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The Fourier integral expression for the intensity distribution in a pressure broadened line is
derived from the quantum radiation theory with an adiabatic collision approximation. The
phase shift approximation to the solution is obtained with the actual distribution of phase shifts
taken into account. It is shown that in general there is a shift in line position as we11 as a line
broadening both proportional to the pressure. The ratio of the shift to the broadening depends
only on the power of the intermolecular distance with which the interaction decreases. Experi-
mental values of this ratio in foreign gas broadening are on the average consistent with the
inverse sixth power. The predicted line widths are slightly larger than those given by Weisskopf.
Good agreement with the observed line width is found for most of the alkali metals absorption
lines. Calculated line widths and shifts are given for the vibration-rotation lines of linear polar
molecules. A method for treating non-adiabatic collisions is given. The conditions for which the
Lorentz line form transforms to the Margenau-type line form are indicated. It is shown that the
Jablonski wave mechanical treatment of translational motion leads to the same line forms as the
Fourier integral method under the proper physical conditions.

INTRODUCTION

'HE earliest treatment of the eRects on
spectral lines due to the interaction of

radiating atoms and molecules is that of Lorentz. '
A classical radiating oscillator is taken as the
model for the radiating atom. The atoms or
molecules are assumed by Lorentz to have a
definite collision radius, and each radiating sys-
tem periodically suRers a sudden disruption to
the radiation mechanism. The collision either
stops the radiating process or changes the phase
by an arbitrary amount. The Fourier integral
analysis of the wave train yields the observed
frequency distribution of spectral intensity. The
result is the well-known dispersion line form

C n7lG V

I(a)) =-
» (&»+2») +(~—~0)-

with a half-width, in angular frequency units, of
2nxu28 with n the number of atoms per cc, a the
collision radius, and 8 the mean velocity of the
atoms. '

This result agrees with the experimental data
in that the dependence of line width on pressure
is found to be linear up to pressures of several
atmospheres. In many cases, particularly for
self-broadening, a dispersion type of line form is
found. The theory furnishes no values of the

* Now at Columbia University, New York City.' H. A. Lorentz, Prot.'. Amst. Acad. Sci. S, 591 (1906).

collision radius nor, consequently, of the spectra)
line half-widths '

Keisskopf' has extended the ideas of Lorentz
by taking as the model for the radiating atom a
classical oscillator whose frequency varies in time
according to the collision perturbations on the
system. The intensity distribution is given by

where
co'(t) = L8;(t) —Ef(t) ]/tt

= (go+ LP;(t) Pg(t) j/tt, —

with P;(t) and Pq(t) the collision perturbations of
the initial and final radiation states of the atoms
and Z;(t) and Et(t) the corresponding total
energies of these states. The time t, corresponds
to the initial time of the radiation process. Under
conditions such that the duration of the collision
is small compared to the interval between colli-
sions, the main eRect of the perturbations is to
produce phase shifts in the oscillation. Weisskopf
has evaluated the expression for the intensity
distribution with the assumption that all phase
shifts with magnitudes greater than unity are
equivalent to arbitrary phase shifts, and the
eRects of smaller phase shifts are negligible. A

' H, Margenau and W. %'. watson, Rev. Mod. Phys. 8,
22 {1936).

3 V. XVeisskopf, Zeits. f. Physik 15, 287 (1932).
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Lorentz-type line form is obtained, with the
collision radii given directly from the force law.
With interaction energies varying as the inverse
third and inverse sixth powers of the separation
distance, the values of the collision radii are,
respectively,

e = (2P/&&) l and a = (3&rP/8&&) '"
where P is de6ned by

L&*(i) &~(i—)]/I =p/R" (3)

The phase shift approximation, as will be shown
later, is valid for low densities and high velocities
of the gas molecules. This assumption, namely,
that the eRects of the small phase shifts can be
neglected and that the larger phase shifts are
equivalent to arbitrary shifts, brings about the
result that the shift of line centers, an important
feature of the pressure eRect, is not contained in
the solution.

A very different type of solution has been given
by Kuhn and London. 4 Their method consists
essentially in taking as the intensity distribution,
not the Fourier integral transform of the oscilla-
tions of varying frequency, but the frequencies
which occur instantaneously in the oscillations.
The intensity given to any frequency is pro-
portional to the fraction of time that this fre-
quency occurs in the oscillations. If the particles
move with uniform velocity, the intensity for any
frequency is proportional to the volume in space
in which that, time varying frequency is emitted.
Thus if the frequency scale co is measured from
the unperturbed line position, we have for the
inverse sixth-power law

I(a))dry =R 'dR„= Pd(v/2'�&. (4)

This result of Kuhn and London has the obvious
defect of giving a divergent intensity at the line
center.

Margenau" has improved this result by taking
into account the additive eRect of all the per-
turbing atoms that interact simultaneously with
the emitting atom. Thus, for N perturbing
atoms, the intensity for any frequency is pro-
portional to the volume in the 3N-dimensional
con6guration space corresponding to the per-
turbation energy diH'erencc k~. Margenau's ex-

4 H. Kuhn and V. London, Phil. Mag. 18, 983 (1934}.' H. Margenau, Phys. Rev. 48, 755 (1935}.

pression for the normalized line form is

2&r n exp L
—&rX/&d]

1(~)= p'— with X =4&r'pn'/9 (5)
3

and n the density. This formula indicates a line
width and shift of peak intensity which are
proportional to the square of the density.

The expressions of Kuhn and London and of
Margenau represent essentially "static" solutions
in which the particles are considered to be held in
Axed positions. All eRects due to the translational
motion are neglected. This formulation is valid
for conditions of low velocity and high density.
How this line form transforms into the dispersion
form of Lorentz at high velocities and low
densities will be indicated later.

A rather diRerent but quite rigorous approach
to the pressure broadening problem has been
given by Jablonski. ~' The gas is considered to be
analogous to a very large molecule, and the
stationary states of intermolecular motion, sub-
ject to the Uan der Kaals interaction, are com-
puted. The interaction force depends on the state
of internal motion of the interacting atoms or
molecules, with the result that, in general, the
translational wave functions for diRerent states
of internal motion are not orthogonal. Thus,
subject to the assumption that the interaction
forces are additive and that the eRect of the
intermolecular motion on internal states is an
adiabatic perturbation, the matrix elements for
optical transition contain as a factor the products
of the "overlap" integrals of the translational
wave functions of all the perturbing atoms or
molecules. The probability amplitude for an
optical transition from an initial state of the
emitting (or absorbing) atom of energy E;
and translation energies of interatomic motion
e(n&) e(n&t) e(n&«) to a final state with energy
Ef of internal motion and with translational
energies e(n~') . e(nlr') .e(nN') is

pZg

A(i f) =S; Q dR~RQL & &L & &, (6)
x-j.~ 0

where I-e~&"~) is the radial wave function of the
X perturber. This transition corresponds to the

' A. Jablonski, Acta Phys. Polonica 6, 371 (1937}.' A. Jablonski, Physica 7, 541 (1940).
"A. Jahlonski, Phys. Rev. 68, 78 (1945}.
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emission (or absorption) of radiation of frequency The treatment of the intermolecular motion is
classical in that classical orbits are assumed. Thus
the coordinates of the colliding particles become
known functions of the time. In the Hamiltonian
of the system, these coordinates appear not as
dynamical variables but as time dependent
parameters. The molecular interaction becomes a
function of the time and may be treated as a time
dependent perturbation on the system. The
justification of this treatment lies in the fact that
when the velocity of a "packet" representing the
molecular motion is determined to good accuracy,
the positions may be known, for all except the
very light molecules, to one or two A. The ranges
of the interaction forces which are important in
line broadening are many times this packet size.

The Hamiltonian is taken to be of the form

=duo+ —P (e(nx) e—(nx') 5
~ K-1

Jablonski has calculated an expression for the
line form which is essentially the same as that of
Kuhn and London. With WEB radial wave
functions, each "overlap" integral has the form

with p(R), p'(R) the momenta in initial and final
states, and g, g' the phases in these states. In
analogy with the Frank-Condon principle for
discrete vibrational transitions, Jablonski has
evaluated the integral at the points where

p(R) =p'(R), as the integral oscillates slowly at
these values of R. This assumption is obviously
equivalent to that of Kuhn and London, and in
fact, Jablonski arrives at their formula on
averaging the expressions for a single perturber
over all possible transitions. It is clear that in any
line broadening theory, a treatment which con-
siders only a single perturbing atom and then
averages over all transitions of this system will

always yield a line form which diverges at the
center, since, f'or a large vessel, the perturber will

spend an infinitesimal fraction of time within the
eft'ective range of the forces.

Jablonski considers that the fact that the
intensity distribution ealeulated by this method
does not agree with the Lorentz-Weisskopf
formula indicates that the Fourier integral
method is fundamentally incorrect. How'ever, it
will be shown that the wave mechanical treat-
ment does, in fact, yield both of these formulas
under. the assumption of physical conditions
proper for each.

H=H (pi, V )+H (p, e, Q'(t))

+Ha(pi. ~i p. ~.)+H4(p. , ~.). (8)

Here H& is the energy function of the variables of
the internal motion of the isolated molecules, Hg
is the term representing the interaction of the
molecules, and contains the molecular coordinates
Q;(t). Hs is the interaction with the radiation
field, and H4 is the energy of the charge-free
radiation field. The terms H~ and H3 are treated
as perturbations. The eigenfunction solutions of
the unperturbed Hamiltonian consist of products
of wave functions of the atomic systems and of
the radiation field oscillators. When the complete
wave function is expanded in terms of these
eigenfunctions and inserted in the wave equation,
the usual set of equations for the growth of the
states is obtained. The state equations which do
not involve optical transitions are of the form

a„= —(i/h) V "(t)a„(t)

Xexp [ i(E E„)t/h5—, (9)—

PR0 pR
dR cos — [p(R) p'(R)—5dR+rl rt'—

~0 &0 h4p

DERDt'ATION OF THE CLASSICAL
FOURIER INTEGRAL

In this section a derivation will be given of the
Fourier integral expression for the intensity dis-
tribution assumed by Lorentz and Weisskopf.
The quantum theory of radiation is employed in
calculating the probability of radiation emission
by a system of interacting atoms or molecules.

V "(t)a (t)
a„(t) = exp ——(E —E„)t8 —E„h
The equations containing

for V(0) =0. (10)

optical transition

where V "(t) is the matrix element of H2, that is,
of the intermolecular interaction. For adiabatic
collision conditions the solution is
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matrix elements are of the form

Qf ——5; a, exp (F—,—Ef—Aced—,)t

——V ~(t)a„(t) exp (E—„— Ef—)t,
Il

in which S,f is the ordinary matrix element for
the spectral transition. The increase of the
coefficient a~ corresponds to the emission (or
absorption) of a radiation quantum of fre-
quency cd, . The insertion of expression (10) into
the state equations involving the optical matrix
element permits an explicit solution for the
probability amplitude for emission of a quantum
of frequency co,

pT /II F
A, (T) = exp —— ~ ddt ~ dt5j

AJ,

Xeip q,.t —
I (P, (—t)—P, (t)dr+i—~t, (11)

h. 60

in which y~ is the natural line width, and I',
and I'f are the instantaneous interaction energies
in the initial and 6nal states, respectively. For
foreign gas broadening these terms are the
second-order Uan der Waals interactions. For
self-broadening the collisions may produce a
resonance interaction of like molecules as well as
the Van der Waals interactions. In this case of
6rst-order resonance splitting of the levels, it
may be shown that the expression for the spectral.
intensity consists of the sum of two terms similar
to that of Eq. (11), in which, however, the P;
or I'f values are now the resonance splitting,

with the symmetric level in one term and the
antisymmetric in the other. With the neglect of
natural line width* and the extension of the
radiation time interval to infinity, the Eq. (11)
is identical with the Fourier integral formula of
Lorentz and Weisskopf. ' From the derivation it
is clear that this expression may be described
as the Fourier integral of the optical matrix
element between the adiabatic, or instantaneous
solutions of the time dependent wave equation.
For the self-broadening case the instantaneous
solution is that which diagonalizes the energy
matrix of H2(t), i.e. , the symmetric and anti-
symmetric combinations of the wave functions
of the resonating states.

PHASE SHIFT SOLUTION OF THE
FOURIER INTEGRAL

The Fourier integral amplit ude may be
written as

pao pt
A ((v) = Xl dt e~p i —P(x)dx+i~t,

~0 ~0

in which P(t) is the difference of P;(t) and Py(t)
in angular frequency units, and the frequency is
measured from the unperturbed line position.
X is a normalization factor. The intensity dis-
tribution is given by

fll QO

I(u&) =X ~ dti I dt2
o Jo

t~

)(exp i P(x)dx+ico(/i t.)—
or, with tl —t.=7 and t~ ——fo,

I((o) =X
p to+a

6 to

p to+a

dr
""

dto exp i—
~0 6 to

P(x)dx+icor

dr dto exp i —P(x)dx+i~r

in which S signifies that only the rea1 part of the
integral is to be taken.

Now the function

p 00 p to+a

g(r) = dto exp —i P(x)dx, (13)
Jo Ji.

in which the integral in to is extended over the
complete interval of the radiation process, is a

measure of the average correlation of the function

T

exp i P (x—)dx
0J

over the interval v. v is the time interval over
~ As is well known the natural line width is extremely

small for optical transitions, about 10 cm ', and even
smaller still, about 10 ~ cm ~, for infra-red lines.
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Tp

(1 A) /—orro
(16)

[(1 A)—/'ro$' +[(-8/ro) —(d]'-'~go+a

P(x)dx
Ja This expression for the line shape yields a half-

width 2(1 A)/r—o and a shift of the line center
8/ro, both of which are proportional to n, that
is, to the density.

For the evaluation of the constants in this
formula we shall assume the interaction energy
to be of the form V=PS/R". For the phase
shifts, we have

is simply the sum of the phase shifts of the
collisions occurring in this interval. The phase
shift approximation consists in the assumption
that the duration of the collisions is vanishingly
small, so that this integral may be expressed as
the sum of an integral number of collision phase
shifts for all values of T. It will be shown later
that this approximation is valid for low densities
and high velocities of the gas molecules. Thus
we have

P. P~ — v
tx= I df= —df=—

J 5 J (p '+v'/'-) " vp" '

with v the relative velocity. In addition to the
distribution in velocities f(v)dv, there may be a
distribution in force law constants g~, corre-
sponding to the various excitation states of the
colliding molecules, The total number of colli-
sions per second producing phase shifts larger
than the minimum cut-o6 value O.p is

p to+ad n

P(x)dx=g n,
Jfo i=1

for n phase shifts in the interval. If the mean
time between collisions is Tp, the expected number
of collisions in the interval r is r/ro, and the prob-
abihty of n collisions is given by (r/r p) "(e '"/n!).
The average value of the correlation function
for all cases with n collisions becomes

goo
=n —P dvf(v)gaxp, i'v,

Tp I; "p

which the correlation is to be determined. Thus The intensity formula is
the radiation intensity may be expressed as the
Fourier amplitude of this correlation function. 1(oo) = (R1))/'~t dr exp

For time intervals which are large compared 0

to the collision duration, the integral

X(cos n i sin n—) = (A —iB)", (14)

in which p(n)dn is the distribution in phase
shifts, and A and 8 are, respectively, the average
values of cosa and sin 0.. The forces may be
considered to be "cut off" at a collision distance
po, corresponding to Tp, and the phase shifts
cut o8 at a corresponding value np. This cut-oA
distance is only a device for convenience and is
eventually to be extended to infinity to include
all phase shifts. The correlation function is
thus given by

where n is the density of particles. p, ~ is the
collision distance corresponding to a phase shift
ap for a collision between particles of relative
velocity v and with a force law Pa/Rva. The
probability for a phase shift for this case is

Dpa / va gaf(v)v(va a "" &)

p(n)dn =
n(va+i)/(vai) (Pa 1)-

in which D is a normalization factor. On averag-
ing all types of collisions and velocities the
expression for the half-width becomes

p 2/(ya-&)

g)rn Q ga (v(va —a)/(va —i))a„
a Pa

dn sin' 0.X, (17)
~
n~ (va+i)/(va i)'—

for the case in which all phase shifts have positive
sign. For resonance broadening phase shifts with
positive and negative signs occur with equal
probability and the integration is then extended
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Txax.E I. Ratio, R, of shift to half-width.

5
0.500

6
0.363 0.288

and the same conditions hold for the range of
integration of 0. as with the half-width. In these
expressions the cut-off distance has been allowed
to become infinite. The phase shift integrals may
be evaluated in terms of gamma-functions. It is
to be emphasized that both the shift and
broadening expressions are found in the same
low density approximation to the solution of
the Fourier integral. If the phase shift distribu-
tion p(a) is an even function of a, as it is in
the resonance broadening case, there will be no
shift in the line position. In other cases such as
the foreign gas broadening, the phase shifts have
predominantly one sign (i.e., either positive or
negative) and hence the shift is not zero. For
foreign gas broadening in atomic spectra, the
phase shifts in most cases have only one sign,
which may be either positive or negative. It is
of considerable interest that in this case the ratio
of the shift to broadening is independent of
the pressure, in the phase shift approximation,
and, for the case of one sign in the phase shifts,
depends only on the form of the interaction law
betw'een molecules. For an inverse power law
P/R& this ratio is

p —3
Ratio=-', cot

2V —1)

The values are given for a few cases in Table I.
The half-width obtained by Weisskopf is

2~~(s(y—3) /(n —
1))A ~2/(n —&)

Our formula shows the same dependence on the
variables of the system, but the half-width is
greater than that given by Weisskopf by a
factor which, for the important cases of inverse
third- and sixth-power laws, has the values 4.57

over the complete range of the distribution.
Similarly the line center shift is given by

+2/(yI —&)

2~g p g/ (p(y/ —&)/(ya-n)~„

pa —1

do. sin n
(18)

and 1.21, respectively. For the more slowly de-
creasing force laws the neglect of small phase
shifts is more important, hence the greater
discrepancy with the Weisskopf formula for the
third-power force law.

NON-ADIABATIC EFFECTS

The Fourier integral expression for the in-

tensity distribution in a spectral line is valid
under conditions such that the collisions induce
no transitions among states defined by the in-
stantaneous solutions of the Hamiltonian equa-
tion

~(t)4.(t) =~.(t)4.(t) (19)

An expression for the probability of non-adiabatic
transitions which serves as an indication of the
validity of the adiabatic assumption in any
particular case will be derived here. Resonance
transitions which are necessarily also non-adia-
batic were discussed previously and are excluded
from consideration.

The complete wave function describing the
molecular system may be expanded in terms of
these instantaneous solutions

+(t) = Q a„(t) exp
n gap

&.(t)dt O.(t)

n
/tk= —p a„(t) 6*,

85

&exp
k~p

(E.—P.g)dt,

in which the first bracketed expression is

fdqP/* (8& /Bt)

integrated over all coordinates of the wave
functions. The time-dependent term in the
Hamiltonian is contained in the collision inter-
action and may be treated as a perturbation.
The solutions of Eq. (29) may then be given as

Il,"(t)
0-(t) = 04-+ Z

This function must satisfy the wave equation

H(t) e(t) = (tt/z)—(ae/at),

leading to the equation for the rate of growth of
the amplitude for any state
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0~); is a solution of the time independent zero-
order Hamiltonian and H;" is the matrix ele-
ment of the collision interaction. If the system
is initially in state ns, the probability amplitude
for transition to state k during the collision
becomes

al,.—— H„"(t) exp [i(ok.,t5dt
p~ jv

= (Bg —8„)/l't.
For the usual case of dhole-dipole interaction,
we have

II-"(t) =P~-/(t '+ ~'t')'

The probability amplitude for this case is
given by

t4 m.E'
ag —— II)(tX),

t'(F~ &-)-
iu which Z = proq /s and IIq(iX) is the first-order
Hankel function with imaginary argument. In
any particular case of line broadening this
formula indicates whether non-adiabatic transi-
tions are numerous enough to play an important
part in the radiation process. It will be found
that for most cases of atomic line spectra, the
level separations are so large that the probability
of such transitions is negligible. Exceptions are
found in cases of "quenching" collisions. In
molecular infra-red spectra, cases of non-adia-
batic transitions may occur due to a near co-
incidence of the rotational levels of a foreign
molecule with those of the radiating molecule.
Generally the leve1 to which such a transition
takes place does not radiate in the same spectral
region as the original state, so that when such a
non-adiabatic "jump" occurs, the radiation
process ceases. This fact furnishes an approxi-
mate method for including the non-adiabatic
effects in the preceding treatment. The termina-
tion of the radiation process is equivalent to an
arbitrary phase shift and may be treated as
such by introducing into the phase shift dis-
tribution p(a), a probability for arbitrary phase
shifts equal to the total probability for non-
adiabatic transitions.

zoRErez ebs saoaDEmme rm aroMrc spEcTaa

The calculation of the line broadening and line
shift produced by a foreign gas requires the

TABLE II. Experimental ratios of shift to half-width in
foreign gas broadening.

Spectral line

Hg 2537

Na 5890

K 7665

7699

4044
4047

Hg 2537
2537
2537

Na 5890
K 7665

7699
Rb 4216

4202
4216
4202
4216
4202

Cs 4555
4555
4555
4555
3876
3876
3876
3876

Perturber

A
Ng
02
A
Ng
N2

N2
N2
COg
HRO
H2
H2
A
A
He
He
Ne
Ne
A
A
He
Ne
A
Ng
He
Ne
A
Ng

Ratio

0.39
0.45
0.47
0.35
0.44
0.47
0.37
0.50
0.44
0.50
0.57
0.25
0.22
0.16
0.23
0.36
0.42
0.33
0.23
0.17
0.22
0.56
0.39
0.30
0.23
0.42
0.62
0.62
0.37
0.77
0.32

Reference

& C. Fuchtbauer, G. Joos, and O. Dinkelacher, Ann. d. Physik 71, 204
{1923).

& H. Margenau and W. W. Watson, Phys. Rev. 44, 92 (1933).
& H. Margenau and W. W. Watson, Phys. Rev. 44, 748 (1933).
& G. F. Hull, Phys. Rev. 50, 1148 (1936).
+ T-Z Ny and S-Y Chen, Phys. Rev. 52, 1158 (1937).
~ C. Fuchtbauer and F. Gossler, Zeits. f. Physik 87, 89 (1933).

9 H. Margenau, Rev. Mod. Phys. 8, 1 (1939).

determination of the electronic dispersion inter-
action in both levels involved in the optical
transition. For the ground states, fairly accurate
values of the interaction can be obtained by the
use of the polarizability, ' but for the excited
states only rough estimates can be given. Thus
the lack of accurate knowledge of the atomic
Van der Waals forces precludes any close experi-
mental verification of the theory of line widths.
For the inverse sixth-power interaction Iaw, our
analysis, taking the distribution of collision phase
shifts into account, yields, as has been shown,
a twenty percent greater line width than that of
Weisskopf. This author' has estimated upper and
lower limits to the foreign gas broadening in a
number of cases by his method. These estimates
are so uncertain, however, that our increase in
predicted line width is not very significant. The
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Reference Observed
Calculated
(this paper)

Calculated
(Houston)

J
11 Na 1/2

3/2
10 K 1/2

3/2
Rb 1/2

3/2
13 Cs 1/2

3/2

10'Dvn
0.712
1.10
3.2
3.2
0.55
0.96
0.84
1.45

Ratio
1.55

1.0

1.75

1.72

10'b vn
0.71
1.01
0.91
1.29
0.52
0.72
0.95
1.44

Ratio
1.42

1.42

1.38

1.52

10'hvn
0.49
0.49
0.63
0.63
0.65
0.65
0.71
0.71

Ratio
1.00

1.00

1.00

'0 P. E. Lloyd and D. S. Hughes, Phys. Rev. 52, 1215
(1937).' K. Katanabe, Phys. Rev. 59, 151 (1940).

"Shang-Ui Ch'eng, Phys. Rev. 58, 844 (1940}.
'3 C. Gregory, Phys. Rev. 61, 465 (1942).
"W. V. Houston, Phys. Rev. 54, 884 (1938).
'~ W. Fursow and A. Wlassow, Phys. Zeits. Sowjetunion

10, 379 (1936).

linear dependence of line breadth and line shift
on pressure is observed at low pressures in
all cases.

For the ratio of shift to half-width, the situa-
tion is somewhat more favorable. It was shown
above that this ratio is independent of the
strength of the interaction and, in fact, depends
only on the poWer of the separation distance
which occurs in the interaction law. The ob-
served ratios of shift to half-widths are given for
a number of cases in Table II. These ratios show
such a spread in values that it cannot be said
that the inverse sixth-power law is confirmed.
The experimental uncertainties in the determi-
nation of the half-widths are large and the values
found by different investigators are not always
consistent. The average of the ratios given in
Table I I is 0.375, which is very close to the value
for the theoretical sixth-power law. It is believed
that the ratio of shift to broadening is sufFiciently
sensitive to the form of the force law to permit a
determination of the law by careful experiments.

SELF-BROADENING IN ATOMIC SPECTRA

The line widths of the first members of the
principal series of the alkali metals have been
examined by several investigators. ""

Houston" has discussed these cases of reso-
nance broadening with special reference to the
question as to whether the component lines of
such multiplet transitions are equally broadened.
The calculations of this author are based on a
method due to Fursow and %1assow, "in which

TABI.z III. Half-widths of alkali resonance lines.

the probability per collision for the transfer of the
excitation energy of the emitting atom to the
normal state atom is obtained. This transfer of
excitation energy is regarded as a damping in the
oscillation of the radiating atoms which leads to
a spectral distribution following the dispersion
law with a half-width equal to the "decay con-
stant" of the oscillation. The results of Houston
are given in Table II I. The ratio of line widths of
the doublet components is unity in all cases,
according to these calculations.

It appears to the writer that the method of
averaging the transfer probabilities which take
place between the degenerate sub-levels of the
initial state and those of the resonant state
resulting from the collision over all possible
transitions is incorrect. The transfer probabilities
from any sub-level of the initial state should be
summed over all final states and then averaged
over the initial levels. This process, if employed
in the calculations of Houston, leads to line width
ratios of the doublet components in agreement
with those calculated by the phase shift method
derived below.

From Eq. (17) the half-width of a resonance
broadened line is

Av) =4+'npA„,

in which pA„ is the average absolute value of the
coefficient in the resonance interaction P/R'.
These coeAicients are given by the roots of the
2 (2J+1)(2J'+ 1) secular equations of the inter-
action of an excited atom with an atom in the
ground state. J is the angular momentum quan-
tum number of the ground state and J' that of
the excited state. Half of these 2(2/+ 1)(2J'+ 1)
degenerate states are symmetric and half are
antisymmetric with respect to exchange of the
two atoms. Only the symmetric states may
combine optically with the final state of the
radiation process in which both atoms are in the
ground states. Therefore, in computing the aver-
age value of p;, we shall sum these coefticients
over all the symmetric states and divide by the
total number of states, since all states have equal
probability of occurrence. We shall employ the
root mean square value of p;, as this quantity is
readily obtained by summing the diagonal ele-
ments of the matrix of the square of the interac-
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tion energy. This sum is

for symmetrical matrices. The matrix elements
are of the form

g2
l', ' =—[X,(m, ', m;)X2(m;, m, ')

3

+ i'i(m, ', m;) Fm(m;, m/)
—2Zi(m, ', m;)Zg(m;, m/) ], (23)

For the alkali doublets the ratio of the half-

widths of the —,
' and -', components is approxi-

mately V2. In Table III the experimental half-

widths are compared with those calculated from

Eq. (24) and with those calculated from Houston's
formula. Except in the case of potassium, the
agreement we obtain appears to be quite satis-
factory. The experimental value for potassium
difkrs from those of the other elements by such a
large factor, although essentially the same inter-
action is present, that it surely seems to be in

error.

LINEAR MOLECULES

In order that an interaction be eHective in line

broadening, it is necessary, in the adiabatic ap-
proximation, that there be a difference in the

in which the X, Y, Z are the coordinates of the
optical electrons in the two atoms denoted by the
subscripts 1 and 2, respectively. This matrix
element connects the state of the system in

which the first atom is excited and has a magnetic
quantum number m, ' and the second atom is in

the ground state with a magnetic quantum
number 18;, with the state in which the first atom
is in the ground state and the second atom is
excited and the quantum numbers are m; and m,
respectively. After the computation of expression

(22) and division by the number of states, the
value of the line half-width is obtained. The half-
width is given by

h~"-t'2J+1 i
i

I f». , (24)
mAEJy~ &2J +1)

in which fqq is defined in the usual manner

251 ABJ'J~
fJJ' — P„~X(Jm, J'm')

~

'.
3k' 2J+1

perturbations on the two levels of the optical
transition. It may be shown that in the calcula-
tion of the second-order "electronic dispersion"
forces, the summation over the matrix elements
for any vibration-rotation state in a particular
electronic level leads to the same result. The
denominators of these terms contain the energy
differences between the state being perturbed and
states of different electronic quantum numbers.
Thus all the levels in the same electronic state
will have very nearly the same "dispersion"
interaction energies. The effect of the dispersion
forces in vibration or rotation spectra is therefore
negligible.

For polar molecules the interaction between
the permanent dipoles is a first- or second-order
eR'ect depending on the presence of resonance in
the collision. A molecule of angular momentum
quantum number / will show resonance interac-
tion with another molecule in state l~1, regard-
less of whether the two molecules are in the same
vibrational state. * The mean value of the reso-
nance interaction is zero. We shall approximate
the mean absolute value by the root mean square
value which has been shown by Margenau' to be

(2) '* l+1 ii'

(3I [(21+1)(21+3)]&R'

in which p, is the dipole moment and l is the
smaller of the angular momentum quantum
numbers of the interacting molecules. Either the
initial or the final level of the optical transition
may undergo resonance. For a vibration band
spectrum, both the symmetric and antisymmetric
states of the resonance splitting will combine
optically with the final state of the transition and
the expression (25) may be used directly as the
average P, in Eq. (21).

For non-resonating collisions of polar molecules
the second-order perturbation solutions of Eq.
(10) are identical with those given by London. "

2IJ„4I
V =

3k'R'
li(ii+1) +lii(iii+1)

X (26)
(1&+kg) (ii+kg+2) (li —lm

—1)(li —lg+1)

*This assumes that the convergence of the rotation
levels in the excited vibration state is negligible."F.London, Zeits. f. Physik 53, 245 {j,930).
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TABI.E IV. Calculated half-width in cm ' for one
atmosphere pressure at 25'C.

HC1

Half-width
cm i

0 0.39
1 0.60
2 072
3 070
4 058
5 0.42
6 027
7 0.158
8 0.080
9 0.038

10 0.016

HCN
Half-widthS Cm-1

Sec.
order Resonance Total

0 0.32 0.54 0.86
1 0.39 0.92 1.31
2 0.44 1.33 1.87
3 0,48 1.69 2.17
4 0.50 1.98 2.48
5 0.53 2.20 2.73
6 0.54 2.35 2.89
7 0.54 2.41 2.95
8 0.55 2.41 2.96
9 0.56 2.34 2.90

10 0.55 2.24 2.79
11 0.54 2.06 2,60
12 Q.53 1.87 2.40
13 0.51 1.67 2.17
14 0.50 1.46 1.96
15 0.48 1.25 1.73
16 0.44 1.05 1.49
17 0.42 0.87 1.29
18 0.38 0.71 1.09
19 0.36 0.56 0.92
20 0.32 0.44 0.76
21 0.30 0.34 0.64
22 0.26 0.26 0.52

Shift
cm ~

+0.12
+0.14
+0.14
+0.14
+0.13
+0.12
+0.10
+0.065
+0.04Q
+0,010—0.018—0.043—0.067—0.082—0.10—0.11—0.11—0.12—0.11—0.11—0.10—0.10—0.088

where VA„ ls the mean interaction energy between
molecules in states denoted by /& and l2. It is the
difference in the interaction between the two
levels involved in the transition which produces
the phase shifts in pressure broadening. In con-
trast to the "dispersion interaction" in foreign
gas broadening in atomic spectra, this difference
in perturbations may be either positive or nega-
tive depending on the quantum numbers of the
colliding particles. Hence, as will be shown for
certain of the fine structure lines of a band, the
shift in positiorl may be positive while in others
it is negative.

The infra-red band spectra of linear rnolecules
are a favorable case for the comparison of line
broadening theory with experiments, as they are
among the few cases in which the interaction
forces may be evaluated with any accuracy. With
expressions (25) and (26) we obtain the phase
shift probability distribution for both resonance
and non-resonance cases. Since the effects of these
types of interactions, when they occur in diHerent
collisions, enter linearly in the total phase shift
distribution, we may calculate the half-widths
produced by each type of collision and simply
add these contributions to obtain the total half-
widths. A11 possible collision interactions must be

taken into account, with probabilities assigned
according to the thermal distribution in states.
Molecules in states near the maximum of the
Maxwell-Boltzmann distribution encounter mole-
cules in states differing by one unit of angular
momentum very often, and these lines will show
the greatest broadening. The shifts in line posi-
tions, due to the second-order interaction, show a
rather interesting behavior. The lines near the
edge of the band are moved toward the band
center, and those near the center, closer than the
most intense lines, move away from the band
center. The molecules in states corresponding to
the most intense region of the band encounter
other molecules with lower quantum numbers
about as often as those in higher states. For these
molecules the phase shift distribution is nearly
symmetrical and there will be no shift in line
position. Actually these second-order interactions,
proportional to the fourth power of the dipole
moment, are negligible in almost all cases. Only
in the case of HCN, which has a very strong
polarity, are the shifts within the range of experi-
mental detection. The calculated half-widths in
cm ' for one atmosphere pressure at 25'C are
given in Table IV for HC) and HCN. For HCN
the second-order effects are negligible, .and only
the resonance broadening values are given in the
table. Actually the effects of quadrupole and
exchange forces determine a lower limit on the
collision radius of 3—5A, and a consequent lower
limit on the broadening per atmosphere of 0.04-
O. j.0 cm '. Therefore the widths given for the
lines at the edge of the HCl band are not very
significant. For HCN the resonance, second-
order, and total half-widths are given. The
calculated shift per atmosphere is also shown.

PROPERTIES OF THE GENERAL SOLUTION OF
THE FOURIER INTEGRAL FOR FOREIGN

GAS BROADENING

The statistical problem in the determination of
the Fourier integral intensity distribution may be
reduced to the calculation of the correlation
function (13). For very small values of r, this
expression may be written approximately as

dto exp [ iP(tp) r]. —

The integral in t0 is to be interpreted as the
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average over all interactions occuring in the
radiation process. Thus, for small values of ~, this
expression becomes

summed over all transitions from these initial
states, and averaged over the distribution in
initial translational states, subject to the condi-
tions on the total energy change of the system

de(I')e '~', (28)
DR=&oh, =Z;—Fg+g (e, —e ), (29)

in which D(I') is the distribution in the function
P(t). For large values of r the expression (15)
becomes the correct approximation for the corre-
lation function. If the correlation function (28) is
inserted in the intensity expression (12) and the
integration over v. is extended to infinity, the
exponential factor takes on the properties of a so-
called delta-function, b(P, &o), and the resulting
lil teiisity distribution is I(&al) =D(I ) whicli is
identical with that of Margenau. Thus the use of
the correlation approximation (15) over the
complete interval yields the phase shift line
form, and the use of expression (28) leads to the
"static" distribution. The exact correlation func-
tion transforms from (15) to (28) at values of r of
the magnitude of the duration of a collision
producing unit phase shift.

In Table V are given the values of the half-

width and the shift of peak intensity for these
two cases. x is the ratio of the volume enclosed

by the collision radius for unit phase shift to
the volume corresponding to the average distance
between molecules. This quantity serves as a
criterion as to which approximation is the more
accurate for any condition of density, tempera-
ture, and strength of interaction. As conditions
change such that x increases through the value
of unity, the dependence of line width on density
goes from the first power to the second power.
The two formulas give the same width and shift
for values for y of 1.51 and 1.48, respectively.
Preliminary calculations, employing higher ap-
proximations to the correlation function, indi-
cate fairly good agreement of the half-width and
line shifts with the phase shift values, for x
less than unity, and with the "static" values for

y greater than unity.

THE %'AVE MECHANICAL TREATMENT OF
INTERMOLECULAR MOTION

In the formulation of Jablonski, the probability

amplitude for any particular combination of
translation transitions (6) is to be squared,

for both initial and final states. The argument of
the cosine in the integrand of (30) satisfies the
asymptotic condition

[p(Ro) —p'(Ro)](Ro//«)+q. r
—g, &' = mm, (31)

in which primed quantities refer to the final
state of the transition. We now introduce the
variable

mdR md'
d&=

P(R) (2m) «[e U(R) ——(/2k'/2mR') ]«

and employ the classical approximation for the
angular momenta Pk'=m'v'p'. The boundary Eq.

TABLE V. Half-widths and shift of peak intensity.

Approximation

Phase shift
x((&

Static

Half-width

8.53')p/x

5 63~p

Shift

3.10']p/x

2.1040p

3 p 3/s
sop ——4x Pn'/9 x =—~g

3 8 v

in which the summation is extended over all the
perturbing particles. Kith the WKB approxima-
tion to the radial wave functions, each "overlap"
integral may be written in the form

c2 t's m Ae —AU(R)
dR cos — dR (30)J, p(R) J, a p(R)

in which p(R) is the classical radial component
of momentum, he is the translation energy
difference for the perturber in the initial and
final states, and 5U(R) is the difference in poten-
tial energy in initial and final states. The effects
due to the extension of the wave functions into
the "non-classical" region R&p are neglected.
At the edge of the container, the boundary con-
ditions are of the form

p(R0) Ro ls——+g, ( ——-', (2n+1) n.
k 2
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(31) at Ro= T/s becomes

(32)

expression (33) are arbitrarily large. Then this
integral becomes simply

QTs sin n; sin ~iT;
dt; cos (s),t; a;—) = = (34)

dp
with ~;=As;/It for each perturber. The overlap
integral expressed in the new variable is

g2

Jp

t'" d U, (t)
dt; cos ~;t, ' — dt . (33)

~p k

The phase at the boundary in the integrand,

&r' 6 U;(t)
n, '= ' dt,

dp k

is exactly half the phase shift for such a collision
which would appear in the Fourier integral
expression for the intensity.

If conditions are such that the eR'ective range
of forces is large compared to the average
distance between molecules, that is, if the
overlap integrals for perturbing molecules with p
comparable with the particle separation show
phase values larger than unity, then the pro-
cedure employed by Jablonski in calculating the
integral (30) is correct, and the static type of
solution is obtained. Jablonski has obtained the
Kuhn-London line form by considering only a
single perturber, but it is clear that the averaging
over all possible simultaneous transitions, sub-
ject to condition (29), is completely equivalent
to the calculation of Margenau and leads to
the line form given by that author.

Under conditions such that the effective range
of the forces is small compared to the molecular
separation, the eRect of the interaction forces is
simply the introduction of the phase into the
integrand (33), and the integrand is a harmoni-
cally oscillating function over the range of
integration. The result of this calculation wi11

yield the same formula for the intensity distribu-
tion as would be obtained in the phase shift
approximation to the Fourier integral.

As an example of this calculation, we shall
show that the wave mechanical treatment leads
to the Lorentz line form for the same conditions
that were assumed in that calculation. We
assign a de6nite cut-oR' radius to the interaction
forces, but we assume that the forces inside this
radius are su%ciently great that the phases of

with the use of the boundary condition (32). Of
the total number of molecules in the container,
N, only a fraction of them, ¹,will have angular
momenta, or collision distances, suSciently small
to enable them to come within the range of the
forces. For the other molecules the translational
wave functions in the upper and lower states of
the radiation process form identical sets of
orthogonal functions, and no change in energy
is permitted in the transition. Therefore we need
only concern ourselves with the N' molecules
which may actually collide with the radiating
molecule. Leaving off numerical factors, the ex-
pression (34) becomes

with

I ~

~(~) =II (35)

(36)

The intensity distribution is obtained by averag-
ing ~A(ra) ~' over all combinations of simul-
taneous transitions. The distribution in the
parameter T;=Ra/v is taken to be s r"r'/T0 ill

which TO=Ro/8 and 0 is the average velocity.
To obtain the intensity distribution, the ex-
pression

The number of molecules in the container
which may collide with the radiating atom is

must be averaged over all values of the e;. The
assumption of arbitrarily large phases allows
each perturber to make any energy transition.
The intensity is given by

d(oi
1(~)=II

i=& ~ -~ I+4+i ~p

with the condition (M). This N -fold integration
may be performed in successive steps, and
leads to
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N'=2meRga' with e the density. Thus the line
form is given by

I(~) =A/De~a'v)'+~' lt (37)

which is the Lorentz formula, with frequencies
measured from the line center.

Under the two extreme physical conditions

the wave mechanical and classical treatments
lead to the same expressions for the line form.

The writer wishes to express his gratitude to
Professor D. M. Dennison for his continued
interest and advice in this study, and to Pro-
fessor G. E. Uhlenbeck for several helpful
suggestions.
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Self-Broadening in the 14' Band of HCN
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The intensity distribution in the positive branch of the 14@, HCN band has been measured at
pressures of 2.5 cm, 16 cm, 40 cm, and 58 cm. Because of the large permanent dipole moment of
this molecule, there is considerable line broadening at these pressures. The overlapping of lines,
slit width effects, and finite thickness of the absorbing layer of gas are taken into account in

relating the theoretical line widths to the intensity distribution. The two constants giving the
effective slit width and the absolute vibration intensity are determined from the low pressure
lines, and these constants with the theoretical line widths determine the intensity distribution
throughout the band. Reasonably good agreement is found at all pressures, and no systematic
disparity of theory and experiment is indicated. The predicted shifts in the lines, which are just
within the limits of detection, are in qualitative agreement with the observed values. The
absolute value of the dipole strength of this vibration transition is determined. '

' 'N a preceding paper, ' formu1as were developed
~ ~ for the width and shifts of the lines of the
infra-red vibration bands of polar molecules.
Table IV of reference 1 gives the widths and half-
widths per atmosphere of the rotational lines for
bands of HCI and HCN.

Inasmuch as the polar molecules are among the
few cases in which the interactions important in
line broadening may be calculated accurately, it
has appeared worth while to determine experi-
mentally the intensity distribution at various
pressures in a band of such a molecule. Hydrogen
cyanide gas was chosen for several reasons. Since
it is a linear molecule, the spectrum is especially
simple. It has a very large dipole moment
(2.65X10 " c.g.s. e.s.u.), which indicates that
considerable broadening will occur at moderate
pressures. The spectrum is not complicated by
the lines due to an isotope, as is the case with
HCl. The positive branch of the 14p, band was

~ Now at Columbia University, New York City.' H. M. Foley, Phys. Rev. 69, 616 (1946).

chosen for measurement, as there are no inter-
fering bands of atmospheric H20 or CO2 in this
region. The line positions in the band have been
measured previously by Barker and Chai ~

'
The infra-red spectrometer employed was that

described by Hardy. ' The writer was very kindly
permitted the use of the instrument by Professor
E. F. Barker. The grating used was of the
echelette type, ruled with 700 lines to the inch.
This spectrometer is equipped with a KBr fore
prism to remove the higher order spectra of
short wave-lengths.

Measurements of the absorption of the gas were
made at pressures of 2.5 cm, 16 cm, 40 cm, and 58
cm of mercury, with absorption ce11 lengths of
12 cm, 2.5 cm, 1 cm, and 1 cm, respectively. The
total amount of gas through which the radiation
passed was thus roughly constant. 58 cm was the
highest pressure that could be maintained at

'E. F. Barker and K. N. Choi, Phys. Rev. 42, 777
(1932).' J. D. Hardy, Phys. Rev. 38, 2162 (1931).


