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work, experiments were done with mercury as a
target material. Barber and Champion® have
found about 6 times too much inelastic scattering
for mercury. For this purpose, the target holder
shown in Fig. 1 was altered and the gold replaced
by a thin steel window 0.003 inch thick which
allowed the electron beam to bombard the mer-
cury in the calorimeter, the voltage in this case
being raised to 2.3 Mev to compensate for the
energy lost in the window. As in the case of gold,
it was observed that within the experimental
error there was no energy carried away by
penetrating radiation.

It thus appears that the large energy losses
which have been previously reported cannot be
accounted for by the suggested emission of
neutrinos or other extremely penetrating radia-
tion. As has been referred to in a previous
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footnote, this result is in accord with the experi-
ments of Ivanov, Walter, Sinelnikov, Taranov,
and Abramovich!! who, employing lead and
aluminum targets and a different calorimeter
arrangement, find no evidence of neutrino emis-
sion and that the radiation losses of electrons in
this general energy range are adequately ac-
counted for by the Bethe-Heitler theory.
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The motion of an electron in a synchrotron (or betatron) is analyzed as its motion in an
axially symmetric magnetic field under the action of external torques provided by an r-f field
and radiation reaction acting about the axis of symmetry. The process of transition from
betatron to synchrotron action is examined in detail and a criterion is established for the con-
dition of “locking-in"" of the electrons to the r-f wave which drives them synchronously. The
typical stages of synchrotron operation are discussed and it is shown that the requirements for
successful, stable operation should not be difficult to realize.

1.

HE theory of the stability of electron orbits

in the synchrotron with respect to angular,
radial, and vertical oscillations has been treated
by a number of authors. The original calculations
of McMillan,! Veksler,? and Blewett? are essen-
tially equivalent and comprise what may be
termed the quasi-stationary theory. More re-
cently, Schwinger and Saxon* have examined the
problem in a more refined treatment, providing

1E. M. McMillan, Phys. Rev. 68, 143 (19435).
2 V. Veksler, J. Phys. U.S.S.R. 9, 153 (1945).
3 Unpublished calculations.
4 Unpublished calculations.

a quantitative basis for the fundamental assump-
tions underlying the quasi-stationary theory.5
Consider an electron moving in a magnetic
field increasing with time, the field being sym-
metrical about an axis, the z axis. This is the
arrangement for a betatron and, as is well known,
stable circular motion in a circle of radius 7, is
possible if the magnetic flux linking this orbit is
27r¢®B, where B is the z component of the mag-
netic field at the orbit. If the fractional increase
of the magnetic field in the time of one revolution
5D. M. Dennison and T. H. Berlin have also investi-
gated the stability of electron orbits in a synchrotron

operating with a frequency modulated r-f field. Phys.
Rev. 70, 58 (1946). Y
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is very small, a condition satisfied to a high
degree of approximation in both the betatron
and the proposed synchrotrons, the period of
the electronic motion can be written in m.k.s.
units as

T=(2n/ec*)(E/B), (1)

where E is the total energy of the electron (in-
cluding its rest energy), and B is the 2 component
of the magnetic field at the orbit at the time of
this rotation. The radius of the orbit is related
to the period by
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where 8 is the ratio of the electron speed to that
of light. In the betatron, the equilibrium radius 7,
is constant and hence the period of electronic
motion decreases very slowly with time, ap-
proaching a constant value at high energies as 8
approaches unity. In this high energy range the
ratio of energy to magnetic field becomes very
nearly constant. The energy is gained, of course,
from the e.m.f. induced around the orbit by
virtue of the changing magnetic flux through it.

In synchrotron operation, the energy is ob-
tained largely from a radiofrequency voltage
existing across one or more gaps. The electrons
are driven synchronously by the r-f so that
their average rotation period equals that of the
r-f. When this condition is established, the orbit
radius will swell, according to Eq. (2), as the
energy increases. Thus, if any electron gets
“locked” into the r-f when its energy is about 2
Mev, 3=0.97, and is then driven synchronously,
its mean radius will increase by about 3 percent
from its initial to its final high energy value. In
addition to this very slow increase of the orbital
radius, there will be departures from the mean
radius and by (2) fram the mean period of rota-
tion. One of the objectives of the theory is the
study of these deviations in radius and phase to
determine the stability of synchrotron operation.
Another is the investigation of the transition
from betatron to synchrotron action to establish
criteria for the “locking-in”’ of the electrons
relative to the r-f.

The motion of an electron in either a betatron
or a synchrotron can be described to a high
degree of approximation as its motion in an
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axially symmetric magnetic field under the action
of external torques about the axis of symmetry,
the z axis, since both the applied r-f field and
radiation forces will exert negligible torque
action about any other axis. Using a cylindrical
coordinate system, 7, 6, 2, the equations of
motion can be written in the form:

—(mt) = mr?—eréB,,

dt

i(mrzé —-f) = (s, 3)
dt 27

d

—(mz) =eréB,.
dt

Here m=m,/(1 —v2/c?)? is the relativistic mass,
r
—e the charge on an electron. ®=2x 7B, dr is
(V]

the magnetic flux linking a circle of radius » and
Qs is the external torque, defined as the general-
ized force by Qe=dW/d6, where dW is the work
done by this torque during an angular displace-
ment d6 of the electron. If the time rate of change
of the magnetic field is slow enough to be con-
sidered quasi-stationary, the radial and vertical
components of the magnetic field are related by
3B,/32=09B,/dr. The energy equation

d( 2)_o(e 6¢I>+ .
dtmc a 27 3¢t Qﬂ) ®

follows from (3) by multiplying those equations
by #, 8, and 2, respectively, and adding.

For the interval during which the synchrotron
is run as a betatron, prior to the application of
an r-f field, Qp=0 since radiation is negligible
in the low energy range, and the stable motion
occurs in a circle of constant radius 7, with an
angular velocity given by the first of Egs. (3)
as w=0r=rg=eB/m=ec?B/E. This is the same as
Eq. (1). The second of Egs. (3) gives the familiar
betatron flux relation. The oscillations about the
equilibrium orbit are obtained by setting

0=w—¢ and z=3, 5)

inserting these into Egs. (3), and treating p, ¢,
and z small enough so that second and higher
order terms in these quantities can be ignored.
If the variation of B, in the neighborhood of 7,

r=rotp;
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is given by
B,=B(ro/r)* (6)

and the consequent variation of B, used, there
follow the familiar results of betatron theory.
For our purposes, it is sufficient to note that the
angular frequencies of the oscillations are of the
same order of magnitude as the angular velocity
of the electron, and that the vertical z-motion
is independent of the radial and angular motions
to this order of approximation.

Now let the external torque Qy be provided by
an r-f field & extending over a gap of negligible
angular opening at 6=0. A Fourier analysis of
this field, which is periodic in 6 with a period
27, gives

e V +%x
Qo= —— X sin (wit—k8), (7)

2T pom—oo

where 1 is the peak voltage across the gap and
w1 the angular radiofrequency. If w; is very nearly
equal to the angular velocity é of the electron,
the only term in the sum which can be effective
in doing work on the electron over a time com-
prising many cycles is that for which k=1.
Thus, the resolution of the r-f field into traveling
waves—and this will be true in general whether
the r-f field be created across a single or multiple
gaps—brings out the essential fact that only
one component wave is essentially in step with
the electron motion and all the others give rise
to torques which have a rapid variation with
time, frequencies of the order of w; and higher,
and hence will do no work on the average. The
deviations from exact synchronism of the elec-
tron motion from the component wave

el
Qs= ——sin (wit—0)
m

(7a)

will give rise to slow variations in phase and
radius of the electronic motion. As will be shown
later, the natural frequency of these oscillations
is very much smaller than any produced by the
remaining component waves or than that of free
betatron oscillations. Thus the resultant electron
motion can be considered as a superposition of
two independent motions:

(a) A relatively high frequency variation of radius and
phase, of the order of w;, or higher; and
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(b) A low frequency, slow change of radius and phase
caused by that wave which can drive the electrons
synchronously.

For the slow motion (b), one can neglect the
acceleration term on the left-hand side of Eq. (3)
(and this is the basic assumption of the quasi-
stationary theory), insert the expressions (5),
(6), and (7a) into this and the second equation
of (3) and there follows

¢ wirolfp
w ¢ \rg
and
d B¢ V sin (wlt—()) —7023 1-6
(i)
i\ w? 27wc?(1—n) c? 1—n

Here 86=ad,/277¢?B is the ratio of the time rate
of change of the flux linking the betatron orbit
to that required for betatron orbit stability and
will equal unity as long as the betatron flux
condition is satisfied.

2.

We now consider the transition from betatron
motion (motion with constant mean radius and
slowly increasing angular frequency) to syn-
chronous driving (motion of constant average
angular frequency and slowly changing radius).
If the betatron angular velocity « differs at all
from the radiofrequency wi, there will be a slip
of the electron motion relative to the traveling
r-f wave and evidently the average energy gain
from the r-f wave, averaged over one slip cycle,
will be zero. Even if the frequencies differ by as
little as one percent it will take only one hundred
revolutions to complete such a slip cycle. To
obtain synchronous driving, the r-f voltage must
be sufficient to stop the slip and “lock” the
electrons into synchronism with the wave.
Furthermore, this synchronous ‘locking’’ should
occur before the betatron flux condition is de-
stroyed to insure proper transition from betatron
to synchrotron action.

If we set Y(=wit—8) equal to the angle be-
tween the electron and the r-f wave, the relative
angular velocity is, using (5),

¢=w1—0=(w1—w)+4§.

(w1—w) is the slip angular velocity and ¢ is

(10)
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the perturbation in the angular velocity caused
by the r-f field. Inserting (10) into (9) with

=1, one obtains
d 1_3_‘5)+ =i[B(w1 w)]. (1)
t\ w? dt w?
The condition for ‘locking-in"" can be then
obtained simply if one remembers the exceedingly
slow variation of B and « with time. As a first
approximation, we can consider these constant
and Eq. (11) becomes the equation of motion
of a physical pendulum. The condition for
transition from motion with slip to synchronous
driving is then the condition for transition from
rotatory to oscillatory motion of the pendulum.
This gives as the condition for ‘“‘locking-in"

4V ¥
< |
cAN(1—n)B

where A is the wave-length corresponding to the
frequency w. For the M.I.T. synchrotron design
one gets, with V=1 kv, B=400 gauss=4X 102
weber/m?, n=% and A =7 meters,

[(w1—w)/w| £0.02,

so that synchronous driving sets in when the
difference between betatron and r-f frequencies
becomes the order of 2 percent. The effect of
the slow variation of B and w with time can be
then included as a second approximation. This
modifies the inequality (12) by multiplying the
right-hand side by the factor (14«), where

wCZB(l —n)(mm:?)
a<
Ver?

Vsiny
2rci(1—m)

w1—w

(12)

w

where E,; is the electron energy when w=w.
This term « is a fraction of a percent for the
M.LT. design and is hence quite negligible in
this case.

In the preceding discussion, it has been as-
sumed that the r-f voltage had built up to its
maximum value without appreciably modifying
the betatron angular velocity w. This will be
very nearly true if the inequality (12) is not
satisfied during the build-up time. If, however,
the radio frequency w; does satisfy (12) during
the build-up time, ‘locking-in"’ will take place
at lower than peak voltage. The case of build-up
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under conditions of exact synchronism ¢;=w (at
high enough energies) has been considered in
detail by Schwinger and Saxon® and they have
shown that considerable bunching about zero
phase (the equilibrium value of ¥ or ¢) can take
place during this time and this bunching is
enhanced the longer the build-up time.

3.

Once the electrons have been locked into
synchronism with the r-f field, the angular de-
parture ¥ of the electron from the traveling r-f
wave becomes pure oscillatory. In this syn-
chronous region the total energy of the electron
will in general be sufficiently high compared to
its rest energy that we can take its speed equal
to that of light. Equation (8) can then be re-
placed by

pw w1
p— p— (8a)
7o (4]

and Eq. (9) for the phase oscillations takes the
form

{9,

V sin 1{«
21rc”(1 —n)

—702B 1—9 d B(wl—-w)
(o) A e

c? 1—n dt w?

First consider the range of operation for
which saturation has not yet started, so that
8=1. If we neglect the small forcing term
(d/dt)(B[w1—w]/w®) for the time being and take
w=2w; as constant, Eq. (9a) becomes the equation
for the free oscillatory motion of a physical
pendulum of slowly changing moment of inertia
corresponding to the slow increase of magnetic
field B with time. For this motion the integral
$Bydy taken over a period is an adiabatic
invariant, i.e., is constant, so that the amplitudes
of the oscillations decrease slowly as B increases.
The integral can be evaluated in terms of com-
plete elliptic functions and the result is:

k[sin (Ym/2]=const./B} (13)

where h(k) =E(k) —(1—k?)K(k), K and E being
complete elliptic functions of the first and second

¢ Unpublished calculations.
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FiG. 1. Plot of k(sin ym/2) vs. ym to be used
in conjunction with Eq. (13).

kind, and ¢, the maximum oscillation amplitude.
Figure 1 is a plot of i[sin (¥w/2)] as a function
of ¢, and shows how bunching takes place even
for large amplitudes. This may be termed ‘‘pre-
bunching” as it occurs prior to the onset of
saturation.

The neglect of the extremely slow variation of
w at high energies does not change the result
appreciably. When included, it indicates a slightly
slower rate of decrease of amplitude with in-
creasing magnetic field than is given by Eq. (13)
and its effect gets smaller the higher the energy
at which this pre-bunching occurs.

The effect of the small forcing term

@/dt)[B(w1—w)/w®]

is to cause the oscillations to occur about an
equilibrium phase slightly different from zero.
The position of this equilibrium phase point,
which is given to a good degree of approxima-
tion by

21rr0(1—n)B|‘ W —w WI—w
e )

with «’=c/r,, will change very slowly with time
as the betatron frequency w gradually increases.
This slow change occurs coincidently with the
slowly changing radius and is accompanied by
a small gain of energy of the electrons from the
r-f field. Once saturation has started, however,
the effect of this forcing term becomes entirely
negligible and will be omitted in the remainder
of this paper.

During the process of saturation and the
consequent destruction of the betatron flux re-
lation, 8 changes slowly from unity to something
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of the order of 20 to 25 percent. During this
slow change the equilibrium phase will slowly
change according to the relation

sin Y= — (2x702B/ V) (1—3). (14)

For small oscillations about this equilibrium
phase, one can readily solve Eq. (9a) and finds
further decrease of amplitude of oscillation, i.e.,
further bunching. From the analogy with the
motion of a physical pendulum it is clear that
this further bunching will occur for large ampli-
tudes also.

After saturation is complete, the equilibrium
phase stays essentially fixed until the energy
becomes sufficiently large to have radiation re-
action play a significant role. In this region, we
shall obtain some of the orders of magnitude of
the quantities of interest. For this purpose, it is
convenient to change the independent variable
in Eq. (9a) from time ¢ to number of revolu-
tions N. This choice of independent variable was
originally made by Veksler. To the degree of
approximation employed in deriving Eq. (9a),
one has

dt/dN=T=T=2r/wy,

where T and T are the periods of the electron
motion and the r-f field, respectively. Equation
(9a) takes the form, ignoring the small forcing
term in (w;—w),

\dztﬁ ay 41r2Vsm¢
BT,/dN* " dN ' NB(1—n)

1—6
- ‘2”(1:;)’ (9b)

where A=cT is the r-f wave-length.
If one now considers the magnetic field a
linear function of the time,

B=B+Bt=B,+BNT..
(9b) becomes finally :

(No+N) 2\0+d¢+92 y=—2 (1_5) (9¢)
o siny=—27 , (9c
P ane 1—n

with No=Bo/BT; and Q*=4x2V/(A\2B(1—n)).
If now, instead of ¢, we write ¢+y., where ¢, is
the equilibrium phase given by (14) or its
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equivalent

520

and consider small deviations ¢ from this equi-
librium phase, ¢ satisfies the homogeneous
equation

(v -1-1\7)(—iip--f-d—‘l/-i-(Q2 Ye¥=0. (9d)
R TVRIFTAR  S

The solution of this equation is, with cos y.=1
and x=2(N,+N)},

¥ =c1J0(Qx) +caNo(x).

To get the order of magnitudes involved, we
take the M.I.T. figures V=102 volts, B=~2X10?
webers/m?2-sec.; A\=m meters; n=3 and B,=26
X 10~2 weber/m? corresponding to an energy of
about 9 Mev when saturation is complete. Then
Q229 and xy=24/Ny=2350, so that Qx> 3000 and
the asymptotic values of the Bessel functions
can be used. Then we have

Y= (C/+/x) cos (Qx—D).

To get the period of small phase oscillations, we
have Q(x;—x;) =27, whence

(%e)

27 27
AN=N, —NIEE(NU-}—NQ 5_’—‘_’—9—(30,000+N1)5',

so that the number of revolutions per cycle of
phase oscillation increases slowly with the total
number of revolutions, and is of the order of
200 for N;=0, i.e., when saturation ends.

As Saxon and Schwinger have shown, radiation
reaction subsequently results in a further in-
crease in the magnitude of the equilibrium phase
and modifies the rate of change of amplitude of
oscillation about this point, increasing the bunch-
ing action if #<$ and decreasing it if #>$.

Because radiation effects become significant
only at extremely high energies, the torque Q
due to radiation reaction can be written as

Qo= —~

(ech,)4
3 41reor moc? ’

with eo=(1/367) X 10~? farad/meter, very nearly.
Following the same procedure as before, one

FRANK

obtains as the equation for phase oscillations:

2rro*(1—n) d
T B+ (
3eo7ow

+ Vsin ¢= —27ro2B(1—9) —

) (B—4m)é

e secroB )4
3eoro \ moc? '
which leads to an equilibrium phase angle, at

very high energies where radiation losses alone
practically determine it, given by

w MQC

sin ¢g= —
3eroV \mc?

where E =ecroB is the total energy of the electron.

4.

There remains the problem of justifying the
neglect of the left-hand side of the first of Eqgs.
(3) for the slow variations of radius and phase
and the assumption that the slow motion can be
treated independently of the remaining high
frequency motion. To do this simply, consider
the motion of an electron of very high energy
as given by Egs. (3) with w=w;=c¢/r under the
action of the external torque (7a) alone.

By use of (5) and considering only small
departures from circular motion, one obtains
from the first and second of Egs. (3) (the
z-motion is independent of the radial and angular
motion to first order),

ard
—[—(Bp) +Bw*(1—n)p
dil di

b %

+w2r02(B—- sin (wt—86)

)

21"’0 ™0

and using the relations p=7$/w and ¢ =wt—8,
this becomes

o) rea ()

w?V sin ¢

p— —wiB(1-8) (15)
7o

as the equation determining the phase oscila-
tions. Thus there are two frequencies of phase
oscillation under the action of the external
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F16. 2. Schematic sequence of operations of a synchrotron.

torque and they are determined from Eq. (15) by
setting B constant and sin ¢ = ¢ for small oscilla-
tions. These two frequencies ' and '’ are then
given as the solutions of the biquadratic equa-
tion:

wo“—wg2w,2+A = O,

(16)

where w,2=w?*(1—%) and 4 =wdV/27r’B. The
roots ' and «’’ are then

o= (G +3(1-44/w,Y)})

. (17)
W?=w2(3—3(1—44/0,YY)

Oscillatory motion will occur if 44 /w,*<1 or
B>2V/wré*w(1—mn)?,

a condition well satisfied for almost any reason-
able design parameters. In the case of the M.I.T.
design, the magnetic field need be greater than
only % gauss. Since it is of the order of several
hundred gauss when the r-f field goes on, 44 /w,*
is very small compared to unity and the two
frequencies of phase oscillation become

w'?=w=w(1—n),

wl
e

w,.z— 27re*B(1 —n)‘

w

Thus it is clear that the root w’’ can be ob-
tained to this high degree of approximation from
Eq. (16) with the first term missing. Since this
term arose from the radial acceleration term in
Eq. (3), the left-hand side of the first of these
equations, we have justified the neglect of this
term from the outset to get the slow oscillations
induced by the r-f field. The high frequency
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oscillation w'=w, is just the betatron radial
oscillation frequency and, since this can be
obtained from Eq. (16) by neglecting the last
term which alone depends on the r-f field, this
is unaffected by the presence of this component
wave of the r-f field. The higher harmonics of
this field whose frequencies are close to w, will,
of course, modify the high frequency motion but
evidently will have no significance for the low
frequency motion. Equation (15) with the first
term on the left omitted is just Eq. (9a) used to
describe the synchronous region of operation.

5.

One can summarize the essential results ob-
tained in this paper schematically with the help
of the diagram of Fig. 2. In this the horizontal
line represents increasing time but not to any
particular scale. The sequence of operations
shown in the figure can be described as follows:

Initially, one has pure betatron action during
the latter part of which the r-f field is built up.
The electrons gain energy by betatron action
alone until “locking” into synchronism occurs as
indicated. At this point pure betatron action
ceases and the synchronous region begins, char-
acterized by a small decrease in radius. Energy
is still essentially supplied to the electrons from
the betatron induced e.m.f. As this energy in-
creases the radius slowly increases, passing
through the betatron equilibrium radius when
the betatron frequency equals the radiofre-
quency. During this time pre-bunching is taking
place, and the electrons derive a small additional
energy from the r-f field. When saturation
begins, the electrons start picking up an appreci-
able amount of energy from the r-f field, and the
equilibrium phase slowly rises to a definite value
when saturation is complete. This state of affairs
with continually greater bunching persists until
radiation effects become important. Then there
is a further slow increase of the equilibrium
phase, additional energy abstracted from the r-f
field to supply radiation losses and a modifica-
tion of the bunching because of the radiation
reaction.



