
'j EFFECT OF MECHANICAL STRESS ON TEMPERATURE 2I5

ON THE EFFECT OF GENERAL MECHANICAL STRESS ON
THE TEMPERATURE OF TRANSITION OF TWO PHASES„

WITH A DISCUSSION OF PLASTICITY.

BY P. W. BRIDGMAN.

HIS note is to present a thermodynamic formula of considerable
generality, and to discuss some of its special cases. The need for

such a formula arose in connection with experiments on the effect of
high pressures on melting points and polymorphic transitions. ' In
these experiments the specimens were placed in open containing vessels of
steel, which may be expected to offer some restriction to the free propa-
gation of changes of hydrostatic pressure throughout the mass of the
specimen. The question at issue was: what is the effect on a transition
(or melting) point of unknown extra stresses not hydrostatic in nature?
It was a surprise to me, after a careful search, to 6nd that this problem
has received very meager attention, although it is one capable of solution

by ordinary thermodynamic methods. For instance, Voigt's encyclo-

pa die work on "Krystall Physik" does not mention the problem,
although it contains numerous examples of the use of the thermodynamic
potential for solid bodies under strain. Formulas have, however, been
given by James Thomson' and Gibbs, 3 among others, for the restricted
case of a Huid in contact with an isotropic solid under elastic stress.

The conditions to which the general formula applies are as follows.
Two phases of a pure substance, either gaseous, liquid, or crystalline
solid, are initially in equilibrium under a hydrostatic pressure p and at
absolute temperature 00. The two phases are in contact across a mem-

brane of such a nature as to be permeable to the reacting phases, so that
the transition from one phase to the other may run across the membrane,
but such that it may support a difference of stress between the two sides,
so that the normal component of stress on the two phases on opposite
sides of the membrane need not be the same. A mechanical stress
system, &X„&Y„, &Z„&V„&Z„,&X„,in addition to the hydrostatic pressure
is applied to the phase (I), and a different stress system 2X„2Y'„, etc. ,

to the second phase. The total normal stresses (including the original
' P. W. Bridgman, Proc. Amer. Acad. , 47, 345 and 439, I9I2; 5I, 53, I9I5. PHYs. REv. ,

N. S., 3, I26 and I63, I9I4; 6, I and'94, I9I5.
2 James Thomson, Phil. Mag. (4), 24, 395.
' J. Willard Gibbs, Scientific Papers, vol. 'I, p. I84.
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hydrostatic pressure) across the surfaces of separation are now &X„,
and 2N. . In accordance with the usual practice of elasticity, the stress
is considered positive if a tension. It is required to 6nd the change of
temperature ~ necessary to bring the phases into equilibrium again across
the surface of separation. The formula follows.

I & Bvq I

lY1 + 1 ~ 1 (1Xg + 1Yy + lzg)(p + P ) vl(1+v + P)
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This formula is rigorously exact within the limits over which the coef-
6cients remain constant, but the following approximation is good to
small quantities of the 6rst order:

Op I & Bvg'
lY& + l, g, t (iX, + ~ Y„+gz, )(P + gN„) —vg(gX„+ P)

I ' BP&l
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I 1 (2X~ + 2 Yy + 2Z~) (p + 2X~) + v2(2' + p)
3 EBP j~

The following additional terms used in the formula need explanation.
X is the heat absorbed (in the appropriate mechanical units per gm.
of substance) when (2) changes to (r) at p, 90, and A' is the corresponding
heat of transition under equilibrium conditions under the altered stress
a t Op + 7 ~ W] is the work done by the stress system &X„&F„, etc. ,
when applied isothermally to QNE GRAM of the phase (r), and similarly

for S'2. W is to be calculated by the ordinary rules; in the case of a
solid it may be found accurately enough by supposing the extra stress
system applied to the phase at p = o. It is to be noticed that because
of the conditions of mechanical stability, S' is essentially positive.
(Bv/Bp), is the " compressibility " of r gm. of the substance, and (Bv/Br)„
the "dilatation" of I gm.

It is easy to 6nd the change in the latent heat under the changed con-
ditions of equilibrium.

)&Bvgt gx, + g YI + gZg
6'A = X' —'A = —'A + r(&7» —2y») + 80 ]

—
1

Op &87&„ 3
&Bv~

tt
2X, + 2Y„+ 2zg—Op

&87 Jg) 3

~y~ and 2y~ are the speci6c heats under constant stress.
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The formulas were derived by ordinary thermodynamic methods;
it is hardly worth while to reproduce the wearisome details. The method
is to carry the substance around a complete cycle, writing down the two
conditions that the total change of energy and of entropy of the cycle
shall be zero. The changes of energy and of entropy of the two phases
separately were obtained from Voigt's general thermodynamic potential
for solids under stress. It is important to notice that we cannot in this
general case write down the conditions of equilibrium by demanding that
the thermodynamic potentials of the two solid phases be equal, as we

can when dealing with Huid phases by using the potential Z = E + pv

Os. The thermodynamic potential as usually given for elastic solids

is good only within the range of the small strains contemplated by the
theory of elasticity, and is not good for the comparatively large changes
of volume involved in a transition. It probably would not be dificult
to extend the thermodynamic potential for solid bodies so as to attain
this greater generality, but it was not necessary for the purpose in hand.

The formulas in the form given above apply only to homogeneous

iso tropic solids, or more generally to crystalline solids characterized by
only one constant of thermal dilatation. The extension is immediate,

however, to the most general crystalline solid with its 28 constants, com-

prising 2 I elastic constants, 6 thermal expansion constants, and one

specific heat. The 2 I elastic constants are buried in the expression for W.
The only formal change necessary is to replace, wherever it occurs,

3(Bv/Br)„[—X, + Y'„+ Z,] by a,X, + a2 Y„+aaZ, + ay I,+ a5Z, + c6X„,

where the "a's " are the six constants of thermal expansion. This
produces no change in the approximate value for v, but does enter the
formula for AX.

It is evident that by a double application of the formula the still more

general case may be treated of two phases initially in equilibrium under

any stress system not hydrostatic. It is not worth while to further corn-

plicate matters by giving a single formula which shall apply to this

general case.

SPECIAL CASES.

If the stress applied to the two phases is the same increment of

hydrostatic pressure dp, the expression immediately reduces to Clapey-
ron's equation, as it should, by putt'ng &ill'„= 2%„= —(p + dp);
«X + ~ 7y + ~Z. = 2X + 2 Py +.2Z, = —gdp.

2. If the pressure on (r) is left unaltered and the stress on (a) is raised



to the hydrostatic pressure p + dp, we find immediately

Op
~ = ——v2dp.

Th s is the well-known expression for the depression of the transition
point by a pressure exerted on one phase only. It has been discussed by
Planck, Poynting, Ostwald, Tammann, Lewis, and has recently been
made the basis of a theory of plasticity by Johnston. We will return to
this matter.

3. The formula for 7 contains a theorem by its very form; the tangential
stress on the surface of separation does not enter. The transition tem-
perature of two phases under a given stress is therefore the same across
all planes over which the normal stress is the same, and is not affected

by the tangential stress at the surface of separation. A special case of
th s is that if shearing stresses are applied to two opposite faces of a
cubical solid in equilibrium with a liquid or another solid the transition
point is depressed by the same amount on all six faces of the cube, irre-
spective of whether these are the faces to which the shearing stress is

applied or not.
4. Consider now the problem of the introductory paragraph for the

case of a melting solid. A liquid (t) and a solid (2) in the form of a
uniform cylinder are in equilibrium at P, Oo. A mechanical tension is

applied to the solid. We have to consider two faces of the solid, that
freely exposed to the liquid, and that where the tension is applied. At
the free surface we put

and find
OOS'g

7'

a result independent of the initial pressure. The freezing point is there-
fore lowered, and the solid melts at the unstressed surface. It is to be
noticed that W varies as the square of the applied stress, but it is not
necessary for this reason to restrict the stresses to which the formula is
applicable to small quantities of the first order. It is only necessary
that the strains produced by the stresses remain small. Thus for steel,
a stress as high as the elastic limit produces a strain of only o.oox.

At the stressed surface, if we suppose the membrane such that the
solid would melt to a liquid at normal pressure p, we find,

Oo
VgX~



'j EFFECT OF MECHANICAL STRESS ON TEMPERATIIRE. 2I9

or the melting point is raised, and no transition takes place at this surface,
unless there is liquid present to freeze to the solid.

5. Imagine a cylinder of solid at its melting point and in equilibrium
with it at one end only the liquid. Additional hydrostatic pressure dp
is applied to the liquid, producing in the solid a one sided stress 2X,= —dp.
The normal stresses in solid and liquid across the surface of separation
are in this problem equal. We 6nd that at the surface of separation
the melting point is raised by

Op
r = (Vz Vg)dP,

and at the free surface it is depressed by the same amount as in the pre-
ceding problem. At the stressed surface the change of melting point is
exactly the same as if the entire solid were subjected to the increment of
hydrostatic pressure dp.

This has application to problems like that of a weighted wire melting
its way through a block of ice, or the melting produced under the runners
of a sleigh by its own weight. The usual treatments are faulty in that
they assume hydrostatic pressure in the solid, whereas the stresses in

these cases are not hydrostatic pressures, but are one-sided stresses to
which the usual Clapeyron's equation does not apply. The above dis-

cussion shows, however, that immediately at the point where the pressure
is applied, the usual expression of Clapeyron does hold.

A combination of the results of these last two paragraphs has im-

mediate application to the experimental question mentioned in the
introduction which started this inquiry. Suppose we have a liquid and
solid in equilibrium, and we change the pressure supposedly equally on
both phases by an increment dp of hydrostatic pressure, but that, because
of imperfections in the apparatus, we actually apply an additional stress
not hydrostatic to limited portions of the surface of the system. It is

easy to see that melting or freezing takes place at the free surfaces with

such changes of volume as to tend to produce throughout the mass just
that change of hydrostatic pressure which we thought we had applied.

6. If instead of a liquid and a solid, we consider two solid phases, we

see that the transition point may be either raised or lowered. If the
normal stress across the surface of separation is unaltered by the applied
stress system, then the transition point is always lowered when a stress
system is applied exclusively to (2), and raised when applied to (I).
The differentiation between (I) and (2) is provided by the sign of ).
There is, however, this difference between a liquid and a solid, and two
solids. If the two solids are in equilibrium under hydrostatic pressure
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and we try to increase pressure uniformly on both phases, but because of
restraints in the apparatus actually apply it to only one of' the phases,
the reaction will in some cases not so run as to redistribute the pressure

uniformly throughout the mass. That is, one phase may act as a
protecting covering for another, so that the reaction need not run on

passing the transition line, but will run at some remoter pressure, when

the strength of the covering is exceeded. Such cases are not common,
but do occur sometimes; ice V and VI afford an example.

7. Let us now consider the behavior of crystalline phases, either two

polymorphic solids in contact, or a solid and liquid. We restrict ourselves

to the cases usually met in practise where the phases are in elastic equili-

brium at the surface of separation without the interposition of a permeable
membrane; that is, we assume ~N, = 2N„. For those cases in which

p, the depression of the transition point is of the second order
in the applied stress, and for those for whichIN„+ —p, the depression
is of the first order. In both cases, the effect of the orientation and the
specific crystalline constants on the depression is of a higher order. That
is, the fact that the substance is crystalline enters the result only in so
far as the surface stresses are determined by the orientation of the
crystal. Given a crystal under a specified state of internal stress, and
with specified stresses across the surface of separation from another
phase, and the shift of the transition point is entirely determined by these
elements alone (to quantities of the order concerned), and does not involve

at all the orientation of the surface with respect to any of the elements of
symmetry of the crystal. This result is evidently of importance as
affecting the uniqueness of transition or melting points determined
experimentally.

APPLICATION TO PLASTICITY.

The fact that the melting point of a solid at a free surface is always
depressed by any stress system whatever is suggestive and of consider-
able importance. This fact offers the possibility of a theory of plasticity,
in some respects similar to a previous theory, but free from some of its
objections. This previous theory, suggested by Poynting, and lately
developed in much greater detail by Johnston, ' depends on the fact that
the melting point is always lowered by the application of hydrostatic
pressure to the solid phase only, and lowered by an amount greatly
exceeding the rise that would be produced by the same pressure applied
hydrostatically to both phases. This formula was given above under

' This fact, was stated by Gibbs.
~ J. H. Poynting, Phil. Mag. (S), I2, 32, I887.
3 J. Johnston, Jour. Amer. Chem. Soc., 34, 788, IQI2.
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special case (2). For the purposes of this theory we consider that when
a solid is stressed the pressure is taken up unequally by the miscros"opic
crystalline grains, and that on some of these grains the pressure may be
very intense. If it is so intense as to depress the melting point to the
temperature of the surroundings, melting takes place at these grains,
and we have flow of the metal as a whole, with the phenomena of plasticity.

The theory in this form seems to me to be open to several objections.
It is most difficult to conceive how in any actual solid there is anything
corresponding to the fictitious membrane which maintains the solid under
hydrostatic pressure, while permitting the liquid to How freely away.
Certainly if in the solid there are any grains about, which the surrounding
material is not closely packed, the conditions of elastic equilibrium demand
that at the surface at which the melting is to occur the normal stress be
less than the average. In other words, no matter how intense the average
pressure throughout any individual grain, at the free surface of this grain
where the melting is to take place there can be no normal stress, and
hence the conditions of the theorem do not apply. Another objection
is that experimentally the plastic How of a well-annealed metal begins
at the same numerical value of the stress, whether in compression or
tension. The fundamental formula gives a change of melting point
directly proportional to the stress; under a tension the melting point is

raised, and there should be no plastic How at all. In other words, the
theory accounts qualitatively for plasticity in compression but not in

tension.
The theory modified as above is evidently not open to these objections.

A solid subjected to any stress system whatever, either tension, compres-
sion, or shear, experiences a depression of the melting point at the un-

stressed surfaL'e (or at a surface stressed by less than the average amount)
and melting will take place at that surface if the stress is high enough.
This statement is free from all hypothesis as to the nature of the contact
between the surfaces of the grains. The picture we form of a plastic
How is essentially the same as in the previous theory; that is, under some
conditions How is produced by an actual local melting, followed by reg-
elation with equalization of pressure on all the grains. This local
melting takes place when any grain is subjected to more than its share of
the stress and so is subjected to a stress not hydrostatic.

It is now of interest to inquire of how wide application this contributory
agent in plasticity is. Several reasons lead me to the opinion that it
has not the universal importance that Johnston maintains in his theory,
but that in most solids at points far below the melting point the more
important part of the mechanism of plastic How is of quite distinct origin.
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One of these reasons is the effect of temperature on rate of flow. Tam-
mann and his pupils' have found that the rate of flow under constant
stress very nearly doubles for every ro' rise of temperature. This holds
over considerable temperature ranges —to far below the melting point.
If plasticity is really due to local melting, one would not expect so rapid
a change, but would rather expect the rate to perhaps more nearly double
when the distance to the melting point is approximately halved. Another
reason is to be found in the values of the maximum stresses that solids
will support without plastic yield. It is well known that the flow point
may be raised by the previous application of stress. This is in all prob-
ability due to a readjustment of the crystalline grains so that the load
is distributed more equally. On the above theory this readjustment is

brought about by actual melting and regelation. But it is also well

known that there is an upper limit beyond which the plastic limit cannot
be raised. This upper limit is presumably reached when the readjust-
ment between the grains has proceeded so far that each grain is uniformly
stressed by its proper share. According to the theory under discussion,
this upper limit should be reached at the theoretical stress, assumed
uniformly distributed, requisite to depress the melting point to the
prevalent temperature. As a matter of fact, the upper plastic limit is
never so high. The following table shows the upper limit found experi-
mentally by Tammann and Faust, ' and the computed values taken from
Johnston's paper. The table includes all the metals common to the two
papers. The actual values are from 8 to 4o times too low, divergences so
large as to belong to another order of magnitude. If Johnston's theory
is correct, this would mean that after prolonged flow the internal read-

Pb. . .
Sn. . .
Cd. .
A1. . .
Zn. . .
CG. .

Metal.
Observed, Egm. /cm. ~

102
55

i09
600
770

2,780

Flow Point.

Calculated, Kgm. (cm.2

i,760
2,200
3,300
5,100
6,900

24,000

justment of stress between the grains is still so imperfect that some grains
always bear from 8 to 4o times their share of stress. If the maximum stress
is computed by the newer formula suggested above, values are found
which are of the order of ro times greater again than Johnston's. The

N. Werigin, J. Lewkojeff, and G. Tammann, Ann. Phys. , xo, 647, xgoz-o3.
' O. Faust and G. Tammann, Zs. phys. Chem. , 7S, xo8, xgxo.
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conclusion seems forced upon us that under ordinary conditions the
mechanism of plasticity must be different from a partial melting. Per-
timent suggestions as to what the mechanism may be are common in the
literature '

In some cases, however, plasticity by melting must be a real effect.
Of course it must be of importance in the immediate neighborhood of the
melting point. This means that no crystal continues rigid up close to
the melting point, but softens in the immediate neighborhood. Experi-
ments have been made on the plasticity of crystals near the melting point,
and conclusions drawn as to the molecular mechanism. It is probable
that a large part of this plasticity is due to minute traces of impurity
just as is the increase of specific heat below the melting point. But quite
apart from the effect of impurities, these considerations show that every
crystal will be plastic near the melting point, independent of any special
molecular mechanism, the plasticity being called into play by the very
forces which must be applied to detect its existence. This kind of
plasticity may also possibly enter at the very beginning of How of a badly
annealed piece of metal, in which the load is very unequally distributed
among the grains.

Plasticity is to be expected not only near a melting point, but also
near any polymorphic transition point, since any inequality of stress
on the different grains produces a change of the transition point and

consequently a reaction from one solid phase to another, accompanied

by a change of volume and a readjustment that will show itself as Row.

This plasticity will exist both above and below the transition point.
In general, the range of plasticity about a transition point will be larger
than about a melting point, be™ause the heat of transition is usually
less than the heat of melting. Because of the wide existence of poly-
morphism, this agent must be of geological importance.

To sum up these remarks on plasticity; under certain conditions plas-
ticity is produced by an actual melting with regelation of those crystalline
grains which bear the brunt of the stress. This local melting is governed

by the equations for an unequally stressed solid, and not by the equations
for a solid under hydrostatic pressure in equilibrium with a liquid not
under pressure. This contribuory agent in plasticity does not seem,
however, to be largely effective in the majority of the cases of practice.
For some substances an analogous effect, due to displacement of poly-
morphic transition points, is of more importance.

THE JEFFERSON PHYSICAL LABORATORY,

CAMBRIDGE, MASS.

' J. A. Ewing and W. Rosenhain, Phil. Trans. I93 (A), 353, I9oo. J. C. W. Humfrey,
Phil. Trans. 2oo (A), 225, I903, for example.


