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NUMBER of observations of the thermo-
dynamic properties of unary systems* has

brought about a discussion of the existence of
equilibria of higher order in various papers and
textbooks between 1933 and 1940. In the follow-

ing paper, a formulation of the problem of these
equilibria is derived from Epstein's suggestion
to expand the Taylor series for the thermo-
dynamic potential to terms of higher order. The
thermodynamic relations following from this
formulation are in agreement with experimental
data even in cases where Ehrenfest's equation
yields an error of 100 percent. In connection
with the equilibrium of the fourth order, the
problem of extending the vapor pressure curve
beyond the critical point is analyzed, and it is
shown that the points of inflexion of various
thermodynamic functions in the overcritical
region may be regarded as this extension, as
was suggested by Eucken.

equilibrium with each other, if the thermo-
dynamic potential G=Ig —'rs has the same value
in both phases. The equilibrium condition is then

G'=G",

where the symbols (') and (") indicate the two
phases.

The equilibrium curve is the locus of all points
for which the above condition is satisfied. For a
unary system where G depends only on the
variables p and T, this curve is obtained in the
following way: it is

G'(p, T) =G"(p, T)

For a point (p+dp, T+dT) on the equi-
librium curve, infinitely close to the former, is

G'(p+dp, T+dT) =G"(p+dp, T+dT). (2)

1. DEFINITION OF THE PHASE EQUKIBMUM
OF HIGHER ORDER

In the neighborhood of (p, T), either side of (2)
can be expanded in a Taylor series as suggested

Two phases of the same substance are in by Epstein. ' Therefore

1 (aG aG t 1 fa'G a'G a'G
G(p+dp T+dT) =G(p T)+—

)
dT+ dp I+—

(
—dT'+2 dTdp+

1!EaT ap j 2! (aT' aTap ap' )
1 (a'G a'G a'G a'G

dTdp+ —dp ~—
3!&aT' aT 'ap '-aTap' ap'

1 fa'G a'4G 84G $4G 84G
dT4+4 dT-'dp+e dT'dp'+4 dTdp'+ dp' ~+ . . (3)4! t,aT' aT'ap a T'ap' a Tap' ap' )

This expansion can be discontinued after the
first term containing derivatives of G which have
a difkrent value in each phase. All subsequent
terms can be neglected as inhnitely small of
higher order.

It follows from the definition of a total diR'er-

ential that the terms in the series (3) represent

*The term "unares System" was introduced by W.
Schottky in his book Thermodynam~k (1929) to describe
a system which consists of a single substance.

the total differentials of G. Therefore, (3) can
be written

G(p+d p, T+d T) =G(p, T) +dG

1 1
+—O'G+ —d'G+ —d'G+

2! 3! 4!

' Roman figures refer to the order of the equilibrium in
which the respective equation occurs.' P. S. Epstein, TexSook of Thermodynamics (1937), pp.
131-132.
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This expansion, substituted in (2) yields

O'G' d'G' d4G'
G'(p, T)+dG'+ + + +

2! 3! 4!
d PG/ I d 3G«d 4G/ t

=G"(p, T)+«"+ + + +
4!

In view of the equilibrium condition (1l) this
reduces to

On account of the relations

(Bs P c ]as'l (Bv )
E BT), T Lap) r i, aT) n

(Bc„'l ( B'v )
&ap ) r (BT'),

the higher order derivatives of G are obtained by
continued differentiation as follows:

d'PGI d,'IG/ d 4Gf

dG'+, +, +, +
2! 3! 4'.

d +G«d 3G/ / d 4Gl I

=dG"+, +, +, + (&)
2! 3! 4!

In an ordinary phase equilibrium, the first order
derivatives of G have different values in both
phases. In this case, (4) reduces to

dG' =dG".

8 G c„2 Bc„

BT T T BT

O'G 8'v

BT Bp BT

8'G 8's 8'G 8'v

BTap~ Bp~ Bp3 Bp'-

O'G 2c„2 BC„2 8'c„
BT4 T' T' 8T T BT'-'

O'G C„B'G Bv O'G Bv

BT' T BTap BT Bp' Bp
(61 I)

(6III)

"1 his equilibrium is called an equilibrium of the
first order. If, however, the nth order derivatives
of the thermodynamic potential are the lowest
which have diferent values in both phases, and
all derivatives of an order lower than n are equal

~ (6l V)

84G (9's 84G

BTap' ap' ap4 ap'J

84G 84G 2 8'-'c„

BT BP BT BT Bp Tap"

sos,

slav

(8I)

in both phases, then (4) becomes and so forth.
For an equilibrium of the first order, Eq. (1I)

must be satisfied, while (6I) yields the simul-

Such an equilibrium is called an equilibrium of taneous conditions

the nth order.

2. THE EQUILIBRIUM CONDITIONS FOR
EQUILIBRIA OF HIGHER ORDER

In order to know where the series (4) can be
discontinued, an evaluation of the partial de-
rivatives in {3)is necessary. The differential of G

is, according to the second law of thermo-
dynamics,

from which the partial derivat, ives of the first
order are obtained as V =VS =S

This means, that there must be a finite change qf
entropy and volume in the transition from one
phase to the other. Consequently, all phase
changes of the first order are accompanied by
latent heat, and two phases in equilibrium can
exist simultaneously.

In the same way, Eqs. (6) yield for the equi-
librium of the nth order the following set of
conditions which must be satisfied in addition
to (1I):

(BG ) QBG
&)

0BT) i, (ap) r
(6I)

Bv Bv Bv Bv
c~' =c„", =, =; (1I I I)

BT BT Bp Bp

Bc~ Bc„Bv 8 v

BT BT BT' 8T'
8 v 8~v

Bp Bp

8~$ 8~s

/pe gp2
{1IV)

gn-1G~ ga—1G« gn —1G~ gn —1G«

Bpn —I Bpn —i (1n)
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vrhile, simultaneously, two or more of the foIlow-

ing conditions must be satished:
If, on the equilibrium curve, T is considered as
the independent variable, this can be written

gee/ gmG//

BT BT

gno/ gnG//

(Sn)
BPn BPn

dp ds"/dT ds'—/d T

d T dv" /d T dv'—/d T
(9')

or

gG/ gG/ go// gg//
dT+ dp= dT+ dp

BT Bp BT Bp

dp BG"/BT BG'/B—T

d T BG"/Bp BG'—/Bp

Substituting the partia1 derivatives from (61)
yields

dp s"—s'

dT v
(91)

which is the Clausius-Clapeyron equation. A11

quantities in (9I) refer to the state on the equi-

librium curve. When s and v are known as
functions of p and T, integration of (9I) gives
the equation of the 6rst-order equilibrium curve.

For equilibrium of the second order, taking
n=2 in Eq. (Sn) gives

3. THE EQUKIBMUM CURVE FOR EQUILIBRIA
OF HIGHER ORDER

For an equilibrium of the hrst order, the

equation of the equilibrium curve is obtained by
evaluating (SI) according to (3) as

The total differential quotients in the numerator
can be further transformed. The heat to be
supplied during a reversible change of state
along the equilibrium curve is

dQ=Tds=cdT.

By means of this equation, c is dehned as the

specific heat for a change of state along the
equilibrium curve. If the reversible change of
state were carried out 6.rst at constant pressure
from the initial temperature 1to the tempera-
ture 1+dr, and afterwards at constant tem-
perature from the initial pressure p to the
pressure p+dp, then the first law of thermo-
dynamics gives for the heat to be supplied

dQ =dh —vdp,

Bh (Bh
dT+( ———v (dp.

BT (BP )

Bh/BT = c„, Bh/BP = v T(Bv/—BT)„. (12)

Therefore

d2G// d26/ dQ= c+T T(Bv/BT)Q—P (11II)

d'(G" —G') =0.

This can be written

t'B(G"—G') B(G"—G')
dT+ dp

~

=0.
BT Bp )

Since, according to the rules of diSerentiatio&1,

for independent variables T and p

(Bv l dp
c =cy —T

EBT), dT

Also, from (11[)

(12I )

The heat dQ must be the same for any reversible
change of state between the same points, in-

dependent of the path. Therefore (11I) and

(11II) can be equated, whence

d"(dT) =0 d"(dp) =0 ds/d T=c/T. (13)

it follows Substitution of (13) into (9') gives finally the
equation of the second-order equilibrium curve:

dp= C —C

d T T(dv" /d T dv'/d T)—ol (9II)

where
dv f Bv ) (Bv) dp+
dT EBT), EBp) r dTand, from (61)

dp d(s" —s')

d T d(v" —v') The properties c and dv/dT in (9II) refer to a

d/ — fdT+d( /dp=o
(B(G"-G')) (B(G"-G')i

) & Bp

dp (B(G"-G') 'i i'B(G" G')&-
= —d d

dT & BT ) I Bp )
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change of state in the direction of the equilibrium
curve. It follows from (12I) and (14I) that they
have different values in both phases. This is
caused by the fact that the contact between the
surfaces f'(G, p, T) =0 and f"(G, p, T) =0 which
represent the two phases has been treated as
occurring in one point only, as suggested by
I':pstein. '

For equilibrium of the nth order, Eq. (5n) re-

quires that

which yields
d" ' (8(G"—G'))

dp dT" 'E BT

(fT d" ' (8(G"—G')i
dT" '& rtp )

an(l, from (61) ln(l i]3),
ctP dn 2 (crr cr ) (d" v'r ole v

(15)
dT dT"—' E T T) ),dT" 'dT—" ')—

Ol

d"(G"—G') =0

(8(G"—G') B(G"—G')
dp (=0.

aT ap i

The numerator can be evaluated by means of the
mathematical relation

d" (yl n!" ( 1)r y(" "'

dx" (x) x, o ( x) (n —r)!
In view of (10), this can be written

)dT+dn —i( )dp —0
8T ) &p )

where y&"—"& is the di6erential quotient of y of the
order (n —r), and where y(') =y. When the term
r =0 is taken out from under the summation
sign, Eq. (15) can be written

n —2 ( 1 y
r (Crr)(n —2—r) (Cr)(n —2—r)

[("')("-"-(")("-"j+(n-2)'E ]
—

I, l ), T) (n —2 —r)!
(dn 1Vrr d—n 1Vr )—
(dTn —l dTn l)—

(16)

The sum in the numerator is 0 as can be immediately seen from the calculation of the total difkrential
quotients of c. From (12I), using (7), we obtain

dc Bc ( 82v 8v ) dp 8 s(2dp ) ' Bv d'p
2T + +T —T

BT2 8T) dT Bp2 &,dT) BT dT' (12I I)

8'c ( 8'v 82v ) dp ( 82s c)2c ) (dp ) ' 82s (dp p '
4 +3T (

—+ 2 +3 '
I I +T

(IT-' BT'L. 8T'B-T2) dT -g ()p2 Bp2) idT) Bp ),dT)

( 82v Bv 82s dp ) d'p Bv d'p
3T +2 3T ——- —T, 12III

(tT2 BT &p2 dT) dT 'BTdT''-

and so forth. It is seen that the differential
quotient of c of the order e comprises the partial
derivatives of c~ up to the order n and the partial
derivatives of s and v up to the order (n+1). For
equilibrium of the order n, the sum g comprises
all differential quotients of c up to the order
(n —3), i.e., all partial derivatives of cv up to the
order (n 3) and all par—tial derivatives of s and v

up to the order (n —2). Furthermore, Eqs. (1I) to
(1n) must be satisfied. This means that all partial
derivatives occuring in P have the same value

for both phases. Therefore,

=0

d" c d c

dTn —2 dTn —2

(dn lv«dn lvr)——

g dTn —l dTn l)—
(9n)

and the equilibrium curve for equilibrium of the
nth order is given by the equation
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All quantities in (9n) refer to a change of state in
the direction of the equilibrium curve.

The differential quotients in the denominator
are, with use of (7), obtained from (141) as

d2v 8 v 82$ dP
- —2

dT' BT'"' ap'dT
8'v (dP ) ' av d'P

d'v 8'v 3 8'c„dp
dT' BT' T ap' dT

8's (dP ) ' 8'v (dP ) '
—3 +

ap' EdT) ap' (dT)
8's d'p av d'p—3 +-
A/2 dT2 Bp dT3

82v dP d2P
+3 —,(14111)

ap' dT dT-"

and so f'orth. When the differences of the differ-
ential quotients in (9n) are calculated, then it
follows from the equilibrium conditions (1111)to
(1n) that all those terms in (12II), (12III), etc.
and (14II), (14II I), etc. which contain differential
quotients of p of a higher order than the first
cancel out.

4. DISCUSSION OF AVAILABLE
EXPEMMENTAL RESULTS

a. Equi1ibrium of the Second, Order

Observations of certain substances have shown

a sudden change of at least two of the second
derivatives of 6, while both first derivatives
remained constant. This would then indicate the
existence of two phases which are with each other
in equilibrium of the second order. For such an
equilibrium state, Eq. (911) must hold. If all
quantities occurring in (9II) are known from
experiments, this equation can be verified. This
is possible for the transition between the two
modifications of liquid helium and solid methane
which have frequently been interpreted as equi-
libria of the second order. ' ~ In both cases, the
transition curve and the thermodynamic prop-
erties on this curve are known.

3 P. Ehrenfest, Leiden Commun. Supp. 75 b {1933}.
4 W. H. Keesom, Leiden Commun. Supp. 80 b {j.936}.

K. Clusius and A. Perlick, Zeits. f. physik. Chemic
824, 313 {1934}.

BV BV

dT BT BT

dp cy cy

T T

Bv" Bv/ ' ()v" 8v/

BT 8T. Bp Bp
I/ I II I

t u &n &u t u

-T T. T T

, (18a)

BV BV

dp 8T 0T
dT Bv Bv

~P ~P

~)V/I g I ~

BV BV

~ BP BP

II
~

I-
y p

T T
+

gv/I gvl

ap ap
(18b)

Equation (18b) is also obtained when (12I) and
(14I) are substituted in (9II), and when the
resulting equation is solved for dp/dT

Because of the double sign of the square root in
Eqs. (18), there are two possible equilibrium
curves for an equilibrium of the second order.

It is compatible with the existence of a second-
order equilibrium that one of the three second-

For second-order equihbrium, Eq. (5II) yields'

(8'G" 8'G') (8'G" 8'G' )
d T'+2 — d Td

E aT' aT') EBTap aTap)
(8'G" 8'G'i

(dpi=0.
&ap' ap' j

'Substituting the rlerivatives from (6I I) gives

(c~" c~') (av" av' )
ldTdpT) l BT BT)

(av" av' &

(dp'=0. (1/)
E ap ap)

This equation can be written in either one of
the following two forms:

(c„" c~') (dT) ' (av" av' ) dT

E T T) Edp j EBT BT) dp

(av" av' l
E ap ap)

(av" av') (dp ) ' (av" av') dp+2
E ap ap) t, dT) E BT aT) dT

(ci," c~'$
0iT Tj

Solving for dT/dp and dp/dT, respectively,
gives
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order derivatives of G has identical values in both
phases. Thus, according to (6II), any one of the
following relations may exist:

av" /ap = av'/8 p, (19a)

(19b)

dp 1 cy —c~

d T 2 T(av"/aT av'/BT)—
dp av" /8 T av'/8 T-

= —2
d T av" /ap av'/ap—

(20a)

(20b)

dp ( c„"/T c„'/T )&-
d T (av" /ap —av'/ap)

(20c)

It is seen from Eqs. (20) that, if conditions (19a)
or (19b) hold, only one equilibrium curve will be
observed, while two equilibrium curves are
possible for case (19c).

There is still the possibility that any one of
Eqs. (19) may be satisfied only asymptotically,
i.e. , that as we proceed on the equilibrium curve
the values in the two phases for one of the
quantities in (19) approach each other. Then,
the slope of the equilibrium curve (18) must
asymptotically approach the value given by (20).
This can only occur if, in case (19a), the plus sign
is used in (18a), and if, in case (19b), the minus
sign is used in (18b). For case (19c),either one of
the two signs in (18) is valid. Our present knowl-

av "/8 T= av'/8 T. (19c)

If Eqs. (19) are introduced alternately in (17),
the equilibrium equation becomes, if the trivial
solutions dT= 0or dp——=0 are excluded,

for case (19a)

(c„" c„' ) (av" av' )
ldT —2l — ldp=o, (17a)

& T T) iaT BT)

for case (19b)
(av" av' q (av" av' )

ldp+2l — ldT=0, (17b)
( ap ap) I,BT BT)

for case (19c)

(c~" c„' ) (av" av' l' —"
ldT2 —

l

— ldp2=0. (17c)
q T T) (ap ap)

The slope of the equilibrium curves is then, for
these three cases,

d(s" —s') =0 and d(v" —v') =0.

These are the conditions which, according to
Ehrenfest, should be satisfied on the second-order
equilibrium curve. They represent Ehrenfest's
formulation of the equilibrium curve of the second
order and would make indeterminate the Eq.
(9II) which was derived from (SII). The latter is
Epstein's formulation of the second-order equi-
librium curve on which the present study is based.

Ehrenfest's postulate D=—0 implies that the
surfaces f'(G, p, T) =0 and f"(G, p, T) =0 have
contact along a finite part of the equilibrium
curve. The slope of this curve is, from (18a) with
D—=0,

dP C~ —Cy

d T T(av" /8 T av'/8 T)—(21)

which is twice as large as the value from (20a) for
condition (19a). Therefore, for an equilibrium
where (19a) is valid, the experiment can decide in
favor of one theory or the other.

Equations (18a) and (20a) will now be checked
against experimental results.

A comprehensive description of the thermo-
dynamic properties of liquid helium in the region
of transition from HeI to HeII is given by

edge of the equilibrium of the second order is
still incomplete. So far, of the three conditions
(19), only (19a) has been observed as an
asymptotic condition. In this case, only one
equilibrium curve will be found with values
dT/dp corresponding to those obtained from

(18a) for the plus sign. The discriminant of the
quadratic form (17) is

(c~" c„') (av" av') (av" av' ) '

& T T) & ap ap) &BT aT&

This discriminant will, in general, be diR'erent

from zero. Epstein' has pointed out that the
restriction D—=0 leads to Ehrenfest's theory of
the second-order equilibrium. ' In this case, the
square roots in (18) vanish, and it is

(c„" c„' l (av" av' )
«om(»a) l

"—
&T T) IBT BT)
(av" av' l (av" av' i

from (18b) l
— laT+ l

— lop =0.
(BT BT) ( ap ap)

In view of (7), these equations can be written
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T [K3
l.e I 9 2.0 2.l 2.2 2.3 2.4 25

FIG. 1. Specific volume of liquid helium at saturation
pressure, according to Kamerlingh Onnes and Boks.

Keesom. ' lt can be seen from Keesom's Fig. 8
that the compressibilities of both phases become
equal as the low pressure end of the transition
curve is approached. For the lowest pressure,
where both HeI and HeII are in equilibrium with
saturated vapor, Eq. (19a) is satisfied. The
transition curve is then given by (20a). Figure 1

of this paper shows the specific volume for liquid
HeI and HeII in equilibrium with saturated
vapor, according to experiments by Kamerlingh
Onnes and Boks, as computed by Roberts. ' From
this 6gure, the tangents in the transition point
are

ds"/d T= —0.1215 cm'/g deg. ,

(Es'/d T=0.1475 cm'/g deg.

Since these quantities refer to a change of state
along the vapor pressure curve, it is necessary to
calculate the thermal expansion at constant
pressure from the formula

equations' for the vapor pressure curve as follows:

for HeI I [dp/d T]„,= 130.2 g/cm' deg. ,

for Hel [dp/d T]..( 11——9.5 g/cm' deg.

Substituting these data in (22) gives

(d(t"/87'l„= —0.1404 ( m"/g (leg.
(Bv'/BT)„=0.1302 cm'/g deg.

and
Bs"/8 T Bs'/8—T= —0.2706 cm'/g deg.

Keesom's Fig. 11 gives, for both modi6ca. tions in
equilibrium with saturated vapor, values of (;/R
as function of temperature (not c directly). For
the transition point is

c"/R =5.84, c'/8 = 1.22.

These data would have to be converted to c~
according to (12I) and by using the above values
for ((7v/8T)„and [dp/dT]„(. However, the effect
of this conversion is negligible, so that the above
values c"and c' can be taken directly for c~" and
c„', respectively. This gives

c~"=2.902 cal. /g deg. , (:„'=0.606 cal. /g deg.

and

c„"—(:„'=2.296 cal. /g deg. =9.804X10' cm/deg.

The temperature of the transition point at
saturation pressure is

T=2.19' K.
From (20a) is now obtained

dp 1 9.804 X 10'
= —8.27 X 10' g/cm2 (leg.

d T' 2 2.19X0.2706
= —82.7 at. /deg.

The compressibility whfch, as already mentioned,
is equal for both modi6cations is found fron1
Keesom's Fig. 8 by a linear extrapolation of
(8/Bp)(1/t(') against log p as

(gv/(lp)r = —0.145X10 ' cm'/g'.

'@he quantity dp/dT is found from empirical

~ J. K. Roberts, Heat and Tkermodyysamks (1940), third
edition, p, 328.

572

5 70

T(K]568I I I I I I I ( ( I

l.g 14 I5 l6 l7 l 8 l 9 20 2.l 22

FK;. 2. Specific volume of liquid helium at 25 atmos.
pressure, according to Keesom.

'Landolt-Bornstein, Phys. -Chem. Tab. , Supp. II b, p.
1291.
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where 1 at. =1 kg/cm'=735. 6 mm Hg. The
observed value is, according to Keesom,

(dp/d T).g, ———83.5 at.jdeg.

The discrepancy is only 1 percent. Ehrenfest's
Eq. (21) would give dP/dT twice as high as the
observed value.

A rough check of the complete formula (18a)
can be made for the He transition at 25 atmos.
The specific gravity and the compressibility are
given by Keesom for this pressure, but the
specific heat is given for a pressure described as
"about 25 atmos. " Therefore, not too good an
agreement between the data and Eq. (18a) may
be expected.

From Keesom's Fig. 11

c„"/R= 1.98, c,'/R =0.84,

from which

60-

10-

1M4

l937

T t:5]
196 200 204 208 Zt. 2

3065-

30.60
20,0 20.2

I

20.4
T f.K)

206 208

FIo, 3. Specific volume of solid methane,
according to Heuse.

c„"=4.200 X 10' cm/deg. ,
c„'=1.782 X104 cm/deg.

For HeI, the difference between c,' and c„' is
negligible, such that c,' can be taken for c„'.For
HeII, the di8'erence is considerable, and correct
evaluation of |.„"is necessary. From Keesom's
Fig. 8

Bv"/BP = —0.3794 X10 4 cm'/g'
Bv'/BP= —0.2508 X 10 4 cm'/g'

Bv"/BP Bv'/BP—= —0.1286X10 4 cm'/g'.

Figure 2 of this paper shows the specific volume
according to Keesorn's Table I. From this figure,
the tangents in the transition point are

Bv"/BT= —0.6369 cm'/g deg
Bv'/BT=0. 0048 cm'/g deg,

Bv"/B T Be'/8 T= —0.6417—cm'/g deg.

FrG. 4. Specific heat of solid methane. Solid line, ac-
cording to Clusius and Perlick, 1934.Broken line, according
to Frank and Clusius, 1937.

The temperature of transition at 25 atmos. is
T= 1.835'K.

For the specific heat at constant pressure
follows

c,' = 1.782 X 104 cm/deg. ,

(Bv"/BT)'

Bv"/BP

0.6369'
=4.200 X 104+1.835 10'

0.3794
= 6.162 X10' cm/deg. ,

c„"—c~' =4.380X 10' cm/deg.

ln view of the asymptotic condition (19a), the
observed equilibrium curve will correspond to the
plus sign in (18a). Using the positive square root
in (18a) yields

d T/d p = —10 4(0.2688 —(0.07227 —0.05388)&)

= —0.1332X 10 ' cm' deg. /g
or

dP/d T= —7.50 X 10' g/cm' deg. = —75.0 at. /deg.

The observed value is, according to Keesom,

(dp/d T).b, —63.2 at. /deg. ——

while Ehrenfest's Eq. (21) would give dP/dT
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Frc. 5. CoeScient of linear expansion of nickel,
according to Eucken and Dannohl.

= —37.2 at. /deg. which is an error of 41
percent. The value from (18a) is 19 percent too
large, probably because of the fact, that the
specific heats are not measured at exactly the
same pressure as the other properties.

Clusius and Perlick' have described the thermo-
dynamic properties of solid methane in the region
of the transition point at atmospheric pressure
where the transition temperature is 20.4'K.
Observations of the compressibility are not
available, but it is reasonable to assume that, in
the solid state, the diRerence in the compressi-
bilities of both modifications is negligible; then,
condition (19a) is satisfied, and the equilibrium
Eq. (20a) can be applied. Figure 3 shows the
molecular volume of both modifications in the
neighborhood of this transition point based on
the experimental data by Heuses as interpreted
by Clusius and Perlick. From this figure, the
tangents are

(»"/'T) =0.376 cm'/mole deg. ,

(»'/'T)~= —0.005cm'/moledeg. ,

»"/'T —»'/'T=0. 381 cm'/mole deg.
=0.0238 cm'/g deg.

The molecular heat as given by these authors is
represented by the solid curve in Fig. 4. They
found c„' and c„"by linear extrapolation from
the highest value observed to 20.4'K as

&z"=81 cal. /mole deg. , c~'= 13 cal./mole deg.

' %. Heuse, Zeits. f. physik. Chemic A&H', 27O (1930).

whence

c~"—c~'=68cal. /moledeg. = 18.15X104cm/deg.

Substituting these data in (20a) yields

dp i 18.15X i0'
= 18.7X10' g/cm'- deg.

d T 2 20.4&0.0238
= 187 at. /deg.

This is identical with the observed value, as
obtained by differentiation from the empirical
equation of the transition curve given by Clusius
and Perlick. Ehrenfest's Eq. (21) would again
give dp/dT twice as large as the observed value.

More recently, Frank and Clusius' reported on
a new set of experimental data of the c~'s obtained
by Perlick. He observed c''=42. 5 cal. /mole deg.
In order to restore the agreement between (20a)
and these new data, the value of c„"—c„' has to
be preserved as 68 cal. /mole deg. This would
then require to extrapolate c„" (which was not
observed) to as high a value as 110.5 cal. /mole
deg. This is done by the broken curve in Fig. 4.
It can be seen that this extrapolation is compatible
with the observed data. It may be noted, how-

ever, that these c„data give for the entropy
change from 20'K to 21'K a value which exceeds
slightly the value derived theoretically by Frank
and Clusius.

b. Equilibrium of the Third Order

Observations of certain transformations in

metals have shown a discontinuity of two of
the third derivatives of G, namely the quantities
Bc~/BT and 8'v/BT', while all first and second
derivatives of G remained unchanged. This would

then indicate the existence of an equilibrium of
the third order for these two modifications. One
of these transformations is the transition from
the ferromagnetic to the paramagnetic state in

the Curie point. Another is the transition be-
tween two di6erent crystal lattices, as observed
for Cobalt at 450'C. That the Curie point
represents a point of equilibrium of the third
order has first been stated by Clusius and
Perlick' and Eucken. " The equation of the

'A. Frank and K. Clusius, Zeits. f. physik. Chemic
336, 291 (1937).

'oA. Eucken and %'. Dannohl, Zeits. f. Elektrochemie
4O, 814 (1934).
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transition curve is obtained from (Sn) by taking of cubic expansion
n=3 as

n = (1jv) (Bv/BT)
(O'G" O'G') ( $3G«g3GI

d T'+3 — d T'd p
& 8T' BT') &BT'Bp 8T'ap)

( O'G" O'G' )
+3 — — d Tdp'

(aTap-' aTap2)

(O'G" O'G')
+I — ldp'=0

Bp' Bp')

Substituting the derivatives from (6III) gives

1 (Bc~" Bc~') (8'v" 8'v')
idT'+3i — id T'dp

T & BT &T) EBT' &T')

(8 s" 8 s'~
~dTdp2

q Bp' Bp')

(8'v" 8'v' )
Idp =0. (23)

4 Bp2 Bp'J

Since this is a cubic equation, there can be
three transition curves of the third order. For
transitions in the solid state, the assumption
may be made that the derivatives with respect
to pressure are equal for both modifications in
equilibrium with each other. Then, the following
conditions are satisfied simultaneously:

g2v«/QP2 $2s~/gP2 g2gi&/QP2 pe&/QP2 (24)

If (24) is introduced in (23), only one equation
for the third-order transition curve is obtained:

is three times as great: a=3P. Because of the
extremely small variation of v, the quantity
Bv/8T can be obtained by multiplying a by an
average volume vo. The values of Bv/8T obtained
in this manner with v0=0. 114 cm /g are given in

Fig. 6 for a 100-deg. range, together with the
same curve and tangents as in Fig. 5.

The specific heat of Ni has been measured by
Ahrens. "His data for a 99.4 percent pure Ni are
likewise given in Fig. 6. For the tangents is
now obtained from Fig. 6:

8'v" /BT' = 2.51 X 10 ' cm'/g deg '
8'v'/BT' = —4.76 X 10 ' cm'/g deg '
Bc,"/BT=0.59X10 ' cal. /g deg. '
Bc~'/BT= —5.46X10 ' cal. /g deg. ',

v hich yields

g2~f 1 g2——= 7.27 X 10—' cm'/8 deg. '-',

BT' BT'

Bc„&c&=6.05 X 10 ' cal. /g deg. '-'

8T (AT
=258 cm/deg '

dp 1 Bc„"/8T Bc~'/8 T—
d T 3 T(8'v" /8 T' 8'w'/8 T')—(25)

This equation can be used to calculate the varia-
tion of the transition temperature with pressure
from the tangents of observed functions c„and
Bv/BT. Reliable data on these properties are
available in the neighborhood of the Curie point
of nickel to which (25) shall now be applied.
Eucken's and Dannohl's" data of the coefficient
of linear expansion of Ni,

&= (1/I)(@/~T)

.l3-
64-

6.0

56

300 320 340 360 380 400
are shown in Fig. 5, together with a curve repre-
senting the average data and the tangents to
this curve in the Curie point. For a regularly
crystallizing element, such as Ni, the coefficient

FIG. 6. Specific heat of nickel, according to Ahrens, and
thermal expansion of nickel, calcUlated from the data in
Fig. S.

"E.Ahrens, Ann. d. Physik 21, 169 (1934).
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The Curie temperature of Ni is E = 350'C or
T=623'K. Substituting these data in (25) gives

dp 1 258&&10s -=1.9&10s g/cm' deg.
dT 3 623)(7.27

= 1900 at. /deg.

A pressure of j.900 at. would raise the Curie
temperature of Ni by 1 deg. C.

This result is in good agreement with dp/dT
=2000 at. /deg. as obtained by Englert" from
experiments under two pressures only, but
this e&ect was already of the same order of
magnitude as the accuracy of his experiments.
It must also be kept in mind that the data of
the thermal expansion in Fig. 5 scatter con-
siderably, such that some margin was available
in plotting the curve and its tangents. There is,
furthermore, extreme disagreement in the experi-
mental data obtained by various authors, ranging
from 80 at. /deg. to 20,000 at. /deg. This dis-
crepancy arises from differences both in the
experimental methods and in the interpretation
of the data obtained. Others did not observe any
effect of pressure on the Curie temperature, not
even in experiments" which were supposed to
show any displacement under 100,000 at. /deg.
Rutgers' and Wouthuysen's" method of cal-
culating equilibria of higher order by substituting
a 6ctitious 6rst-order equilibrium yields, when

applied to the Curie point of Ni alloys ""dp/dT
=20,000 at. /deg. However, this method is not
accurate; for the second-order equilibrium of
liquid He in the saturation state, dp/dT= —136
is obtained, " instead of —83.5. It must be
expected that the inaccuracy inherent in this
method increases the higher the order of the
equilibrium is.

c. Equilibrium of the Fourth Order

The equilibrium of the fourth order is of
particular interest as a possible extension of the
vapor pressure curve beyond the critical point,
though its existence has not yet been observed.
If the assumption is made that the vapor

L" E. Englert, Zeits. f. Physik N, 94 (1935)."H. Ebert and A. Kussmann, Physik. Zeits. 39, 598
(1938).

'4 A. J. Rutgers and S. A. %'outhuysen, Physica 4, 235,
515 (1937).

"A. Michels, et aL, Physica 4, 1007 (1937},"J.C. Sister, Phys. Rev. 58, 54 (1940l.

pressure curve is not abruptly terminated at the
critical point but that an extension of this curve
for values p and T greater than the critical
values can be de6ned, then a fundamental
requirement of such an extension must be that,
at the critical point, the extension and the vapor
pressure curve have a con&mon tangent. The
tangent of the latter is given by (91) which yields
at the critical point, where condition (1II) is
satisfied, the iiideterminate form 0/0. The actual
value is obtained from de 1'Hopital's rule as

dp
lim = lim
T Tg dT T~TIc

c c
(s"—s')

dT T T
d dv dvll I

dT dT dT

The evaluation of this equation is given by (16).
The sum in the numerator comprises the differ-
ences in vapor and liquid phase of the differ-
ential quotients of c from the order 0 to the
order n —3. However, the vanishing of each of
these differences is the reason why the preceding
lim operations yielded indeterminate forms, and
why these operations had to be continued n —j.

times. Therefore, the entire sum is zero, and the
tangent at the critical point is

dp d" 'c"/dT" ' d" —'c'/dT"-— —
(26)

T(dn iv«/d Ts 1 dn —lv~/d T—a——1)

It is now seen, that the (n 1)st lim —of the
tangent of the vapor pressure curve is of the
same form as the tangent of the equilibrium
curve of the nth order, Eq. (9n). This leads to
the following conclusion:

If the curve of nth order equilibrium as defined by (9n}
extends from the critical point into a region of values p and
T greater than the critical values, and if the di&erential
quotients in (9n) can be represented by the same functions

in view of (13). If the first lim operation still
yields an indeterminate form, this procedure has
to be repeated until this is no longer the case.
If n —1 lim operations are necessary to determine
the tangent at the critical point, it is obtained

d" ' (c" c')
dp dT" 'l. T T)

lim —=
T~T dT

(v" —v')
dTn I



THERMODYNAMIC EQUILIBRIA

as the differential quotients in (26), and if these functions
are continuous at the critical point, then the curve of eth
order equilibrium has at the critical point the same slope as
the vapor pressure curve. In this case, the extension of the
vapor pressure curve beyond the critical point is repre-
sented by a curve of equilibrium of higher order.

A study of d'p/dT' shows that the value of
this quantity for the equilibrium curve of higher
order is not the same as for the vapor pressure
curve at the critical point. Therefore, the curva-
ture has a discontinuity at the critical point,
if the liquid-vapor equilibrium is extended be-
yond the critical point by an equilibrium of
higher order.

The thermodynamic properties in the region
above the critical point are we11 known for
many vapors. Nowhere has a discontinuity of
the second or third derivatives of G been ob-
served. An equilibrium of the second- or third-
order can, therefore not be the extension of the
vapor pressure curve. The lowest order equi-
librium representing such an extension would
then be an equilibrium of the fourth order. The
equilibrium curve is obtained from (9n) for
n=4 as

dp d'c" /d T' d'c'/d T'—
(27)

d T T(d'v" /d T' d'v'/d T')—
Substituting (12111)and (14111)with considera-
tion of (1111) and (1IV), and collecting equal
derivatives of G, yields

(8'c„" 8'c„'5 (8'v" 8'v' ) dp4T—
E &T' BT') k &T' BT') dT

(8'c~" 8'c~'l (dp '1 '-'

+6
E Bp' 8p'I (dTJ

(8's" rl's'
t (dP ) "

+4T
&Bp' Bp'J EdT)

(8'v" 8'v'l (dp ) '
—T — =0. (271)

( ap3 &p') &dT)

Any curve which makes (271) an identity is an
equilibrium curve of the fourth order and as
such an extension of the vapor pressure curve.
As shown by (6IV), the fourth derivatives of G
which ~ould have to be difkrent for the two
phases in equilibrium correspond to the third
derivatives of the directly observed properties
h and v. There is little chance that the third

(8'v/8 p') z 0, ——

(8's/8 p') r 0;——

(8'v/r7 T')„=0,

(O'A:/8 T')„=0.

(281)

(2811)

(291)

(2911)

On account of (7) and (12), Eq. (29) can be
written

(Bc,/alp) r =0,

(Bc,/8 T)„=0. (28IV)

Applying (7) to (2811), the four conditions (28)
can be interpreted as the minima of Bv/Bp and
the maxima of c„.The latter ones are a particu-
larly prominent characteristic for the region

"A. Eucken, Physik. Zeits. 35, 711 (1934).

derivatives will ever be known with sufficient
accuracy to discover whether there are states
where two or more of them have discontinuities
in exactly such a manner as would satisfy (271).
For this reason, the question whether the equi-
librium of the fourth order is an extension of the
vapor pressure curve will remaiii underi~le(l.

There is, however, still another possibility of
making (271) an identity, not along its eniire
length, but at least in the immediate neighbor-
hood of the critical point. The curves of those
states or sets of states which accomplish this will
still be extensions of the vapor pressure curve
though they may no longer represent an equi-
librium of the fourth order.

An experimental investigation of the thermo-
dynamic properties in the region above the
critical point shows the following characteristics
very distinctly:

(1) the v (P) isothermals have a point of inflexion;
(2) the s (P) isothermals have a point of in8exion;
(3) the v (T) isobares have a point of inBexion;
(4) the h (T) isobares have a point of inflexion.

All these characteristics are also obtained from
the van der %aals equation of state. Euken" has
defined the extension of the vapor pressure curve
as the curves by which any or a11 of the condi-
tions 1 to 4 are satisfied. This can only be so if
conditions 1 to 4 make Eq. (271) an identity, at
least near the critical point. This will now be
examined.

The four conditions can be expressed as
follows:
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under discussion. "The loci of these extrema, i.e.,

the curves on which conditions (28) are satisfied
can be regarded as transition curves between
two difkrent modifications of higher order and
are obtained in the same way as (SI) was derived
from (1I). On each of these four curves, one of
the conditions (28) must hold at an arbitrary
point (p, T) as well as at the infinitely close
point (p+dp, T+dT). A Taylor expansion dis-
continued after the second term yields the four
equations

d(8'v/BP') =0,

d(8's/Bp') =0,

d(Bc,/Bp) =0,

d(Bc,/BT) =0,

d( ) = dT+ dp.
8( ) 8( )
8T BP

(30I)

(30II)

(30III)

(30IV)

When the difFerentiations in (30) are carried out
it is, with the aid of (7),

8'v dp 8's
(31I)

Bp' dT Bp'

8's dp 1 8'c~
(31II)

Bp'dT T Bp'

8'c, dp 8'v 8'v
= T + —, 31II I

Bp' dT BT' BT'

( 8'v 8'v ) dp 8'c~
T + = . 31IV

BT' BT') dT BT'

Equations (31) represent the curves on which
conditions 1 to 4 are satisfied. Obviously, none of
them alone could reduce (2/I) to an identity,
but all four equations combined could do this.
Before substituting them in (2/I), it must be
examined whether the dp/d T is the same quantity
in all four equations, i.e., whether the four curves
represented by these equations coincide in the

p, T plane. For this purpose, the Eqs. (28) may
be expressed by Planck's Characteristic Function

C(p, T) = G/T=s (/i/T). — —

Differentiation yields

dC = (Ii/T')d T (v/T)dp, —

J. H. Keenan and F. G. Keyes, rhermodyeatnic
Properties of Steam, Fig. 7.

8'4 8'4
+T

Bp' BTBp'

824 834
2 +T

t9TBp BT Bp

84 8~4 8'4
2 +4"1 +1'aT+ aT+ ar

(32I I)

(32III)

(32 IV)

It is apparent, that none of Eqs. (32) can be
derived from any of the others. Therefore, a11

four conditions (28) are independent, and the
points where they hold will not coincide but will

be located on four diferent curves. They all
originate in the critical point where all four
conditions (28) are satisfied. Since this point is
simultaneously a point of the equilibrium curve
of the fourth order, the derivatives in (31)will
have discontinuities there. If in the immediate
neighborhood of the critical point these four
curves approach each other, then the (dp/d T) 's

in all four Eqs. (31) will be approximately equal.
In this region, these four curves wi11 also be
infinitely close to the actual fourth-order equi-
librium curve (27I) with its discontinuities of
the five derivatives. Then, in this particular
region, Eqs. (31) may be substituted for both
phases in (27I). Substitution of (31I) in (271)
gives

(8'c~" 8'c„'& (8'v" 8'v') dp4T—
I, BT' BT') ( BT' BT') dT

ff 82~ I ) (dp+6
( BP2 BP2 ) (dT)
(8's" 8's') (dp ) '

+3T)iBp. -Bp.)llidT)l
=0 (27II)

Substitution of (31II) in (27II) gives

(8'c~" 8'c„'p (8'v" 8'v' ) dp4T—
& BZ' BT2) &BTI BT3) dT

8'c" 8'c~' (dp ) '
+3i — '

(i (
=0.

E Bp' Bp') EdT)

srhence
/i= T'(BC/BT), v = —T(BC /BP).

From the Eqs. (28) we now obtain, with the aid
of (7),

(32I)
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of (1IV)
0=0.
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in overcritical region
as observed for Steani by

Hav ii cek and Ni sk 0vsky

Equations (31) reduce (27I) to an identity and,
for this reason, the four curves where conditions
(28) hold are apparent extensions of the vapor
pressure curve.

This is shown in Fig. 7 for the conditions
(28III) and (28IV). The specific heat of steam
in the overcritical region has been measured with
great accuracy by Havlicek and Mihkovsky. "
Figure 7 is redrawn from these authors' Fig. 17
and shows the curves c„=const. in a p, T dia-
gram. It is seen from the relation

&ap l (Bc /BT)

i aT) .„(ac,/ap),

l50
360 3SO

I

420 0%0000

Temperature deAIC

FtG. 7. Curves of constant specific heat of high pressure
steam, according to Havlicek and Mihkovsky.

Substitution of (31IV) in (27IV) gives, in view

Substitution of (31III) in (27III) gives, in view
of (1IV)

t'a'c~" a'c~') (a'v" B'v') dp—T —— =0. 27IV
& BT' aT') i, aT' BT'j dT

that (28II I) corresponds to those points where
the c„curves have vertical tangents, while
(28IV) corresponds to the points with hori-
zontal tangents. The two curves Bc„/Bp =0 and
Bc~/BT=O approach each other in the neighbor-
hood of the critical point E, and both curves
are extensions of the vapor pressure curve.
There are not su%cient data available to show
the same phenomenon for conditions (28I) and
(28I I).
"J.Havlicek and L. Mikkovsky, Helv. phys. acta 9,

161 (1936).


