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CERTAIN CASES OF THE VARIATION OF SOUND INTENSITY
WITH DISTANCE.

BY G. W. STEWART.

T is not possible to secure a source of sound without the presence of
reflecting surfaces. In quantitative considerations one desires to

know the variation of intensity with distance from the source and is thus
led to inquire as to the deviations from the inverse square law caused by
the reflectors. A case of practical interest is that in which a small vi-

brating area is located on a rigid sphere, for it is possible to construct a
source which conforms very closely to these theoretical conditions. ' An

additional interest arises from the fact that an investigation of such a
source leads to an estimate of the deviations from the inverse square law

in the case of a person speaking or singing. Furthermore, by utilizing

the results of the same theoretical investigation, we can obtain the
relative intensities on a sphere when the distance of the sphere from a
simple source is varied. These values give an estimate of the deviations
from the inverse square law in the case of a person listening. The de-

viations in the case of a speaker are of interest in architectural acoustics:
those occurring with the listener are of importance in the psychological
laboratory.

With a small vibrating area located on a rigid sphere, the geometrical
figure of the reflector makes a mathematical investigation possible. Lord
Rayleigh' was the erst to obtain an expression for the sound intensity in

the various directions at a great distance from such a sphere. Sub-
sequently the writer' extended the investigation in order to obtain similar
results for distances that are not great.

A brief statement of the theory will doubtless prove helpful to the
reader. Let the source be confined to a small area on the surface of the
sphere within which P„(p) of Legendre's series approximates unity.
Assume that the velocity of this area is represented by Ue'~ ', and that
it has the same magnitude at all points. Assume that

P is the velocity potential,
a is the velocity of sound,
1 Stewart and Stiles, PHYs. REv. , N. S., Vol, I., No. 4, I9I3, p. 309, and PHYs. REv. , N. S.,

Vol. III., No. 4, I9I4, p. 2g6.
2 Rayleigh, TheoIy of Sound, Vol. II., p. 254.
3 Stewart, PHYs. REv. , XXXIII., No. 6, p. 467, December, I9II.
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r is the distance from the center of the sphere,
c is the radius of the sphere,
dS is an element of surface of the sphere,
k is 2or/wave length,

7 is k(at —r + c),
2n I+ aa' + pp'F is Z — P„(v,)2 a +P'

2n+ I ~p' —~'p
and that G is Z —P„(t )2 cx'+ P'

wheref„'(okr) = a'+ oP'

and F„'( koc) = a+fP
Then P = ka/2~r(F sin y + G cos y)JfUds Th. e mean potential

energy, which is the " intensity " we desire, proves to be

k
o po

—= s po(F' + G')
Q2 27fr ~

In this formula UdS ' measures the intensity of the source. For a
constant source, a constant sound velocity and a Axed wave-length, the
relative intensities are proportional to

(F2 + G2)

r2

Ii and G are functions of k, r, c, and cos 0 or p. The accompanying Fig. I
will make clear the meaning of r, c and cos 0. The
source is located at the point (c, 0 = o'). P is the

point at which the intensity is desired and is lo-

cated at a distance r and in the direction 8. Ob- So~«~

viously P is any point on a circle whose radius is r
sin 0 and whose circumference is everywhere at a FIg. 1.

distance r from the center of the sphere.
In view of (I), the deviations of the intensities from the inverse square

law are indicated by relative values of I'2+ G'. The computations
involved in securing the numerical values of F2 + G' are very laborious.
Fortunately, certain numerical results are available, these having been
obtained in previous investigations. As already indicated, the values
of Ii and G depend upon those of ikr and ikc, ' as well as upon p.

'If.„(ikr) and F„(ikc) are defined in Rayleigh's Theory of Sound, Vol. II., p. 238, and by
Stewart, loc. cit.

' For the terms from which Ii and G can be computed in the two cases kc = o.5, kr = 25
and kc = x.o, kr = 5o, see PHvs. REv. , XXXIII., No. 6 (xgxx), Table I., p. 473, and Table
II., p. 475.



G. W. STEWART. t
SECOND
SERIES.

Table I. indicates the variation in the relative values of F'+ 6-"

with r and with 0, the former being expressed in terms of c, the radius of
the sphere. In order to show the percentage deviations in F'+ G'

which represent the percentage deviations from the inverse square law,
the value of this sum is assumed to be unity at a distance of 5o c. Table
I. utilizes the values of F and G when k &( c is I and when k && r has the
values 2, 3, 4 and 5o. The values enclosed in parentheses are computed

by substituting in each case for the distance r in (t) the distance from I'
the source on the sphere. In other words, the values in parentheses

TABLE I.
Relative Values of (F2 + G'), those at yo c being assumed Unity.

wave length
Radius of sphere, c =

Distance. 8= oo. spo 6o . go . Igloo. z5o, z8o .

2c
3 c
4c

50 c

4.24 (1.10)
2.26 (1.05)
1.75 (i.o3)
1.oo (1.oo)

2.58 ( .98)
i.si ( .9s)
1.53 ( .9s)
i.oo (i.oo)

114 .622 .396 .329 .270
1.18 .728 .564 .446 .420
1.15 .862 .661 .544 .520
1.00 1.00 1.00 1.00 1.00

indicate the deviations from the inverse square law when the distances
are measured from the actual source rather than from the center of the
sphere.

TABLE II.
Relative Values of (F' + G'), Those of 2oo c Being Assumed Unity.

wave-length
Radius of sphere = o.s &(—

27r

Distance. 8 =co. 3oo 6o goo. zippo. zsoo. Soo

2G
50 c

200 c

6.28 (1.59)
1.O4 (1.O1)
i.oo (i.oo)

3.54 (1.30)
1.O3 (1.O1)
i.oo (i.oo)

128 .652 .655 .765 .797
1.02 1.00 .978 .968 .957
1.00 1.00 1.00 1.00 1.00

Table II. contains the values obtained when k X c is 0.5 and when
k X r has the values I, 25 and Ioo.

The tabulated results show that when distances are measured from
the center of the sphere the direction of minimum variation from the
inverse square law is found to depend upon the wave-length. With the
longer wave there is less deviation in the rear of the sphere and with the

For values of F and G for kc = x and kr = 2, 3, 4 and So see PHvs. REv. , N. S., IV., No. 3,
Table I., p. 2sg, and Table II. (6o cm. ), p. 2g6.

The values of F' + G' for kc = o.5 and kr = x.o and kr = xoo appearonlyin the form of
curves, Fig. 2, PHvs. REv. , XXXIII., No. 6, December, xyxx.
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shorter, less deviation in front. Both of these facts are in accord with
anticipation based upon elementary considerations. If the distances in

the directions o' and 3o' are measured from the source on the sphere there
is less deviation from the inverse square law, but it is yet large. Whether
distances be measured from the source or from the center of the sphere,
the differences obtained by changing wave-length are very marked. This
suggests that, in any practical case, a closer approximation to the inverse

square law in front of the source can be secured by increasing the frequency
of the tone. It also suggests the well-known fact that the relative in-

tensities of the components of any sound will change with distance and
direction from the source.

In order to utilize these numerical values for an estimate of the deviation
from the inverse square law in the case of a speaker, it is necessary to
assume that the head acts as a rigid sphere and that the source occupies
but a small area on that sphere. If we choose as a circumference, 6o
centimeters, the results in Table I. and Table II. refer to wave-lengths of
6o and I2o centimeters respectively. Although the lack of conformity
to the theoretical conditions is obvious, yet we can consider that the above
results furnish a fairly satisfactory estimate of the deviations from the
inverse square law in the case of a speaker or singer using tones approxi-
mately 6o and I2o centimeters in wave-length, or approximately 575 and

287 in frequency. With the sphere circumference 6o centimeters, the
distances are approximately I9.I, 28.6, 38.2 and 477 centimeters in Table
I., and I9.I, 477 and I,9Io centimeters in Table II. In the former table,
with a frequency 575, the deviations from the inverse square law at the
above distances are over 4oo per cent. If the distance to the source of
sound instead of to the center of the head is substituted in the inverse

square formula, then the deviations are Io per cent. or less. The devi-

ations in various directions are readily read in the tabu1ation. Table II.
should be used for a frequency approximating 287. Neither table gives
the relations between intensities at points having a constant r and varying
values of 0, for such a comparison has already been published. '

In order to apply the results to the case of hearing, we must have
recourse to the reciprocal theorem of Helmholtz, ' which permits us to
interchange positions of the source and the points at distances r where the
relative intensities are desired. Then we can consider a simple source at
a distance r from the center of the head (or, using the parenthetical results,
from the ear) and can obtain an estimate of the variation of intensity with

distance from either ear. For the frequency 575, the maximum deviation

~ Stewart, PHYs. REv. , XXXIII., No. 6, December, x9xx.
' Rayleigh, Theory of Sound, Vol. II., p. 294.
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from the inverse square law with distances from the center of the head to
the source of approximately i9.x and 477 centimeters (9.6 to 468 centi-
meters from the ear) does not exceed xo per cent. (see Table I., o'). For
the frequency 287 and the same distance from the ear, the deviation is
almost 6o per cent (se. e Table II., o'). If vrith the latter frequency dis-

tances of 477 to r,9zo centimeters are selected, the deviation is only I
per cent. There is a distinct advantage in using the higher frequency
in cases where an estimate of relative intensities is obtained by using the
inverse square law.
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