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The distribution in energy of electrons in a high frequency electromagnetic field is derived
by kinetic theory methods. By use of the distribution law, the current density and hence the
(complex) conductivity are calculated as functions of electron density, pressure, and frequency
of the field. The real part of the conductivity has a maximum for gas pressures, or frequencies,
such that the mean free time of an electron is approximately equal to the period of the field.
From the conductivity, the dielectric constant of the medium, its index of refraction, and its
extinction coefficient are deduced. The results are applicable in microwave researches and in

ionosphere problems.

N several phases of microwave work and in the
analysis of ionosphere problems! it is neces-
sary to know the conductivity of an ionized gas
as a function of electron density, pressure of the
gas, and frequency of the waves. Two limiting
cases of the conductivity problem are well
understood : for low frequencies and high pres-
sures, the current density set up by an alternating
field strength E cos wt is given by Langevin’s
mobility formula

4 e’Emn

I=————— cos wt; (1)
3 2rmkT)?

it is in phase with the field strength. For high
frequencies and low pressures, on the other hand,
the current is in quadrature with the field and is
represented by the formula characteristic of free
electrons,

I =(e*En/mw) sin wt. 2)

The symbols here have their usual significance ; A
is the mean free path of the electrons and # their
volume concentration.

Under conditions intermediate between the
two extremes described by Egs. (1) and (2) it
becomes necessary to consider the effect of
electron collisions upon the forced oscillations
which the field imposes on them. This is usu-
-ally done? by including in the equation of motion
of the electron a friction term of the form g(dx/dt)
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which has the result of converting Eq. (2) into
(2"

When this formula is compared with experiment,
g is frequently treated as an empirical parameter,
and the use of (2’) has led to considerable suc-
cess.? Hulburt? and others have used a suggestion
of Lorentz to the effect that g=2m times the
collision frequency of the electrons, and Childs?
has discussed some of the shortcomings of this
procedure. Aside from its artificiality, it may be
criticized primarily for ignoring the distribution-
in-energy of the electrons and hence for failing to
provide a proper average over electron speeds.

Avoiding these approximations and using
kinetic theory methods, we describe in the present
note a compact way of obtaining formulas for
the conductivity and dispersion of an ionized gas
at all pressures and frequencies.

I. DISTRIBUTION FUNCTIONS

We assume that, owing to agencies other than
the electromagnetic waves dispersed, a concen-
tration of » electrons per cc is maintained in the
gas. At present it will be assumed that they have
two sources of energy only, elastic collisions and
the external electric field. The case in which the
waves are themselves capable of ionizing or
exciting the molecules will be treated in a later
paper; it cannot be handled with the same pre-
cision as the one where the electrons make only
elastic collisions.

3 E. O. Hulburt, Phys. Rev. 29, 706 (1927).
4+ E. C. Childs, Phil. Mag. 13, 873 (1932).
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CONDUCTION AND DISPERSION OF IONIZED GASES

Of the » electrons per cc, f(vs, vy, v5)dv.4v,dv,
have velocity components about 9., v, v,. The
function f satisfies the Boltzmann ‘‘transfer
equation”’ which reads

a

26X Y (2, 3)

m dv, Ot at
provided the field § is applied in the X direction.
Here df/0t represents the local time rate of
change caused in f by variations of &, and
(8f/at). that due to encounters with gas molecules.
Collisions between electrons will be neglected,
and a term involving the magnetic field strength
need not be included in Eq. (3) because the
velocity of the electrons is small when compared
with that of light. Now let

§=E cos wt, 4)

y=eE/m. (5)

The distribution function f(v) will be expanded as
usual in spherical harmonics of the components of
v, and all harmonics beyond the first will be
neglected. Thus

F¥) = fov) +yv.[ f1(v) cos wt+g1(v) sin wt], (6)

and the functions f, f1, and g; depend only on the
magnitude of v. It may be shown® that

afo 1 m o 7)4f0 kT 9 /48 af()
(:97) "55—11/.7%()\ + ‘(”‘)’ )

and put

Muv2 v\ N dv
3(vzf1) V.0
( at ) A ®)
9(v.g1) U0
( o ). ©

where X is the mean free path of the electrons
and M the mass of a gas molecule. On inserting
these expressions in (3) and equating coefficients
of yv, we have

cos wt 8fy
—a——-sm wt-wfi+cos wt-wg:
v

v

(10)

= - t—f1— i t-—
COS wi - SN wi - .
1 £1

5S. Chapman and T. G. Cowling, The Mathematical
Theory of Non-Uniform Gases (Cambndge University Press,
New York, 1939), pp. 348 et seg. P. M. Morse, W. P. Allis
and E. S. Lamar ghys Rev. 48 412 (1935).
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Terms even in v, yield, after averaging over
directions,
2

T cos? at- ()
—— COS~ wl*—(V
302 0v !

v: a
+— cos wt sin wt - ——(v3g1) = (g— ,

and this, when averaged over a period of the
wave becomes, with the use of (7),

L= (2) 422 L (22).

M o
Equation (10), on the other hand, resolves itself
on equating coefficients of sine and cosine terms
into the following two:

wA
g1=~—f1, (12)
v
19f v
- = ——fi—wg, (13)
v v
so that ;
A dfo
= 14
h v2+w2)\" ov (14)

This may be put into Eq. (11), which becomes
after integration (the constant of integration
being 0),

¥: Nt 9fe m v‘*fo 2kT v* 8f,
324N ar M N M N
hence
o (m/2)d(v?)
log fo=— . (15)

o ET+[My22/6(+w2)]

If v is so small that kT outweighs the second
term in the denominator, f is Maxwellian. If the
second term is dominant, we obtain a distribution
function similar to Druyvesteyn’s,> though
differing from it by the presence of the term in w:

3m(v4+2w2)\2v2)]

2 M~2\2 (16)

fo=4 exp [—
In arriving at this result A has been treated as
constant.
A more convenient way of expressing fo as well
as the subsequent results is by introducing two
energy parameters

a=3m(wr)? and e;=eE\ )
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characteristic of the distribution. In terms of
them and of e=3}m?, Eq. (16) reads
67n2
fo=A4 exp| ———(e*+2¢;¢) |. (16%)
M€2
It is clear that for sufficiently large ¢, the distri-
bution differs appreciably from Druyvesteyn's

formula even in the limiting case (e;— ) here
under consideration. On integrating (15) without
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approximation one obtains the accurate distri-
bution law

f0=Ae—elkT(1+_e/£_)a7 (18)
(e1/kT) 4+«
with
M [/ e \2
a=— —) . (19)
12m\ kT

To determine the constant 4 we use the relation

® 2T\ x \©
n=41rf fov2dv=21r(———) Af e"‘(l-’r ) xtdx
0 m 0 X1+a

(ZTkT)iA{l—f—s a s
h m 2a+x1 j=2

where
e m(wh)? €

= r=—.
kT

(20)

X=—= ;
kT  2kT
In this report our interest is confined chiefly to
the condition

o a, (21)

which is satisfied for most high frequency electro-
magnetic waves with intensity below the level of
ionization. If we consider as an example 3-cm
waves passing through He gas at a pressure of
20 mm, x; is about 100 provided T is room
temperature. Condition (21) then requires that
E«7, E being measured in volts/cm. For shorter
waves and lower pressures E is allowed to be
greater.

Wishing to approximate the parenthesis in
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Fi16. 1. K2 and K32 as functions of X =mw?\2/2kT.

ala—1)- - (a—j+1) 1:3:5---(2j=3) _4]'2—1}
7! (a+2x1)7 2i )’

Eq. (18) by an exponential, we expand

x \«
log (1+x1+a) —log ea=latte
* 1 x \?
=a£ —;) (x1+0¢)
and thus obtain
fo=A exp [— o x—l o
xi+ao 2 (x1+a)?
1 ax?
+gm— .- ] (22)

In the direct-current case, the first term in the
exponent is zero, and the second represents the
Druyvesteyn distribution. For alternating cur-
rents, and under condition (21), the first term
alone is important and leads to a Maxwellian
distribution

fo=A exp [—x1/(x1+a) I, (23)
corresponding to a temperature
T'=T(14+a/x1). (24)

In the present instance this is essentially 7.
Because of the great convenience afforded by
the use of the Maxwell formula which, perhaps
somewhat unexpectedly, presents itself as a valid
approximation in the a.c. case even for values of
the field strength that calls for the use of the
Druyvesteyn formula under d.c. conditions—it
seems important to know whether condition (21)
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is necessary for this approximation to hold. We
first note that, if both x; and « are small, Eq. (22)
to be sure becomes nugatory, but Eq. (15) clearly
shows that fy is Maxwellian. Finally, to investi-
gate the situation for larger values of &, numerical
computations have been made. The results indi-
cate that for practical purposes (18) and (23) may
be regarded as identical in the part of the velocity
range where f, is sufficiently large to matter, so
long as x; is not smaller than a. Zeroth and first
moments of the energy, when computed with
(23), differ by less than 3 percent from their
correct values based on (18). Condition (21) may

therefore be replaced for most purposes by
X1 2> . (2 1 I)

II. CONDUCTIVITY OF THE MEDIUM WHEN
DISTRIBUTION FUNCTION IS MAXWELLIAN

The current density through the gas is
I=nev,=ey f 2.2(f1 cos wt+ g1 sin wt)v?dv sin d0d¢
because of (6). Hence in view of Eq. (12),

4 © Ao |
I=?e-yf fl(COS wt+— sin wt)v‘dv. (25)
0 v

In accordance with our assumption (21) Eq. (23)
leads to

fo=Ae*T  A=n(m/27kT)}, (26)
so that (14) takes the form
Amy
f1=mfo- (27)
Using the definition
® ypg—z
]; x1+xdx‘=‘K,,(x1), (28)

we obtain (cf. Eq. (20) for the meaning of x)
from (25), (26), and (27)
4 e2Enn

='§ WEK‘Z(:X:I) cos wi

+x1*K3,2(x1) sin wl]. (29)

This formula is equivalent to the following one
for the complex conductivity:

4 en

g@;aasﬂme)—MﬁKw@Ol (30)

Ocomplex =
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F1G. 2. Ratio of imaginary (“out of phase’) to real (“in
phase”) part of the conductivity as a function of X. When
this ratio is much larger than 1, formula (2) is applicable.

which is defined by the relation = ocomplexFei®.
To exhibit the analytic nature of this formula we
record that it may also be written

8 e f“’ trexp [—12]ds
0

- - . (30)
3 2wmkT)? t+iN(m/2kT)w

Ocomplex =

The functions K, and Ky can be expressed in
terms of the exponential integral Ei(—x;) and
the error function erf [(x;)*] (both defined as in
Jahnke-Emde, Funktionentafeln), respectively :

Kg(xl) =1 —-x;—xlz exp I:xl:]E,-(—xl),
Kspa(xr) = (G —x1)w?
+mx:} exp [x1]{1—erf [(x1)}]}.

Graphs of these are shown in Figs. 1 and 2. We
note that

lim K2=1, lim K3/2=%1l'%,
z1—0 x1—-0

. 2 . 3t
Iim Ke=—, lim Kjs=—-.
r1—w X1 1o ® 4x1

Thus Eq. (29) has the following two limiting
forms:

) 4 e?Ex we’EN? |

lim I=—————ncos wt+ 7 sin wf, (31)
z1-0 3 (27(’ka)* 3kT

. 16 e2E [ kT \?}

lim [=— —— ) n cos wt
r]—® 3 mw ™\ \2mm

2

e
~+—mn sin wi.
mw

(32)

The first term on the right of (31) represents the
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Langevin mobility formula, Eq. (1); the second
term in (32) is the familiar expression for the
current (in quadrature with the applied e.m.f.)
due to entirely free electrons, Eq. (2). In prob-
lems involving the passage of cm waves through
ionized gases, the limiting form (32) is usually
applicable.

This applies a fortior: to the positive ions. Be-
cause of their large mass, x is very large, and (29)
describes their contribution to the conductivity,
which is seen to be very small and can be neg-
lected for most purposes.

The real and imaginary parts of gcomplex are
functions of \, and hence of the pressure of the
gas. The imaginary part, being proportional to
%1K 3/2(1), is a monotonically increasing function
of x;: for a given frequency w it starts with the
value e*n/mw at low pressures and goes to zero as
we?\?/3kT at high pressures. The real part, how-
ever, which is proportional to x;*K,(x;), has the
value zero at both ends of the range of x; and
passes through a maximum.

On differentiating, it is seen that this point is
fixed by the condition

Kz(xl) +2x1K2'(x1) =O,

which leads to x;=2.1. Thus maximum con-
ductivity occurs when

wA=6.8X10B(kT)%. (33)

This equation places the maximum of con-
ductivity nearly at that value of the pressure for
which the mean free time 7, of an electron be-
tween impacts equals 7, the “period’’ of the light

e?E\n

B m( Wia—1/2)/2, [(«+3/2)/2] (x14a))?

For small integral values of « the integrands in
Eq. (36) can be expanded easily and the integrals
become sums of I'-functions. When this procedure
is possible it is far less laborious than the use of
Eq. (37).

IV. DIELECTRIC CONSTANT, INDEX OF
REFRACTION

For ready reference we compile here a few facts
that are well known and indicate how the fore-
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wave. For if we take the period as the time
per radian, 7.=1/w, while 7:=N/v=\(m/3kT)}.
Equality of 7, and 7, then implies x; =3/2 or

WA =5.75X10B(ET)?, (34)

a result not very different from (33).

In some experiments® high frequency waves are
sent through gases maintaining an independent
electrical discharge, and their dispersion and
attenuation are measured. If the energy distri-
bution of the electrons is Maxwellian, formula
(29) may be shown to be applicable, and T
appearing therein (also implicitly in x,) refers to
the temperature of the electrons sustaining the
discharge.

III. EXACT THEORY OF CONDUCTIVITY

Starting with Eq. (18) and using the abbrevi-
ations (19) and (20), we obtain with the use of
(14) and (15)

( )* (x+x1+a) a—1
— o},
2kT (x1+a) «

When this is inserted in Eq. (25) there results,
after an appropriate change of variable,

I=—81r e2E)\AkT{ ® (x4x;+ta)e?
3 0 (x1+oz)°‘

0 (x+x1+a)a—l

0 (x1+a)=

The remaining integrals, as well as 4, may be
expressed in terms of confluent hypergeometric
functions’ in the form

(35)

e~ *x%dx - cos wt
m2

e~*xtdx-sin wt}. (36)

+x1*

(8(x140) W i(amsy/a, (asy/21 (¥14@) - cOS wt

+ (721) W (ams/2) /21, tar-3r2)/21 (X1 ) -sin wt}.  (37)

going results may be used in the computation of
the optical properties of an ionized medium.

Ampere’s law, for an isotropic medium with-
out space charge and with permeability unity,
has the form

1. 4r
VXH =—D-|——-I.

8 A. Szekely, Ann. d. Phystk [5],
Appleton and F. W. Chapman, Proc.
246 (1932).

7 Whittaker and Watson, p. 340.

112 (1929). E. V.
Roy. Soc. London 44,
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If we introduce the “‘ordinary’’ dielectric constant
€o=D/8 and the conductivity ¢=1/§, this equa-
tion when written for field strengths proportional
to et reads

) 4wo
VXH=—e8+—4.

c c
If ¢ is real, the current density in phase with & is
o8, that out of phase is (w/4m)eo8. But if ¢ is
complex, that is ¢ =¢,—10;, then €, the measure
of the current in quadratature with §, must be
replaced by the new dielectric constant

(38)

e=¢— (dmoi/w),

while the dissipative current density is ¢,8. For
the present problem, ¢, and o; may be identified
from Egs. (30) [or (36), (37)].

The index of refraction, IV, of the medium is
defined by

&= Eegiv(t—N[9K.n (39)

K being a unit vector in the direction of propa-
gation. When Maxwell’s equations are solved
with insertion of this form of &, it is seen that

N2=¢— (47ic,/w). (40)
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If, as usual, we introduce the “‘ordinary’’ index of
refraction # and the extinction coefficient &, such
that

N=n—ik, (41)
we obtain from (40)
nt—kl=e=¢— (dro;/w),
nk=2ro,/w;
whence
n2=§{ 1£[14 (470, /ew)?]}},
(42)

k2=§{—1i[1+(4m,/ew)2]%}.

Here the positive sign is to be taken when €20,
the negative sign when ¢<0, (see Eq. (35)) the
reason being that # and k are real. For waves in
the cm region e becomes negative at electron
concentrations of 102/cm3. Detailed applications
of these results will be given in another com-
munication.

The author wishes to express his indebtedness
to Dr. C. G. Montgomery for suggesting this
problem to him and for helpful comments.



