
PHYSICAL REVIEW VOLUME 69, NUMBERS 9.AND 10 MAY 1 AND 15, 1946

Conduction and Dispersion of Ionned Gases at High Frequencies
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The distribution in energy of electrons in a high frequency electromagnetic field is derived
by kinetic theory methods. By use of the distribution law, the current density and hence the
{complex) conductivity are calculated as functions of electron density, pressure, and frequency
of the field. The real part of the conductivity has a maximum for gas pressures, or frequencies,
such that the mean free time of an electron is approximately equal to the period of the field.
From the conductivity, the dielectric constant of the medium, its index of refraction, and its
extinction coefhcient are deduced. The results are applicable in microwave researches and in
ionosphere problems.

' 'N several phases of micro~ave work and in the
- ~ analysis of ionosphere problems' it is neces-
sary to know the conductivity of an ionized gas
as a function of electron density, pressure of the
gas, and frequency of the waves. Two limiting
cases of the conductivity problem are well
understood: for low frequencies and high pres-
sures, the current density set up by an alternating
field strength Ecoscot is given by Langevin's
mobility formula

4 e'EXnI=- cos uf; (&)
3 (2 mkT)&

it is in phase with the field strength. For high
frequencies and low pressures, on the other hand,
the current is in quadrature with the field and is
represented by the formula characteristic of free
electrons,

I= (e'EN/m(o) sin &at (2)

~ Now at Yale University.
**This paper is based on work done for the OfFice of

Scientific Research and Development under contract
OEM sr-262.

~ See Lee H. R. Mimno, Rev. Mod. Phys. 9, 1 (1937).
~ See K. K. Darrow, Bell System Tech. J.11,576 (1932);

12, 91 (1933).

The symbols here have their usual significance; X

is the mean f'ree path of the electrons and n their
volume concentration.

Under conditions intermediate between the
two extremes described by Eqs. (i) and (2) it
becomes necessary to consider the eR'ect of
electron collisions upon the forced oscillations
which the field imposes on them. This is usu-

ally done' by including in the equation of motion
of the electron a friction term of the form g(dx/dt)

which has the result of converting Eq. (2) into

t', EpkgSI= sin e$.
5Z2ao2+g2

(2')

When this formula is compared with experiment,

g is frequently treated as an empirical parameter,
and the use of (2') has led to considerable suc-
cess.2 Hulburt' and others have used a suggestion
of Lorentz to the effect that g=2nz times the
collision frequency of the electrons, and Childs4
has discussed some of the shortcomings of this
procedure. Aside from its artificiality, it may be
criticized primarily for ignoring the distribution-
in-energy of the electrons and hence for failing te
provide a proper average over electron speeds.

Avoiding these approximations and using
kinetic theory methods, we describe in the present
note a compact way of obtaining formulas for
the conductivity and dispersion of an ionized gas
at all pressures and frequencies.

L DISTRIBUTION FUNCTIONS

s E. O. Hulburt, Phys. Rev. 29, 706 (1927).' E. C. Childs, Phil. Mag. 18, 873 (1932).

Ke assume that, owing to agencies other than
the electromagnetic waves dispersed, a concen-
tration of n electrons per cc is maintained in the
gas. At. present it will be assumed that they have-

two sources of energy only, elastic collisions and
the external electric 6eld. The case in which the
waves are themselves capable of ionizing or-

exciting the molecules will be treated in a later
paper; it cannot be handled with the same pre-
cision as the one where the electrons make only
elastic collisions.
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e af af (af )+—=I —l.
m av, at &at),

(3)

provided the field 8 is applied in the X direction.
Here af/at represents the local time rate of
change caused in f by variations of 8, and
(af/at), that due to encounters with gas molecules.
Collisions between electrons will be neglected,
and a term involving the magnetic field strength
need not be included in Eq. (3) because the
velocity of the e1ectrons is small when compared
with that of light. Xow let

Of the ot electrons per cc, f(v„v„, v,)dvgvgv,
have velocity components about v„v„, v,. The
function f satisfies the Boltzmann "transfer
equation" which reads

Terms even in v, yield, after averaging over
directions,

8
cos' cot (v—'fi)

3v BV

a (afo )+ cos o&t sin cot —(v gi) =
~

3v av g at j,
and this, when averaged over a period of the
wave becomes, with the use of (7),

y' a m a (vcfo) kT a (v'afo i

I+ —
i
—

~
(»)

6 av Mav( X j M av&) av)

Equation (10), on the other hand, resolves itself
on equating coefficients of sine and cosine terms
into the following two:

8=E cos cot, (4)
gi= —fi,

V

y =sE/m.

The distribution function f(v) will be expanded as
usual in spherical harmonics of the components of
pv, and all harmonics beyond the first will be
neglected. Thus

so that

1afo v
fi c—g i-, —

VBV X

X afo

V2+rv92 BV

(13)

f(v)=f ()+y [f () t+g () Q (6)

and the functions fp, fi, and gi depend only on the
magnitude of V. It may be shown5 that

(afo& 1 m a (v'fo) &T a (v' afoi+&at). v'Mav( X ) Mv'avgas avj

(a (v.fi) i v.v

at ). fi, ——
(a(v gi) l v v

at
gi,

where X is the mean free path of the electrons
and 3f the mass of a gas molecule. On inserting
these expressions in (3) and equating coefFicients
of yv we have

cos pit afo —sin pot cpf i+cos cot..cogi
V BV

V V= —cos cot.—fi —sm cdt —gi. (10)

'8, Chapman and T. G. Cowling, The 3fetkenurtiml
Theory of¹e-Un~form Gases (Cambridge University Press,
Neer Vork, 1939), pp. 348 eI, st. P. M. Morse, W. P. Allis
and E. S. Lamar, Phys. Rev. 48, 412 |,'1935).

fp ——A exp
3m(v4+ 2co9.'v')

In arriving at this result X has been treated as
constant.

A more convenient way of expressing fp as well
as the subsequent results is by introducing two
energy parameters

oi ——-', m(coX)' and oo=sEX

This may be put into Eq. (11), which becomes
after integration (the constant of integration
being 0),

Xv' afp m v'fo 2kT vc afo+
3 V2+ ~2) 2 gV2 ~ ) ~ ) QV2

hence

(m/2) d (v')
log fp=— (1~)

J o k T+ [My9.'/6(v'+co'X') j
If y is so small that kT outweighs the second

term in the denominator, f is Maxwellian. If the
second term is dominant, we obtain a distribution
function similar to Druyvesteyn's, ' though
difkring from it by the presence of the term in co '.



characteristic of the distribution. In terms of
them and of o= (os,v', Eq. (16) reads

approximation one obtains the accurate distri-
bution law

6m'
fo A——exp — (o'+2ogo) .

M&2
(16')

./kT
!f As el or—

!
(og/kT) +a)

(18)

with
It is clear that for sufficiently large e& the distri- M (oo)'
bution differs appreciably from Druyvesteyn's
formula even in the limiting case (oo—+~) here
under consideration. On integrating (15) without To determine the constant A we use the relation

(2kT) t t'" ( x
fos'ds=2x! I

A e-! 1+ I
x&dx

&o Em ) "o 0»+a)
(2orkT't ~ 3 a " a(a —1) ~ ~ (n —j+1) 1.3 5 (2j—3) 4jo —1

!A 1+— +g
E I ) 2a+x, (a+xi) & 2&'

BZ(ooX)

kT 2kT kT

Eq. (18) by an exponential, we expand

(20) ( x
log! 1+ ! —loge *'*&+

x1+n)

xg&&0., (21) and thus obtain

In this report our interest is confined chieAy to
the condition

1i It' x
=A

j) &xi+a)

which is satisfied for most high frequency electro-
magnetic waves with intensity below the level of
ionization. If we consider as an example 3-cm
waves passing through He gas at a pressure of
20 mm, xj is about 100 provided T is room
temperature. Condition (21) then requires that
Z&(7, Z being measured in volts/cm. For shorter
waves and lower pressures E is allowed to be
greater.

VVishing to approximate the parenthesis in

fo ——A exp
Xy 1 txX

Y
xi+a 2 (xi+a)'

Otx'
+— (22)

3 (xi+a)'

In the direct-current case, the first term in the
exponent is zero, and the second represents the
Druyvesteyn distribution. For alternating cur-
rents, and under condition (21), the first term
alone is important and leads to a Maxwellian
distribution

0 2 4 6 8 io I2 l4 l6 IQ 20

Fj:G. i. Xq and %312 as functions of X—esau~X~)(2kT.

fo Aexp [—x——,/(xi+a) jx,
corresponding to a temperature

T'= T(1+n/xg)

In the present instance this is essentially T.
Because of the great convenience a6orded by

the use of the Maxwell formula which, perhaps
somewhat unexpectedly, presents itself as a valid
approximation in the a.e. ease even for values of
the field strength that calls for the use of the
Druyvesteyn formula under d.c. conditions —it
seems important to know whether condition (21)
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is necessary for this approximation to hold. We
first note that, if botk x, and ts are small, Eq. (22)
to be sure becomes nugatory, but Eq. (15) clearly
shows that fs is Maxwellian. Finally, to investi-

gate the situation for larger values of 0., numerical
computations have been made. The results indi-

cate that for practical purposes (18) and (23) may
be regarded as identical in the part of the velocity
range where fs is sufFiciently large to matter, so
long as xl is not smaller than n. Zeroth and first
moments of the energy, when computed with

(23), differ by less than 3 percent from their
correct values based on (18).Condition (21) may
therefore be replaced for most purposes by

Xl+ A.

II. CONDUCTIVITY OF THE MEDIUM %&sN
DISTRIBUTION FUNCTION IS MAXWELLIAN

The current density through the gas is

I=nev. = ey v, '(ficos tat+gt sin tat)v'dt& sin Hded&ii

because of (6). Hence in view of Eq. (12),

4v "" ( haI= ey fi~ —cos &at+ sin &at !v'd—v (25).
3 Jo v )

In accordance with our assumption (21) Eq. (23)
leads to

25
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Fig. 2. Ratio of imaginary ("out of phase") to real ("in
phase") part of the conductivity as a function of X.When
this ratio is much larger than 1, formula (2) is applicable.

which is defined by the relation I=o.„pi, Ee'"'.
To exhibit the analytic nature of this formula we
record that it may also be written

8 e9,n t
"

1,'exp [—t']dt
0'complex = (30')

3 (2srmkT)»J p t+iX(m/2kT)»(a

The functions X2 and Kg~ can be expressed in

terms of the exponential integral Zi( —x,) and
the error function erf [(xi)»] (both defined as in

Jahnke-Emde, Funktionentafetn), respectively:

Xs(xi) = 1 —xi —xi' exp [xi]E,(—xi),

Esses(xi) = (-', —xi) n.»

fs=Ae "r, A =n(m/2s. kT)»,

so that (14) takes the form

)mv
1 fs

v'+o)'X'

Using the definition

f" xpe
dx —=Z, (xi),x+x

(26)

(27)

(28)

lim E2 ——1,
sl —4

2
lim X2

Ql~ ot& xl

lim Qg]2 = ~+~&
xi~0

3m&

lim X3/2 ——

Qi~ 00 4Xl

++xi» exp [xi] t 1 —erf [(xi)*']I.

Graphs of these are shown in Figs. 1 and 2. We
note that

we obtain (cf. Eq. (20) for the meaning of xi)
from (25), (26), and (27)

4 e'EXnI=- ,[Vs(xi) cos iat
3 (2xmkT)»

+x,»Xs(s(xi) sin &at]. (29)

This formula is equivalent to the following one
for the complex conductivity:

4 e9n
[Es(xi) ix,»%ps(—xi)], (30)

3 (2smkT)»

Thus Eq. (29) has the following two limiting
forms:

4 e'E) a)e'8) '
lim I=- n cos &at+ n sin &at, (31)
s,-o 3 (2smk T)» 3kT

16 e'F (kT il
lim I=

~ )
n cos &at

s,- 3 m&a9. 42sm)
e'E

+ n sin &at. (32)

The first term on the right of (31) represents the
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Langevin mobility formula, Eq. (1); the second
term in (32) is the familiar expression for the
current (in quadrature with the applied e.m.f.)
due to entirely free electrons, Eq. (2). In prob-
lems involving the passage of cm waves through
ionized gases, the limiting form (32) is usually
applicable.

This applies a fortiori to the positive ions. Be-
cause of their large mass, x1 is very large, and (29)
describes their contribution to the conductivity,
which is seen to be very small and can be neg-
lected for most purposes.

The real and imaginary parts of O„p~, are
functions of ), and hence of the pressure of the
gas. The imaginary part, being proportional to
XIK2/2(XI), is a monotonically increasing function
of x&. for a given frequency ao it starts with the
value e221/mcd at low pressures and goes to zero as
coe2712/3kT at high pressures. The real part, how-
ever, which is proportional to XI&1[.2(XI), has the
value zero at both ends of the range of x~ and
passes through a maximum.

On differentiating, it is seen that this point is
fixed by the condition

Z2(XI) +2XIZ2'(XI) =0,

wave. For if we take the period as the time
per radian, r2=1/ca, while rI=7c/I/=7c(m/3kT)[/.
Equality of rI and r2 then implies xI= 3/2 or

coX = 5.75 X 10"(kT) ~, (34)

a result not very different from (33).
In some experiments' high frequency waves are

sent through gases maintaining an independent
electrical discharge, and their dispersion and
attenuation are measured. If the energy distri-
bution of the electrons is Maxwellian, formula
(29) may be shown to be applicable, and T
appearing therein (also implicitly in x1) refers to
the temperature of the electrons sustaining the
discharge.

III. EXACT THEORY OF CONDUCTIVITY

Starting with Eq. (18) and using the abbrevi-
ations (19) and (20), we obtain with the use of
(14) and (15)

~ m» (x+x,+n)--
f, =2W

] e *x&. (35)
[,2kT) (x,+n)-

When this is inserted in Eq. (25) there results,
after an appropriate change of variable,

(33)

This equation places the maximum of con-
ductivity nearly at that value of the pressure for
which the mean free time v~ of an electron be-
tween impacts equals 7&, the "period" of the light

The remaining integrals, as well as A, may be
expressed in terms of conHuent hypergeometric
functions~ in the form

which leads to xI=2.1. Thus maximum con- 82r e'&" ['" (x+XI+n)I=— AkT ~ e ~x'dx cosa)tductivity occurs when 3 m2 J 5 (x1+n) a

55)c =6.8 X 10"(k T)~. ['" (x+x1+n) —"
+x~~ ~i e *x&dx sin cdt . (36)

J () (x1+n)

e'8) nI=
(2)rmk T) &

(~[(a—I/O)/2], [(a+3/2)/2](XI+n)) fS'(XI+n) W[(a—5)/2], [(a+2)/2](X1+Cl) 'COS Cc)t

+(IrXI) W[(a—5/2)/2], [(a+5/2)/2] (XI+n) ' SIII cdt} . (37)

For small integral values of n the integrands in
Eq. (36) can be expanded easily and the integrals
become sums of I'-functions. When this procedure
is possible it is far less laborious than the use of
Eq. (37).

IV. DIELECTRIC CONSTANT, INDEX OF
REFRACTION

For ready reference we compile here a few facts
that are well known and indicate how the fore-

going results may be used in the computation of
the optical properties of an ionized medium.

Ampere's law, for an isotropic medium with-
out space charge and with permeability unity,
has the form

4x
~XH =—D+—I.

C C

'A. Szekely, Ann. d. Physik [5j, 3, 112 (1929}.E. V.
Appleton and F.W. Chapman, Proc. Roy. Soc. London 44,
246 (1932).

7 Khittaker and Watson, p. 340.
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X=n —ik, (41)

If'we introduce the "ordinary" dielectric constant If, as usual, we introduce the "ordinary" index of
so= D/S and the conductivity o =I/S, this equa- refraction n and the extinction coefficient k, such
tion when written for 6eld strengths proportional that
to e'"' reads

4+0
V'XH =—~p8+ 8.

C C

we obtain from (40)

If a is real, the current density in phase with b is
aS, that out of phase is (~/4s)eoS. But if 0 is

complex, that is a =r, —k;, then eo, the measure
of the current in quadratature with 8, must be
rep1aced by the new dielectric constant

whence
nk = 2wo„/su;

n'= —{1m{1+(4so,/ao)'7»},
2

(42)

6 Eg),cu(t —(N/c) K ~ r)
) (39)

K being a unit vector in the direction of propa-
gation. When Maxwell's equations are solved
with insertion of this form of h, it is seen that

X' = e —(4~a,/(o). (4o)

(38)

while the dissipative current density is a-„8. For
the present problem, r, and 0; may be identi6ed
from Eqs. (30) Lor (36), (37)].

The index of refraction, X, of the medium is
dehned by

k2 =—{—1aL1+(4s 0,/&co) 2j» }.
2

Here the positive sign is to be taken when e&~0,

the negative sign when e ~&0, (see Eq. (35)) the
reason being that n and k are real. For waves in

the cm region e becomes negative at electron
concentrations of 10"/cm'. Detailed applications
of these results will be given in another com-
munication.

The author wishes to express his indebtedness
to Dr. C. G. Montgomery for suggesting this
problem to him and for helpful comments.


