper 6fth of the core. Any constant part
of the field may, of course, come from greater
depth. The regional variations, having periods

FIG. 3. A poloidal dipole and quadrupole, in meridional
cross section, for s= i.

of the order of a thousand years or so, must
possess sources that lie entirely in the top strata
of the core, no lower than about 200 km below
the boundary.

A TABLE OP MATRIX ELEMENTS

We pass now to the integration of the equa-
tions of motion (10) in simple cases. Below are
given explicit expressions for all matrix elements
which contain dipoles and quadrupoles but no
higher spherical harmonics. The table is divided
into two parts according to whether the velocity
vector is toroidal or poloidal. In order to enable
the reader to visualize readily the geometry of
these vector fields some simple patterns are
shown in Figs. 2 and 3. The fields shown are of
the zonal type, i.e., m=0. Figure 2 represents
in a perspectivic drawing a toroidal dipole and
quadrupole field as it appears on the surface of
the sphere. Figure 3 shows in meridional cross
section types of flow which have the symmetry of
a poloidal dipole and quadrupole. The character
of these vector fields may be described as fo11ows.
If the zonal index is e there are e "belts" of
zonal toroidal flow of alternating directions.
In the poloidal case there are, in the meridional
plane, n "vortices" along a meridional strip
extending from the north to the south pole.
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Thus in the dipole case the vortex shown extends
from the north to the south pole; in the quadru-
pole case there are two vortices, each extending
from a pole to the equator; and in the octupole
case there would be two adjacent vortices in
each hemisphere, separated by a null at 45 .

Similarly, the radial index, s, determines the
number of reversals of the vectors between the
center and the boundary of the sphere. Thus,
in the toroidal case, there would be s belts of
How of alternating direction superposed upon
each other on going from the center to the
boundary at any given angle 8. For the poloidal
case our Fig. 3 corresponds to s= 1; for higher
values of s there would be s vortices of alternating
sense of circulation superposed upon each other
between the center and the boundary, in any
one sector of angular width s/n.

As illustrated by Figs. 2 and 3 for vs=0,
toroidal vector 6elds are symmetrical with re-
spect to the equatorial plane when n is odd,
more generally, when n —m is odd; they are anti-
symmetrical with respect to the equatorial
plane when n —tn is even. Poloidal vector fields
are symmetrical with respect to the equatorial
plane when n —m is even and antisymmetrical
when n —m is odd, In a first approximation,
disregarding turbulence, the Huid motion should
be symmetrical about the equatorial plane and
should therefore only contain odd toroidal and
even poloidal terms.

The following are the matrix elements that
involve vectors of toroidal How:

[Tg ~ Sj' x Tg ']=4mi(2/3)XF,
[Tg' ~ Sg x Tg ']= —4si(2/3)NF,
[Tg ~ Sm' x T,—'] =4si(6/5)XF,
[Tj ~ S,"- x T, ']=4si(12/5—)XF,
[T,' ~ S,—' x T2] =4s.i(6/5) XF,
[T,' ~ S x T,-']= 4i( 6/)5XF-,

[T,' ~ S,' x T,—']= 4si(6/5)AF, —
[T,' ~ S;2 x T,'] =4~i(6/5)iVF,

[T, ~ S,' x T, j]=4si(2/5) —XF,
[T,' ~ S, x T,—']= 4si(2/5) XF, —
[T2' ~ Sg' T2 ']=4~(2/5)NF.
[ Tg' ~ Sg x Tg ']= 4si(4/5) WF, —

where X(0.), etc. , is the normalization factor
given by the square root in (22), Part I. F stands
for the integral over the radial functions as given
by (39), Part I." F is a function of n and of
indices, s, of the radial functions; the sundry
indices, n and s, of each individual I" have been
omitted for the sake of simplicity.

The matrix elements of poloidal flow are:

[Si
[Sg' ~ Sg

[Sg' ~ Sg '

[8&' ~ S)'

[82 ~ Sz

[82 ~ S&'

[S2 ~ Sp

[S2 ~ S2'

[82 ~ S2'

[82' ~ Sg

[S 1 ~ S —1

[S ' ~ S —'

[S ' ~ S '

[S2' ~ Si-'

[S 2 ~ S —2

[82- ~ S2 '

x T2] =4s.(4/5) XG,
x Tm ']=4s (2/5) NG

x T2] = —4s (2/5) XG—,

x T,-']=4s (2/5) XG,
x T,] =4 (s4/5)NG+,

x T,-'] = —4s (2/5) XG+,

x T,] =4s.(36/35) XG,
x T2—'] =4s.(18/35)XG,
x T,—']= —4s (36/35) XG,
x T,—']=4s (6/5)XG+,

x T,] =4s (6/5) XG+,

x T,] =4s.(18/35) XG,
x T,—'7=4s(54/35)XG,
x T&

—'] =4m(12/5) XG+,

x T2] = —4s (36/35) NG

x T,-'] =4~(36/35) XG .
Here, N has the same signi6cance as before, and

G+=G +Gp,
G =G —Gp,

where G is the integral over the radial functions
given by (43), Part I. The sundry indices, n and
s, of the individual G's have again been omitted.

In using these formulas it might be remem-
bered that

(n —m)!P„"(cos8) = P„"(cosr9)
(n+m)!

~ In this formula read rdr in place of r'dr. Other correc-
tions: In formula (41) the nght-hand side should be
negative. In formula (44) insert a factor G„ in front of the
second jntegral.

Here, N stands as an abbreviation for the
product of the normalization factors

&= &(~)&(P)&(v)
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For the norntaI4sed vectors, however, we 6nd
readiiy (T )~=T„and similarly for the vec-
tors S.

There are twelve elements in the first table
and sixteen in the second. From these, additional
matrix elements are derived by the following
two operations: First, permutation of any two
or three of the vectors in the bracket, on giving
the bracket the positive or negative sign accord-
ing to whether the permutation is of even or odd
order. Secondly, a change of sign of all the
upper indices in any one bracket. The total
number of matrix elements of toroidal How

thus obtained is forty, that of elements of
poloidal Bow is forty-six. There are, in addition,
forty-six matrix elements of scaloidal fIow which
dier from those of poloidal fIow only in the
form of the integrals over the radial functions.
A11 matrix elements involving dipole and quadru-
pole vectors only which are not contained in this
extended table, vanish in accordance with the
selection ru1es derived in Part I.

MAGNETIC DIPOLE INTERACTIONS

ln order to analyze the physical effects corre-
sponding to the individual matrix elements we

may classify the various vectors according to
their order of magnitude. This is readily done
for the magnetic field, that is for the primary"
magnetic vector of the matrix elements. The
zonal dipole term is dominant, next comes the
tesseral dipole term whose magnitude is about
20 percent of the former. The quadrupole terms
are much smaller; the root-mean-square value
of their potential over the earth's surface
amounts to about 3.7 percent of the zonal

dipole the fraction at the boundary of the core
is about 6.5 percent.

It is much more difficult to estimate the rela-
tive magnitude of the components of the Ruid
motion. We must distinguish between the mean
motion obtained from the time-average over the
large scale turbulent deviations on the one hand,
and the instantaneous pattern of the motion on
the other. As far as the mean motion is concerned
it may safely be assumed, on general principles
of geophysical and astrophysical hydrodynamics,
that the toroidal terms are predominant; they
must be odd, Ti, T3, T~, etc. and they represent
~ Row Birectecl along the rirrles of latitude. Siich

a mean motion must, however, be accompanied
by a subsidiary mean motion of the poloidal
type; these vectors must be even, 82, S4, 86, etc.
and they represent circulations with streamlines
confined to the meridional planes. The magnitude
of this meridional circulation may safely be
assumed to be smaller than that of the zonal
toroidal How.

If we consider the instantaneous motion,
including large-scale turbulence, it is still prob-
able that the zonal fIow predominates, but the
turbulent velocities might occasionally bc of
comparable magnitude. As far as the harmonic
components of the turbulent motion other than
T~, T3, T~, etc. are concerned, it is difFicult to
make general statements, except that most of
them are probably of about the same order of
magnitude and that the development of the
turbulent velocity field in terms of spherical
harmonics converges extremely slowly.

We shall now assume that the "primary"
magnetic field appearing in the matrix elements
is given by the dipole terms, S~ and S»', S~ '
alone. For any given term of the "secondary"
magnetic 6eld we can then find a number of
matrix elements in the above table by which
this term of the secondary field is produced
through the action of specific components of the
fIuid motion. In the following discussion we shall
limit ourselves to those cases where the secondary
magnetic field is also a dipole. The preceding
tables contain seven matrix elements in which
both the primary and the secondary field are
dipoles.

We begin v.ith the first element in the table
of toroidal Row", it represents an interaction of
the tesseral dipole with itself. " The velocity
vector, T~, appearing in this matrix element is
presumably the largest term of the mean Auid

motion. Consider now a Quid motion which
contains this term only. Fven in this case there
is still an infinite set of such matrix elements
distinguished from each other by the index, s
of the radial eigenfunction of the primary field
and by the corresponding index of the secondary
field. As far as the radial function of the fluid
motion is concerned, we have pointed out in

"It should be remembered that the last vector in the
bracket is conjugate complex to the component actually
appearing in the secondary field.
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Part I that there is no need for a development
into orthogonal components, and we may, there-
fore, assume that there is only one radial eigen-
function of the velocity vector under the radial
integrals.

As has been shown in Part I, the coupling
matrix of toroidal Row is anti-symmetrical m'ith

respect to the primary and secondary field. It
may readily be shown that this particular anti-
symmetry comes about by the interchange of
the indices n, m alone and that the coupling
matrix is symmetrica1 with respect to an ex-
change of sp and s~. We may therefore now
assume that the matrix has been brought to its
diagonal form with respect to the index s, and
we can select a single diagonal element for
which the equations of motion (10) become

dci'/di = (Ss/3) —&(niiF/R)ici'
(14)

c,'=const. exp DSs/3)~(wiF/R)it].

The integration is performed here under the
assumption of stationary Ruid motion. The con-
stant, m~, has the dimehsion of a velocity and is
the coefFicient of T, in the development (9) of
the velocity field. F is the radial integral, of the
form (39), Part I, which contains those linear
combinations of the radial eigenfunctions of the
field that make the matrix diagonal with respect
to the index s. The motion of the tesseral dipole
described by (14) is a rotation about the earth' s
axis. On assuming for this rotation the value of
4.5 degrees per century quoted before me can
compute the velocity, mi. We need only estimate
F; this, being an integral over normalized func-
tions, cannot exceed unity. On putting F=0.3
we find"

wi 0.01 cm/sec.

Next, we consider the coupling between the
zona1 and tesseral dipole terms. One such inter-
action is obtained from the first matrix element
of the table of toroidal Rom by a transposition,
namely

PTi ' ~ Si' x Tij= —4s (2/3) NF,

and the inverse action is given by the second

"Erratum: On the lower right-hand side of page 111„
Part I, read v 2 mm jhour, and at the end of this paragraph
read: "of the order of several decimeters per hour. "

element of the table. On performing again the
reduction to diagona1 form with respect to the
radial index, s, we arrive at the following set of
equations

dc, /dt = —(Sgr/3)
—&(tiki-'F /R)ski'

(15)
dc '/dt = —(Ss./3)-*'(tii'Fi'/R)ic, ,

where, for instance Fi ' ——F(i 'i'i') and similarly
for Fj'. The solutions are harmonic functions of
the time; they are of opposite phase for the two
coefficients. The existence of the eA'ect depents on
the presence of the components Tj' and Tg ln
the Ruid motion; the simplest way of producing
these components is to let the fluid rotate about
an axis diferent from that of the earth. As
indicated in the appendix, there exist some rather
serious reasons against the casual assumption of
a change in the rotational axis of the Ruid, so
that one would not dare draw any further
conclusions without a more far-reaching hydro-
dynamical basis.

The interactions just analyzed exhaust the
dipole couplings caused by toroidal How. On

going nom to the second table, of poloidal Row,
we find there the element, fifth in the list

Q=[S, ~ S, x T,7, (16)

representing a coupling of the main, zonal dipole
with itself. This matrix element is the only one
in which both the primary and the secondary
field are equal to the main dipole. To show this,
note first that the Ruid motion in such a matrix
element must obviously have rotational sym-
metry, that is, vs =0. If now the velocity vector
were toroidal, the corresponding matrix elements
would vanish because T xT„=O, identically for
any two zonal toroidal vectors. Again, if the
velocity vector is poloidal, the matrix elements
involving higher harmonics, 84, 86, etc. , vanish
by virtue of the selection rules. Hence we are
left with the matrix elements of the type (16) as
the only one expressing an interaction of the
main dipole with itself.

There is, in reality, again a twofold infinity
of such matrix elements labeled by the radial
indices sp and s~, but now the matrix is no longer
simply symmetrical or simply anti-symmetrical
with respect to these two indices, as may be seen
from the form of the radial integrals given by
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(43), Part l. The equations of motion (10) may
now be written, if we set sp=s, s~=s'

dc, /dt+A, c, =v2R ' Q; Q(s, s')c, , (17)

where v~ is the coefFicient of T~ in the develop-
ment (9) of the velocity field. The matrix ele-
ments, Q(s, s') are all real quantities; therefore
the coefticients c, vary in magnitude, roughly
speaking, in an exponential manner. Since the
matrix in (17) cannot, in general, be reduced to
diagonal form, a stationary mechanism of
ampli6cation cannot be assumed to exist, as has
already been stated at the end of Part I. Instead,
it must be assumed that the representative point
of the system describes an irregular curve in the
multi-dimensional space subtended by the coefFi-

cients c,. This irregularity of the magnetic ampli-
fication or de-ampli6cation is superposed upon
the statistical behavior arising out of the turbu-
lent character of the Huid motion. There might
also exist a stratification of the fluid near the
boundary so that the velocity pattern changes
appreciably with increasing depth. If this condi-
tion holds the secular variation of the dipole terms
shown in Fig. 1 might be attributed to a tran-
sient How pattern in the topmost layer. The
numerical values of the velocity to be computed
from this type of interaction will be of the same
general order of magnitude as given before for
toroidal flow.

We now proceed to the next matrix element
that involves an interaction between magnetic
dipole terms. This is the sixth in the list of
matrix elements of poloidal flow and describes
an interaction of the perpendicular dipole with
itself. This element contains the same component
of the velocity, Sg, as the preceding one; it
differs from the latter only in so far as the
coeScients of the radial eigenfunctions of the
perpendicular dipole 6eld may be diferent from
those of the parallel dipole field. If these coef6-
cients are alike, the two sets of matrixelements
are equal in magnitude and opposite in sign.
This action will tend to de-amplify the perpen-
dicular dipole when the parallel dipole is ampli-
fied. In order to account for the presence of a
perpendicular dipole one must rely on other
interaction terms, a conclusion which seems
obvious from the rotational symmetry of the

velocity vector 82 appearing in these matrix
elements.

There are two more matrix elements in the
table of poloidal flow that represent dipole
interactions. The tenth element of this table has
the main dipole for its primary and a perpendic-
ular dipole for its secondary field. The eleventh
element represents the reverse interaction, Both
couplings are produced by the velocity compo-
nent 82'. Finally, the third element from the
bottom of the list describes an interaction of the
perpendicular magnetic dipole with itself, en-
gendered by the velocity component S..'.

LIMIT OP AMPLIFICATIQÃ

In what precedes we have been concerned with
an interpretation of the secular variation in
terms of Quid motions. The question arises
naturally of whether the amplifying mechanism
which we have shown to exist is of such a nature
that it could maintain the earth's 6eld over an
interval of time long compared with the periods
of free decay. From the mathematical viewpoint
this question is connected with the symmetry
of the coupling matrix, as we have seen in Part I.
If the coupling matrix is antisymmetrical the
field decays; if the coupling matrix were sym-
metrical, on the other hand, a mechanism of
indefinite amplification could at once be con-
structed. Now we have seen that the actual
coupling matrix is in no case purely symmetrical.
It seems difhcult to demonstrate whether the
symmetry of the coupling matrix is not only
suflicient, but also a necessary condition of in-
definite amplification.

Some further study makes it highly probable,
however, that the amount of amplification is in

any case limited, * so that the field would decay
in the average over a long time. So long as the free
decay is neglected the relative amplification can
be estimated from Eq. (7) which shows it to be
equal to the convergence of the flow normal to
the magnetic lines of force. The changes in field
intensity, therefore, represent a compression or
expansion, as the case may be, of the magnetic
flux rather than a creation of new flux. Thus, the

*This has been pointed out by Dr. T. G. Cowling to
whom the author is greatly indebted for the communica-
tion of his results. This note and the above remarks have
been added in proof.
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problem of the long term maintenance of the
earth's magnetic 6eld involves phenomena difkr-
ent from the amplihcation mechanism studied

here; we hope to return to this question in a
future paper.

It is interesting to remark that there exists a
limit of amplification which is quite independent
of the mechanism of ampli6cation itself; it is

found in the magneto-mechanical forces exerted

by the field upon the Quid. These forces become
signi6cant when they are comparable in mag-
nitude with the purely mechanical forces which

engender or control the Quid motion; in the
earth's core this condition is nearly fulfilled. It
is well known that the magneto-mechanical
forces are directed so that they will tend to
counteract the ampli6cation of the field. Thus,
for a sufficiently strong field, these forces wil1

slow down and eventually prohibit further am-
plification. Whether or not this eR'ect is sig-
nificant for the earth can hardly be said at
present, but it will be of interest to carry out
the numerical estimate which is simple. The
mechanical force produced by the field is given

by the formula

F=J xB.

Here, J is the current density which can be
written

J=ov xB (rdA/Bt—

We may confine ourselves to the first term on
the right-hand side for an estimate of the order
of magnitude. Thus, apart from numerical factors
the InechanicaI force is of the order

where the italics stand for the magnitude of the
corresponding vectors. We can expect that
the magnetic 6eld approaches a limiting value
when this force becomes comparable to the forces
in the Quid which engender the motions. As
explained in the appendix these forces are in
absolute magnitude very nearly equal to the
Coriolis force,

F,~2oppv.

On equating the two expressions for the forces

we obtain for this critical 6eld strength

B.„,= (2a p/o)~,

and numerically,

Bcgjf,~ 12 gauss

APPENDIX

In this appendix a few physical data on the earth's core
which have immediate signihcance for our problem are
collected. These include density, pressure, temperature,
and electric conductivity. Last, not least, some elementary
applications of hydrodynamics to motions in the core must
be considered.

The direct information about the earth's core comes from
seismology. +"There seems to be fairly general agreement
about the fluidity of the core, based upon the fact that
transverse seismic waves are never transmitted by the
core. There is, however, accessory evidence for the Auidity
derived from the analysis of the tides of the solid earth. '~

Not so long ago Bullen'~ has made exhaustive determina-
tions of the variation of density, pressure, and compressi-
bility in the core. These are based on a critical analysis of
seismological data by JeEreys."

The core has a radius, 8, equal to 0.55 of the earth' s
radius, and the discontinuity of seismic velocity at the
boundary of the core is perhaps the most outstanding
single result of seismological observation. According to
Bullen the density of the core at its boundary is 9.43
g/cm'; from there it increases steadily and smoothly to
11.54 g/cmo at 0.402. Below 0.408 the density begins to
increase very rapidly, and there appears to be a surface
of discontinuity at 0.36R where the density changes from
14.2 to 16.8; thereafter it increases very slowly to about
17.2 at the earth's center. It is believed that the data for
the upper half of the core are accurate to within a few
percent while those for the central part of the earth are
much less reliable. The hydrostatic pressure in the core is
1.37X10'~ dyne/cm' (1.4&(106 atmospheres) at the bound-

ary, increasing to 3.17X 10'» dyne/cm~ at 0.40R.
We shall pass without discussion over the various argu-

ments propounded by chemists to the effect that the pre-
dominant chemical component of the core is metallic iron,
perhaps with a slight admixture of nickel. The internal
structure of the core as revealed by the work of Je8reys
and Bullen makes it more probable that the main constitu-
ents of the upper part of the core, between R and 0.408,
are the metals of the iron group. If the density curve as
found between these limits is extrapolated to lour pres-
sures it passes smoothly into the density curve for iron at
high laboratory pressures measured by Bridgman/4 If the

'~ See reference 1 of Part I.
~6 H. JeEreys, The Earth (The Macmillan Company,

New York, 1929), second edition.
'~ H. Jeffreys, M.N.RA.S., Geophys. Suppl. 1, 376

(1926).
's K. E. Bullen, Bull. Am. Seismol. Soc. 32, 19 (1942).
»H. Je8'reys, M.N.R.A.S. Geophys. Suppl. 4, 594

{1939).~ P. W. Bridgman, Proc. Nat. Acad. Sci. 8, 361 (1922);
Proc. Am. Acad. Sci. 58, 163 (1923}.
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curve is extrapolated to the side of high pressures it passes
into a theoretical curve for extremely compressed iron
computed by jensen. «'

The temperature of the core is not known, but we have
two independent estimates of an upper limit. JeRreys~
sta, tes that the temperature at the core's boundary cannot
exceed the melting point of the overlying solid; on estimat-
ing the latter he arrives at a temperature of 10,000' abs.
for the boundary. Eucken«3 points out that separation of
the solid and Hquid phases in the earth would not have
taken place unless the temperature of the mixture was less
than the critical temperature of the liquid which he esti-
mates, for iron, as 9000' abs. , the critical pressure being
7300 atmos.

The electrical conductivity of the core, more precisel~.
of the upper part, between R and 0.40R, may be estimated
as follows, assuming the matter to be mostly iron. .~c-
cording to the theory of electronic conductivity, a is in-

versely proportional to the absolute temperature, T, and
directly proportional to the square of the Debye tempera-
ture, O. The latter, in turn, is, apart from a slowly varying
factor, proportional to the velocity of sound, known from
seismic abservations to be about twice as large as in ordi-
nary iron. Taking 1=30ro and 0=200 where the index Q

refers to laboratory conditions we have, apart from some
other slowly varying factors that are difhcult to evaluate,
cr =0.133cro which is slightly larger than the value, a =0.10.0,

adopted here. Since this value is relatively small as elec-
tronic conductivities go, it may be assumed that such
impurities as are present have a relatively minor effect
on the conductivity. It might be noted here that Cowling"
has recently calculated the electric conductivity of the
sun's interior; his figures are, very crudely, of the same
general order as ours, larger for the central part and smaller
for the upper strata of the sun.

Next we shall deal with motions in the core. Considering
first pure inertial efl'ects, we must mention an important
paper by Poincard. «~ The problem studied by him is whether
the Quid of the core lags behind the precession of the earth' s
solid body which, as is well known, has a period of 11,000
years. Poincarb succeeds in showing that there should be
no lag. If the Quid is enclosed in an ellipsoiclal vessel the
degree of lag depends on the numerical excentricity of the
boundary. If the latter number is large compared to the
ratio of the frequency of precession to the frequency of
revolution, the fluid follows the precession of the vessel
as if it was a rigid body. Now it is known from the theory
of the earth's figure that the eccentricity of the core's
boundary is not much less than the eccentricity at the
earth's surface, whence Poincard's result follows. In its

@ H. Jensen, Zeits. f. Physik lll, 373 (1938).~ H. JefFreys, M.N.R.A.S., Geophys. Suppl. 3, 6 (1932).
» A. Eucken, Nach. Gott. Akad. 1944, No. 1; Naturwiss.

32, 112 {1944).
«' T. G. Cowhng, M.N.R.A.S. loS, 1OO (194S).
N' See H. Lamb, Hydrodynanucs (Cambridge University

Press, England, 1932), sixth edition, Sec. 384,

2(D Xv= —p i+pi (i8)
as the condition. of quasi-stationary Row. From this rela-
tion we may estimate the magnitude of the deviations from
equilibrium pressure. For two points at a distance L from
each other we get

b,Pi 2a)vpI. .
Taking v=0.03 cm/sec. and L, =3.10 cm,

DPi 1.3X 10' dyne/cm«.

This is a pressure difference of only about 1 cm of mercury,
or one part in 10S of the total hydrostatic pressure. These
deviations from hydrostatic equilibrium are so minute that
it seems of little use to speculate at present about their
possible causes. The smallness of these pressure differences
is a direct expression of the prevalence of the gyroscopic
forces; the fluid reacts upon disturbances of its static
equilibrium by setting up a Rom pattern that balances
these disturbances through the action of the Coriolis force.

In deriving the preceding relationships we have ignored
the action of the magneto-mechanical force on the fluid
motion. So long as this force is neglected our argument is
in complete analogy to the conventional analysis for me-
teorological and oceanographical problenis of this type.
The magneto-mechanical force gives rise to an additional
term on the left-hand side of (18) which is linear in the
velocity. We have previously shown that with the magni-
tude of the field actually found in the core this term is
comparable in magnitude to the Coriolis term. It follows
that the estimated order of magnitude of the deviations
from hydrostatic equilibrium pressure remains substan-
tially the same in the presence of this term.

derivation the assumption is made that the Quid is ixcorn-
pressible, but this should hardly be too serious a re-
striction.

The hydrodynamical equations for the fluid in the core
ai e

dv&'dt+2~ x v =p-'( F—P P),

where u is the vectorial angular velocity of the earth, p
the pressure, p the density, and F the combined gravita-
tional and centrifugal forces. Now consider small devia-
tions from equilibrium and put

p= pa+pi where F=Vpo.
The equations of motion then become

dv/Ch+2u xv= —p '&p&,

The first term on the left-hand side, representing the ac-
celerations, is small compared to the second term, the
Coriolis term. The methods by which this is proved are
extensively discussed in textbooks on dynamic meteorology
or oceanography. The hydrodynamical conditions in the
core resemble somewhat those in the ocean; the densities
diEer by a factor of ten and the molecular viscosities should
be of-the same general order of magnitude if the core con-
sists of liquid metal. VA now have the approximate
equation


