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Conditions have been obtained for the existence of a steady shock wave of such an intensity
that radiation pressure plays a role in determining the properties of the shock. These conditions
are completely analogous to the Rankine-Hugoniot equations for ordinary shocks; they are
obtained by consideration of the conservation of mass, momentum, and energy. The results are
applied to hydrogen and other very light gases. The application to other media requires a
much more complicated discussion of the equation of state and specihe heat under extremely
high pressures and temperatures. In the light gases, the thickness of the shock front is extremely
large because the radiation free path, which is determined by Compton scattering, is very large.
The velocity of sound in a medium under very high pressures and temperatures is also dis-
cussed, and it is found that this velocity continues to increase with increasing pressure, a con-
dition that is necessary for the shock to be stable.

I. INTRODUCTION

HE conditions for the existence of a steady
shock wave in matter are well known. These

conditions, which may be called the Rankine'-
Hugoniot' equations, relate the pressure, density,
and material velocity behind the shock to those
in front of the shock for a given velocity of the
shock front. They are simple consequences of the
conditions for conservation of mass, momentum,
and energy across the shock front, as mell as of
the equation of state of the medium through
which the shock is moving.

The Rankine-Hugoniot equations have served
to treat problems concerned with any shocks that
can be produced in the laboratory. However, it
may be of interest, for example in the study of
stellar explosions, to consider shocks which are so
intense that radiation pressure plays an im-

portant role in determining their properties. It is
the purpose of this discussion to indicate the
changes in the Rankine-Hugoniot relations that
are necessary to take account of the radiation
pressure, and to derive some of the consequences
of these new relations.

Since the derivation of the Rankine-Hugoniot
re1ations wi11 serve as a guide for our purpose, it
will be recalled in the next section. The radiation
problem will then be treated in subsequent
sections.

'%.J. M. Rankine, Trans. Roy. Soc. London, A100, 277
(1870}.

~ H. Hugoniot, J. Ecole Poly. 58 (1889).

SHOCK FRONT

a b

Frr. i. Schematic representation of shock in coordinate
system moving with the shock front. So and S are planes
fixed with respect to the shock front. The slab ab of material
of thickness Vdt moves into the section SoS in time dt, and
the slab a'b' of thickness Udt moves out of that section in
the same time.

' L. H. Thomas, J. Chem. Phys. 12, 449 (1944),

2. THE RANKINE-HUGONIOT EQUATIONS

In the derivation of these equations, a shock
wave is assumed to be represented by a discon-
tinuity in pressure, density, and temperature
which moves through the medium with a velocity,
V. This discontinuity exists as such only on the
macroscopic scale. On the molecular scale, the
changes in pressure, etc. , must necessarily take
place over a distance of several mean free paths
in order to maintain equilibrium in the transition.
It has recently been shown by Thomas' that this
condition is satisfied for quite intense shock
waves in gases.

Instead of considering the medium to be
initially at rest and the shock moving with speed
V, it is more convenient to observe the phe-
nomenon from a coordinate system in which the
shock is at rest and the material is being fed into
the shock front with the speed V. This condition
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is indicated in Fig. 1.Material at pressure I'0 and

density po is being fed into the shock with

velocity V (from left to right) —and material at
pressure I' and density p is leaving the front with

a velocity U(U& V).
Consider now the section S05 of the material

between the vertical dashed lines, 4 which are
taken to be at rest in this coordinate system.
Since the shock is assumed to be steady, the
mass, momentum, and energy of the material in

this section must be conserved during the infini-

tesimal time dt. ' The mass that Rows into SOS in

this time is the mass of the slab eb of material or

poVdt, and the mass that Aows out is the mass of
the slab c'b' or pUdt, so conservation of mass

requires that
(1)ppV= pU.

Since the mass poVdh has a velocity V, it imparts
a momentum poV'dt to the section. Similarly, a
momentum pU'dt= poVUdt leaves the section.
Since the section is under a pressure Po on the
left and I' on the right, it also acquires a mo-

mentum toward the right of (P« P)dt, in t—his

time. The condition that the momentum be

conserved is, then:

p«V(V —U) =P P«. — (2)

pa V[~i(V2 —U')+Eo Ej=PU Po V (3—)—
The Eqs. (1)—(3) are the Rankine-Hugoniot

If the shock front is not plane, the distances SpS, ab,
and a'b' must be small compared to the radius of curvature.

~ It is necessary that ab and a'b' be large compared to a
mean free path so dt must be large compared to the mean
free path divided by V.

Similarly, the slab cb carries in with it a kinetic

energy —',poV'dt, and the slab a, 'b' carries out a
kinetic energy —,'po VU'dt. In addition, the material
that moves into the section in time dh must move

a distance Vdh against a pressure 2'0 while that
moving out moves a distance Udt against a pres-

sure P, so an amount of work (P«V PU)dh is-
done on the section. Finally, the internal energy

(B«) of unit mass of the material at pressure Po
and density p« is difkrent from that (8) at
pressure I' and density p. Thus the section ab

carries in an energy p«VEodt, and the section a'b'

carries out an energy po VERDI,.The condition that
all of these changes in energy lead to no over-all

change in the total energy of the section 505 is:

equations. Taken along with the equation of
state, they provide the necessary relations for
determining the physical conditions existing
behind a shock front which is moving with a
known velocity. For a perfect gas, the equation of
state is

&=P/(v —1)p,

where y is the ratio of speci6c heats. Equation (4)
may be used to eliminate 8 and Z« from Eq. (3).
Then the Eqs. (1)—(3) give three independent
relations between the four unknown quantities P,
p, U, V.

It is generally convenient to deal with the
dimensionless quantities p=P/Po, x=p/p«,
u = U/ V, s = V(p«/P«) &, and «= Ep«/P«. In terms
of these quantities, the Eqs. (1) to (4) become

ux= 1,

v'(1 —u) =P—1,

2s'(1 —u') +«« —« ——pu —1,

« =p/(7 —1)x. (g)

These equations, which now in virtue of (g) refer
to a perfect gas, may easily be solved to give p, x,
and u in terms of v. One consequence of them
which we will use is that, as the pressure becomes
infinitely great, the density ratio x approaches
the finite value (y+1)/(y —1).

3. THE STEADY SHOCK CONDITIONS FOR
VERY INTENSE SHOCKS

lf the shock pressure is very high, that is of the
order of i0' atmospheres, the temperature is
correspondingly high, so the energy density of
radiation is comparable with the internal energy
density of the material. Similarly, the radiation
pressure is comparable with the material pres-
sure. Under this condition, the Eqs. (5)-(g) can
no longer be correct. It is necessary to introduce
terms in them that will take account of the
momentum and energy transferred by the
radiation.

If the radiation energy density is 8', the
radiation pressure is

The radiation density and pressure at every point
is determined by the temperature at that point
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by the relation
W= a(kT)' (10)

where e =2.23X104' erg-' cm '.
Turning now to Fig. 1, a radiation energy

density 8"must be included on the right side of
the shock. For generality we include an energy
density Wo on the left side (in front of the shock)
although this quantity is negligibly small in the
usual case of a shock advancing into a medium at
nearly standard conditions.

In discussing ordinary shocks, it was pointed
out that the changes represented as discontinuous
in Fig. 1 must actually take place over a distance
which is large compared to a molecular mean free

path. An equivalent condition applies to the
present case. The thickness of the shock front is

large compared to some length X' where ) ' must
obviously be at least as great as the mean free

path, ), for the scattering or absorption of
radiation. However, ) ' is not to be set equal to X

because the velocity of light, c, is so great com-

pared to the shock velocity that an appreciable
amount of radiation can be lost by diffusion even

if the thickness of the shock front is large (but
not large enough) compared to the mean free

path. Thus for a shock front which is initially

very sharp, the radiation will diffuse through the
front and raise the temperature of the medium

just ahead of the shock. The front is continually
broadened by this process. The broadening
eventually ceases to be important, however, be-

cause the time required for the diffusion of the
radiation through a given distance is proportional
to the square of the distance while the time re-

quired for the shock to negotiate the same
distance is linear in the distance. Thus as the
shock becomes thicker, a stage is reached in

which only a negligible fraction of the radiation

gets ahead of the shock.
A rough estimate of the thickness, X', at which

the broadening process virtually ceases is ob-
tained by taking it to be that distance for which
the average velocity of diffosion is equal to the
velocity, V, of the shock. The average diffusion
velocity over a distance X' is roughly cX/X'.

Setting this equal to V, the estimate
X'=cX/ V

is obtained for the minimum thickness of a
steady shock.

In the following considerations, it is assumed
that the distance SOS (Fig. 1) is large compared
to X'. On the other hand, the time interval dt
which will be considered need only be Ao large
that the thickness of each of the slabs a,b and c'5'
in Fig. 1 is large compared to X. The path length
X' does not enter in this case because each slab is
cut from a region of uniform radiation density,
and diffusion need not be considered in such a
region.

The 6rst of the conditions given in Section 2,
that is, the conservation of mass, is not changed
by the presence of radiation since shock waves so
intense as to require a relativistic treatment will
not be considered. ' This condition is expressed in
dimensionless form by Eq. (5).

The condition for conservation of momentum
must be modi6ed to include the effect of the
radiation pressure. Since the thickness of the
section SOS of material is large compared to the
radiation free path, the radiation pressure will
transfer momentum to the section in the same
degree as that transferred by the particle pres-
sure. Thus Eq. (2) is to be changed by adding the
corresponding radiation pressure to each of the
particle pressure terms. Since the radiation pres-
sure is -', W; the equation to be substituted for
Eq. (2) is:

poV(V —U) =P+-', W—(Pa+tWO). (11)

In dimensionless form, this equation becomes:

where
v'(1 —u) =P+m —1 —wo,

m=~3W/P~.

(12)

(13)

' In the relativistic case, the conservation of mass would
appear as part of the energy conservation equation, but an
additional condition would be required for conservation of
particles or for conservation of electric charge- if pair
production is taken into account.

Consideration of the conservation of energy
leads to the result that Eq. (3) must be modified

by the addition of a radiation pressure term and a
radiation energy term, as would be expected. As
a consequence of the condition that the thickness
of the material ab or a'O' Qowing into or out of the
section SOS in time dt is large compared to the
radiation free path, the slabs a,b and a'b' absorb
the full radiation momentum P,~. They thereby
do an amount of work —',WOVdt and )WUdt on—
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In dimensionless form, this is

—,'v'(I u')+—eo a+4(—wo uw) =—pu —1. (15)

Equations (5), (12), and (15) provide the
necessary description of the shock phenomenon.
Since these equations are useful primarily for
very intense shock waves, some simpli6cation of
them can be secured by neglecting the quantities
mo and 1 which are small compared with zo, and
the quantity eo which is small compared to ~, if
the shock wave is advancing into a medium at
nearly standard conditions. The resulting equa-
tions are:

Ix=1, (16a)

v'(1 —u) =p+w,

—,'v'(1 —u') —e = (p+4w) u.

(16b)

(16c)

7 If the mirrors (assumed to be penetrable by the
material) move with a velocity different from the material,
they disturb the radiation energy equilibrium because the
reHected intensities on the two sides are different from. the
incident intensities and different from each other as a
consequence of the Doppler effect. This point was called to
the author's attention by Professor J. E. Mayer.

the section SOS. It follows that ~3$' and —',5'o are
to be added to the corresponding particle pres-
sures on the right side of Eq. (3).

In addition to this change in the pressure term,
there is a corresponding change in the internal
energy term in Eq. (3). It is to be remembered
that that term was due to the internal energy
carried into and out of the section 805 by the
material in O,b and in 0,'b', respectively. In order
to obtain the corresponding contribution of the
radiation„ let us imagine that perfectly reHecting,
double faced mirrors which move along with the
material are p1aced at u, b, c', and O'. These have
no eEect on the radiation equilibrium, so between
the mirrors the radiation density is W (or Wo). '
The total radiation energy between the mirrors
Ob is carried into the section 505, and the radia-
tion energy between a'b' is carried out of the
section in time dt. The consequent increase in the
energy of the section is 8'OVdI, —TV Udt, so a term
8'OV —lVU must be added to the left side of
Eq. (3). With both of the necessary changes,
Eq. (3) is replaced by

pp VL-,'(V' —U2)+20 P.j+VWO——UW
= (P+-,'W) U —(Po+-', Wo) V. (14)

w =a(kT)4/3P0. (17)

When the equation of state for the material is
given, the temperature, T, in (17) can be ex-
pressed in terms of the material pressure and
density. Then these conditions, along with
Eqs. (16), are sufficient to determine all of the
variables of the system as a function of one of
them, which is the desired result. However, under
the conditions to be considered, the equation of
state of the material cannot always be expressed
in simple form. The temperatures are so high that
molecules and solids are dissociated into a gas of
highly ionized ions and electrons. Many of the
free electrons have sufficiently high thermal
energy to be treated as a non-degenerate classical
gas, but there are additional electrons in the
excited ionic states which will make a somewhat
complicated contribution to the specific heat, and
therefore to the thermodynamic equation of
state.

The problem is complicated further if we are
dealing with a material which is initially liquid or
solid because although the atomic structure is
destroyed by the high temperature, the density
is very high, so the material behaves more like a
liquid with a very high vapor pressure than a gas.
This liquid is highly ionized, so there are free
electrons throughout. The higher atomic levels
are split into bands because of the high density,
and these bands may be only partially occupied,
as if the liquid were a metallic conductor. The
electrons in these partially occupied bands be-
have very much like free electrons. ' These free
and almost-free electrons contribute to the equa-
tion of state as if they constituted a perfect
monatomic gas. The, contribution to the equation
of state made by the liquid consisting of atomic
ions cannot be obtained without a detailed in-
vestigation of the material under consideration.

In order to avoid the difhculty of obtaining the

S The really free electrons have energies greater than the
ionization potential or, speaking in terms of a metal, their
energies are greater than the work function.

4. THE EQUATIONS OF STATE

The Eqs. (16) must be augmented by the
equation of state for the material and the
equation of state for the radiation. The latter is
simply given by Eq. (10), or, in terms of the
dimensionless zv,
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equation of state and yet still obtain a qualitative
picture, the properties of a shock wave in a
perfect monatomic gas containing Z free (non-
degenerate) electrons per atom will be considered.
The contribution of the bound electrons to the
specific heat will be included by taking the value
of y, the ratio of specific heats, to be temperature
dependent. It will introduce no serious complica-
tion to admit that Z is temperature dependent.
Then these assumptions yield a reasonable ap-
proximation for a shock in a light gas. However,
for the more interesting case of a shock in a dense
medium, the approximations are poor and the
results will indicate only the qualitative behavior
of the shock.

The thermodynamic equation of state can be
formally written as

is to be remembered that Z, and therefore n, may
be temperature dependent.

Equations (19) and (23), when used in con-
junction with Eqs. (16), completely determine
the properties of an intense shock wave in a
medium of the type under discussion. That is, the
properties are determined in terms of the func-
tions n(T) and y(T). It will be shown in the next
section that the essential results can be obtained
in such a way that the rather insensitive function
n(T) can be inserted as a last step.

S. FORMAL SOLUTION OF THE EQUATIONS

The Eqs. (16), (19), and (23) can now be
solved to give p, u, and w in terms of x. The
relation between u and x is, according to Eq. (16a)

u = 1/x.
E=P/(v —1)~, (18)

Substituting this in Eq. (16b):
where now y is assumed. to be temperature de-
pendent to take account of the contribution of
bound electrons to the specific heat. In dimen-
sionless form, this is

v'= x(p+w)/(x —1). (26)

Inserting Eq. (25), (26), and (19) in Eq. (16c)
yields after straightforward algebraic operations:

(19)o =p/(v 1)x. — p = (7 —x)w/(x —Xo), (27)

X = 4+1)/h —1). (27a)
whereThe equation of state for a gas containing an

efkctive number Z of free electrons per atom is
given by

P/p = (Z+1)NokT/A,
Using the expression Eq. (23) for w, the relation

(20) between P and x is found to be

where A is the atomic weight and No the Avogadro
number. It follows that

rt'xl 4" (x—Xo& '"
4~) E 7 —x) (28)

kT =Ap/p(Z+1)No. (21) From Eq. (27) the expression for w is

Inserting this in Eq. (10) gives the relation be-
tween the radiation energy density and the
particle pressure and density:

W =a[AP/p(Z+1) No]4.

In terms of the dimensionless w= ,'W/Po, this-
becomes

(x x—Xol 4"

(u 7 —x)
a,nd from Eq. (26), that for v is

(7 —Xo) xp
V=

(7 —x) x —1

(29)

(30)

with
w =n'(p/x)', (23)

t u»
(3Po) (Z+1)Nopo

AP0=5.23 X10» (24)
(Z+1)Nopo

where the numerical factor is in units of erg —'. It

where p can be obtained from (28).
It is to be remembered that the Rankine-

Hpgoniot equations lead to a limit for the density
ratio of Xo=(y+1)/(y —1) for very high pres-
sures. Now we find that, with radiation, the
density ratio becomes greater than Xo (where, it
is to be remembered, the value of Xo depends on
the temperature) but reaches a limiting value of
7. It is seen that these equations do not apply for
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Logl0

pendent variables P' = nol'P, w' = n41ow, or' = coo"or,
v'=e&e, '1'=n&'l. The primed quantities are ob-
tained from the unprimed by a change of scale,
the scale factor in general depending on the
temperature and therefore, on the independent
variable x. In these terms, the equations become

e& ~
~V

(x—Xo) '"
p'=x"

ii7 —x)
( x —Xo) o~o

w'=f x
& 7 —xj

or' =p'/(v 1)+—3w',

7 —Xo xp'
8

7 —x x —1

T'= ~.4X j.o~':.

(33a)

(33b)

(33c)

(33d)

(33e)

x.y/p,

Fro. 2. Log curves of reduced pressure, velocity, etc. , as
a function of density ratio in shock. The scale for hydrogen
is: p, m, ~p=9.2X1(P atmos. , T=9.8'K, V=2.7X104
meters/sec.

x&XO. To obtain the correct results for such
values of x, it is necessary to retain the terms of
the order of 1 which were neglected in arriving at
Eqs. (16).

A quantity that is of interest is the total in-
ternal energy per unit volume, that is, the sum of
the particle energy density and the radiation
energy density. The energy per unit volume due
to matter is Ep, which, if measured in units of Po,
becomes ox=p/(y —1), according to Eq. (19).
The radiation energy density in units of I'p is 3',
so the total energy density, e&, is given by

or ——p/(y —1)+3w. (31)

This quantity is probably the best measure of the
intensity of the shock wave, and, as such, will

simply be called the intensity of the shock.
It will also be of interest to know the tempera-

ture behind the shock front. This can easily be
obtained as a function of w from Eq. (17). The
result is:

1=1.41 & 1.0'm' 'K

6. QUANTITATIVE RESULTS FOR HYDROGEN AND
OTHER VERY LIGHT GASES

The Eqs. (33) could be solved to give the
desired dependence of pressure, velocity, etc. , on
density if the functions a(T) and Xo(T) were
known. These functions depend in detail an the
particular gas under consideration. The function
n(T) can be treated to a fair approximation
without great difficulty because it does not appear
explicitly in Eqs. (33).Xo(T), on the other hand,
is an unpleasant function which will show rapid
changes whenever k T is equal to the energy of an
excited state of an ion in the gas. Therefore, the
treatment of the problem for most gases would be
tedious. One gas for which this, is not true is
hydrogen. It will be shown that the temperature
is high enough so that the hydrogen is ionized
over the entire region of interest. Therefore, the
gas consists of (unexcitable) ions and free
electrons. In this case y=5/3, so Xo=4.

With this value of Xo, the values of p', w', s',
etc. , have been computed from Eqs. (33), and
their logarithms have been plotted in Fig. 2. To
obtain the corresponding values of p, w, s, etc. ,
it is necessary to determine 0., and thereby the
sca,le Factors p/p', v/v', etc. Since in this case
Z=1, Eq. (24) gives for n

a =2.61 X 10"&to/popo = 2.61 X 10"k To,

for Po ——10' ergs/cm' = 1 atmos.
It is convenient to express the equations ob-

tained in this section in terms of the new de- 1/n = (34)
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The factor by which '1' is to be multiplied to
obtain T in 'K is

1/~1 =9.8, (35a)

and that by which P', w', er' are to be multiplied
to obtain p, w, er in atmospheres is

1/a4" =9.2 X 10'. (35b)

The factor by which v' is to be multiplied to
obtain the velocity of the shock in units of
(P0/po) & = 280 m/sec. is

(35c)

It can be seen in Fig. 2 that the radiation
ceases to play an important role in the shock for
x&4.01. This then is the lowest value of x which
is of interest for this discussion. At x=4.01,
Eqs. (33) with Xo=4 give T'=3.36X10'. There-
fore, T=3.3)(10' 'K, which corresponds to a
value of k'1 of 28 electron volts or over twice the
ionization potential of hydrogen. It can be seen
from Fig. 2 that the temperature increases
rapidly as x increases beyond the value 4.01, so
for almost all values of x in the region between
x =4 and x = 7, the thermal energy is far greater
in magnitude than the potential energy, which
can then be neglected. It follows that the
assumption that the gas consists of free electrons
and protons with its consequent values of X0=4
and 1/e =940 is a reasonable approximation over
most of the region of interest, The properties of
the shock in hydrogen are therefore given by
Fig. 2 in the following units:

P, u, er 9.22X10' atmospheres,
9 8'K

v 2.7 X 10' meters/sec.
(36)

The curves in Fig. 2 can also be used to de-
termine the properties of an intense shock in
other light gases as long as the intensity of the
shock is so great that kT is large compared to the
total ionization potential of the gas. The ioniza-
tion potential for the last electron of an atom of
atomic number Z is Z' times greater than that of
hydrogen, while the temperature for the same
value of x is only [(Z+1)/2]& times greater than
that for hydrogen. Therefore, the range of in-
tensities over which our approximation applies
narrows rapidly with increasing Z, and even for
air, it is only to the very highest shock intensities

considered that Fig. 2 can be applied. It should
be pointed out that there is an upper limit to the
intensity that can be considered on the basis of
the equations used here since at x=6.99, the
velocity of the shock in hydrogen is about 5)(10
cm/sec. or 2 percent of the velocity of light.
Above this intensity, relativistic eR'ects would
become appreciable, and our considerations would
have to be modified as indicated in footnote 6.

In the range of intensities to which Fig. 2

applies for light gases other than hydrogen, the
units are, of course, difI'erent from those given in
(36). According to Eqs. (24) and (34), they may
be obtained from Eqs. (35) by setting

1/0. =940(Z+1)/2.

7. CONDITION FOR THE FORMATION OF THE
SHOCK

Up to this point, it has been assumed that a
steady shock can exist, and some consequences of
this assumption have been derived. The question
naturally arises as to whether the steady shock
will ever be formed under reasonable conditions.
For ordinary shocks, the answer to this question
is usually given by pointing out that the velocity
of sound increases with increasing pressure of the
medium through which the sound wave is
traveling. Therefore, a pressure pulse that has a
smooth rather than a discontinuous change in

pressure will change form by the high pressure
region moving faster than the low pressure region
in front of it. The ultimate form of the pulse will

then be that of a shock. It will now be shown that
a similar process does occur in a medium at
extremely high pressure.

For this purpose, it is necessary to write down
the hydrodynamic equations for such a medium
and thereby determine the velocity of sound. In
doing so, it will be assumed that there are only
negligible changes in pressure, temperature, etc. ,
over distances of the order of )."=Xc/C, where C
is the velocity of sound. This assumption is made
to avoid treating the effects of diffusion of radia-
tion in obtaining the sound velocity. It will be
shown that this "non-diffusion" velocity, C,
increases with increasing pressure. Therefore, a
large amplitude sound pulse which satisfies the
non-difII'usion condition stated above will become
steeper at the front as it progresses. Ultimately,
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the thickness of the front will reduce to a
distance of the order of X", whereupon difFusion

of the radiation becomes important, and the
simple hydrodynamic theory does not apply. The
difFusion process sends more energy forward than
backward since the pulse has, at this stage, a
steeper gradient toward the front than toward
the back. Thus, the added efFect of diffusion is to
sharpen the front of the pulse even further. This
process of sharpening continues until the thick-
ness is of the order of X'=Ac/V, as shown in

Section 3. It is to be noted that X'&&)" since
C&& V.

It appears then that a suSciently broad, large
amplitude sound pulse will eventually take the
form of a shock of the type discussed in the
foregoing sections. However, a pulse of thickness
less than X" will broaden by diAusion until it
becomes so broad that the non-difFusion, hydro-
dynamic efFects take control. Then it will proceed
to form a shock, but the peak of the shock would
be expected to have a smaller intensity than the
maximum in the original pulse.

We now consider the hydrodynamic theory
under the non-difFusion conditions described
above, in order to show that C increases with
pressure. Methods analogous to those described
in Section 3, show that the equation of continuity
has the usual form:

div pU = —Bp/B$. (37)

The equation for conservation of momentum now
takes the form

pdU/dh = —grad (P+-', W),

The latter equation, with the help of the other
two, may be written as

dE 1 dW (P+4W/3) dp+—
df p dt, p dt

(40)

that is, just the condition for constant entropy.
From the form of the Eqs. (37) and (38), it is

and conservation of energy yields

d(W/p)
p (&+o U')—+p

dh

= —div f(P+zW)U3 (39).

apparent that the velocity of sound is given by

B(P+gW) &

C=
Bp

as would be expected. The constant entropy
condition, which is indicated by the subscript 5,
is expressed by Eq. (40). Since the radiation
energy density is given by Eq. (23) or

W= 3P(P/p)' (42)
with

A

3 (8+1)¹
the velocity of sound becomes

t'BPI & 4 (1 1 t'Bpg~=
I I

1+-Wl ——-I
(Bp) .o 3 I P p EBP) s)

(BP)t yP+16(y 1)W/3 P—
i Bpi, P+4(y 1)W p'—(44)

which reduces to the usual expression when
S'WP. For TV&&P, this becomes

(BP/Bp)s =4P/3p,

and Eq. (43) becomes

~= o(W/p)'. (45)

Under all conditions, the coefficient of P/p in

Eq. (44) is larger than one. Consequently, the
coefficient of Win Eq. (43) is positive. Therefore,
the velocity of sound, C, is a steadily increasing
function of the pressure, which is the required
condition for the formation of a shock, as ex-
pressed in the beginning of the section.

The equation for the velocity of sound ob-
tained in this section could also have been
derived by applying Eqs. (1), (11), and (14) to
the case of a very weak shock in a medium at
high pressure (Po, Wo large).

8. CONCLUSION

It has been shown that the conditions pre-
vailing in very intense steady shocks can be

In the case that t/I/'&(P, that is, for negligible
radiation pressure, this reduces to the normal
expression for the velocity of sound, as it should.

The derivative, (BP/Bp)s may be evaluated
with the help of Eq. (40), the thermodynamic
equation of state, Eq. (18), and Eq. (42).
Straightforward manipulation leads to
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obtained by a direct generalization of the
Rankine-Hugoniot equations. These conditions
yield simple quantitative results for a shock in a
very light gas such as hydrogen. For other media,
the equation of state and dependence of specihc
heat on temperature under extremely high tem-
perature conditions are required. Because of this
added complication, they have not been treated
here.

The results obtained for the light gases are
applicable only to plane shock waves of very long
duration since the radius of curvature4 and the
length of the shock must be large compared to the
thickness of the shock front. In turn, the thick-
ness of the shock front is large compared to X'

and therefore to the free path for radiation, as
shown in Section 3. Since the radiation free path
is determined by Compton scattering for the gas
of free electrons and unexcitable ions under
consideration, it will be of the order of' 10' cm,
mhich is undesirably large.

For the more practical case of a heavy gas, the
greater part of the radiation frequency distri-
bution will fall in the neighborhood of the ab-
sorption lines of the excited ions, so the radiation
free path will be very short. However, the
medium will still be nearIy transparent to the

'See %. Heitler, The Quantum Theory of Radiation
(Oxford University Press, New York, 1936), p. 157.

high frequency tail of the distribution, so there
mill be a continual degradation of the energy in
the shock front due to the loss of radiation of high
energy. In a solid or liquid, the free path for
almost the entire range of frequencies will be
short, i.e., of the order of a miIlimeter, due to
Compton scattering, since the density of elec-
trons is very high. In this case, the medium is
appreciably transparent only to the extremely
high energy x-rays. Since the frequency of
occurrence of such energetic quanta is extremely
small, their escape should have only a small effect
on the properties of the shock.

One further point is worth mentioning before
concluding. In all of these considerations, it has
been assumed that the shock wave is passing
through a stable medium. However, at the
temperatures prevailing in very intense shock
waves, very ordinary media may undergo nuclear
reactions. The existence of these reactions mould
lead to an added internal energy term in Eq. (14)
and subsequent equations. If the reaction were
suSciently exothermic and the reaction rate were
high enough, "a detonation wave rather than a
shock wave would pass through the medium.

"High enough means that an appreciable fraction of the
material must undergo a nuclear transformation within the
duration of the shock wave. Reaction rates are usually
quite slow even at the temperatures considered here be-
cause of the Coulomb potential barrier, so the duration of
the shock would need to be quite long.


