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comparison. ln addition, the ratio of P to C~/D'
is plotted against y/D in Fig. 2 for both the case
where a magnetic field is present (solid curve)
and the case where there is no magnetic field

(broken curve). The total charge per unit area on
the anode is twice that which would be present on
a condenser at the same potential as compared
with four-thirds as much in case the magnetic
6eld is absent.

In the preceding discussion the plane of cut-oR'

has been supposed to coincide with the anode.
Suppose, now, that the potential or charge
distribution is desired for a case where the dis-
tance d of the anode from the cathode is less than
the distance D of the cut-oR' plane. The potential
of the anode being known, C~ as well as d is
given. Hence, in the specified magnetic field, the

quantity

M =—C g/0'd'

is a knmon quantity. By use of the cut-off relation
CD ——O'D'

Cg D'
M=———

Cg) d2

Values of this quantity are given in the last
column of Table II. From the value of 3I can be
determined the ratio d/D and hence the potential
and charge distribution everywhere between the
electrodes. For example, if M is found to be 2.96,
then d/D=0. 1486 froin the first column in the
table, or the distance between the electrodes is
only 14.86 percent of the distance from the
cathode to the (virtual) plane of cut-olf.
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The space charge equation for the cylindrical magnetron is solved, the current is obtained
as a function of the magnetic field, and the e6'ect of the magnetic field on the distribution of
potential and charge is determined.

~HE object of this paper is to apply the methods employed in discussing the space charge equation
of the diode' to the cylindrical magnetron consisting of two coaxial cylindrical electrodes of

radii c and b (a (fi) in a uniform magnetic field H parallel to their common axis. The inner electrode
or cathode emits ions (electrons) with negligible initial velocities. These ions are accelerated toward
the outer electrode or anode by a radial electric field because of a difference of potential between the
electrodes. Saturation emission of ions from the inner electrode is assumed.

While Brillouin' has discussed the particular solution of the space charge equation corresponding
to circular paths of the ions, very little progress seems to have been made in solving the space charge
equation for the more important case of ions originating on the inner electrode.

With polar coordinates r, 8 in a plane at right angles to the common axis of the electrodes, the
fundamental equations required are, in Heaviside-Lorentz units,

2e
r2+rifJ2= V(r), —

m

d e
(r'b) = —Hrr, ——

dt mc

' L. Page and N. I. Adams, Jr. , Phys. Rev. 08, 126 (1945).
~ L. Brsllouin, Phys. Rev. 60, 385 (1941);Elec. Comm. 20, 112 (1941).
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1d (dV)
rdr E dr)

JE
rr'p(r)

2x' (4)

where V(r) is the excess of the potential at distance r from the axis over that of the cathode, p(r) is
the space charge per unit volume, and j~ is the constant current per unit length of the electrodes.

Put C'=——2(e/m) V& 0, 0=eH/—mc The.n, from (1) and (2),

(r a)'
r~=e--'n2a~( ---

(
=-U(r),

Ea r)

and, when p is ehminated from (3) by means of (4), it is found that U must satisfy the differential
equation

d fdU) '(r a'l (e/m)(j&/ x)

r +0'a —+-
dr E dr) (a r') U&

(6)

subject to the boundary conditions that U and its derivative with respect to r vanish at the cathode
r =a. Evidently U vanishes again at cut-oHf.

Next put
p=—(r/a) ~, U= KpÃ(p-).

where Z is a constant coefficient, getting

d t' dP) dP 90'a'( 1) 9 e jia1
+2 + '+- '+-

dp I, dp) dp 4 K & p4) 4x m K&p

We take K&=—(9/4z)(e/m)jia, so as to make the coefficient of 1/if on the right-hand side equal to
unity. Then

1 U~/a

p~(9 e ji) l'

(4s m a')

and the equation for P becomes

0'a' 02
=S,

K (9 e j&)&

(4x m "a')

d ( dP) dP 9 ( 1)
p p—( p )+2p +p+-s') p'+ —

)
=1.

dp& dp) dp 4 q p4)

If we make s =0 to pass to the case of the simple cylindrical diode in the absence of a magnetic 6eld,
it is easily seen that the function P of this paper becomes the cube root of the function g (equivalent
to Langmuir's P') of the earlier paper. '

Following the method employed in that paper we shall seek a solution of (8) in the form of a "near
formula" which converges rapidly in the neighborhood of p = 1 and which satislies the boundary
conditions at the surface of the cathode. Then we shall look for a complete solution in the form of a
"far formula" which converges rapidly for large values of p and the two arbitrary constants of which
we can determine so as to make the two formulas fit in the region where both converge satisfactorily.
Of course p is limited to values less than cut-ofI'. We shall aim for an accuracy of one percent or
better in our expansions in series.

NEAR FORMULA

To get the near formula satisfying the boundary conditions at the cathode, we change the in-
dependent variable in (8) to x, where x'—= 1—1/p. Then x is zero at the cathode, increasing as r
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increases. In the new variable the differential equation takes the form

(1—x')' d t' dipn) dp (1—x')' dp 9
x—{ x }

—3x + x +(1—x')'F2+ —s'{(1 —x')'+1} = (1—x')'. (9)9x' dx L, dxP dx 3x' dx

The solution satisfying the boundary conditions is of the form

P = (9/4) &x'[C 0
—s'x'C i —s'x'C g

—s'xeC — .j
where Cp, 4~, 42, 43 ~ ~ are series in integral powers of s=—x'. Evidently

P= (9/4) x'[xo —s'x'Xi —s'x'Xn —s'x'X3 — j,
p = 4'p ) x] = 24p4 xg = 24'p4'~ —4'i') y3 = 24 p4'3 —24'i4'2)

Substituting in (9) we find for C 0, C i, C2, C'3,

dxo 9 d ( dxo&
Co -'(4+4z+s')xo+-'(1 —s)(5 —2s)s +—(1—z)'z—

{ z } =1,
ds 4 dzi dz)

dxi
C i(1—s)'+C 0' (1—s)' g(18—18z+9z') xi+-,'(1—s) (9—6s)z

ds

d t' dxi) f9't 4"'
+—(1—s)'s—

{ z }
—

{
—

} {(1—z)'+1} =0,
4 ds& dsp g4)

dXI 9 d ( dXg)
4&i2+C 04&q+C 03 4 (40—56z+25z') xq+ 4'(1 —s) (13—10s)z +—(1—s)'z—

{
z } =0,

dz 4 dz& dz)

dX3 9 d f dX3~
C ia+2C 0C iC ~+CQC ~+C 04 -', (70—110z+49z')xs+-,'(1—s)(17—14s)z +—(1—s)'z—{ z

}
=0,

4 dz( dzJ

and continuing in this manner we obtain the near formula

iP= 1.3104x'[{1 —0.06667s —0.04139s' —0.027 19z' —0.01916s4—0.01420z' —0.01091s'
—0.00862s' —0.00697z' —0 00572z' —0.00476s"—0.00402z" —0.00342z"
—0.5897s'x'{1+0.0238s+0.7452s'+0. 7781z'+ 0.9224s'+ 1.0675z'+ 1.2136s'+ 1.361s'

+ 1 508s'+1.656s'+ 1.805z"+1.955z"+2.108s" } —0.1490s'x4{1+Os+1.622z'

+1.791z'+ 2.794z'+3.894z'+5.272z' ~ } —0.0749s'x' {1 —0.076s+2.528z'+2. 833z'
—0.0472s'x'{ 1.. . } —0.0334sioxio{ 1 . } —0.0263si2xi2{ 1 }

— ]. (10)

The leading coefficients in this expression (i.e. , the coefficients of s'x' and its powers) check with the
expression for U in the theory of the plane magnetron, ' as should be the case, since, when s—+0, the
formula (10) becomes applicable to the plane magnetron. Of course, accurate computations cannot
be made from (10) for the case where the magnetic field is so strong that cut-off occurs for a value of
s very small compared with unity. That case, however, is provided for, to a suAicient degree of
accuracy, by the theory of the plane magnetron. ' Hence we limit the use of the near formula (10)
to cases where cut-oft' occurs at a distance from the axis some ten or more times the radius u of the
ca,thode.

FAR FORMULA

Now we must look for a complete solution of (8) valid for large values of p. We shall neglect the
term in 1/p' as compared with the term in p' in the coefficient of s. This introduces an error of only
one-seventh of one percent even when p is as small as three. Physically this approximation amounts

3 L. Page and N. I.Adams, Jr., Phys. Rev. 59, 492 (j.946).
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to neglect of the magnetic Aux through a cross section of the cathode as compared with the magnetic
Aux through a circle of radius r.

Following the method used with the cylindrical diode' we find that solutions exist in power series of

1
Cp 1&i/2 =—s&i0 8—:—log p+42.

2c 2c' 6 2(2)& 2c3 1 7(2)& 5/=1+—cos 8 — —cos 28+ sin 28 + —cos 38+ sin 38+—cos 8
f f' 11 11 p3 24 44

29(2) & 9 2c 3 (2)&
+ sill 8 —' ' ——$ p 1———cos 8 — sill 8

88 76 P 4 8

2c' 17 17(2)&
+ —cos 28 — — —sin 28 —1

p2 11 22

81 2c 1121
~ ~ ~ —$4P4 1———cos 8

12,274 p 512

175(2)&

}
60,831

—sin 8 + — ——$3P0 1 —~ —~ ~ ~ . (11)
512 I 82,088,512

Substituting a power series in these variables in the difkrential equation, we obtain the solution.

This is a complete solution since it contains the two arbitrary constants c and 0.. The numerical
coef6cients were verified by substituting the solution back in the differential equation after it had
been expressed in trigonometrical form.

Now when $= 0 (i.e. , no magnetic field present), f must reduce to the cube root of the function g
calculated for the cylindrical diode in the earlier paper. ' Let Cjo and C20 be the coefticients of the pair
of variables appearing in f in that case. If, then, Ci and C, are the coefficients when s AO, it is evident
from the form of the near formula (10) that

Cl —C10+C12S +C14$ + ' ' '
q C2 C20+C22S +C24S + ' ' '

~

Consequently the terms in (11) involving all coefficients C;; other than C10 and C20 are of higher order
in 1jp than any we have retained, and therefore will be neglected. Hence we obtain at once from the
theory of the diode, '

c = —0.3260, 8 =93'.288 log10 p+2Z'. 83, (12}

as the proper values of the constants required to satisfy the assumed boundary conditions at the
cathode, giving for the final form of f,

1 1
$= I —{0 65200 cos 8 }——{0.11594cos 28+0 05466 sin 28}——{003465 cos 38+0 02858 sin 38

+0.00787 cos 8+0.03229 sin 8}—— —0.11842$2P2 1+{0.48900 cos 8 —0.11526 sin 8}—

1
+ {0.32850 cos 28 —0.23229 sin 28 —0.21256}—+ —0.006,599$4P4 1+{1.4275 cos 8

1—0.3152 sin 8}—+. . . —0.000,741$3P0 1+ —.. .. (13)

As a test we have calculated P from both the near formula (10) and the far formula (13) for

P =3 (s =s, r = 5.196a) through terms in $4. From the first we get

f =0.9215—1.016$'—0.34$'—

although little confidence can be placed in the coefficient of s' since the coe%cients involved in this
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term in (10) have been computed only through s' as against coefficients computed through s12 in the
first two terms. On the other hand, from (13) we obtain

P =0.9214—1.023s' —0.49s'—

Evidently the magnetic field must be such as to make s somewhat less than one-half in order to make
the two calculations of P agree to within one percent. This is a rather severe test, however, particularly
of the near formula, which was designed for small values of s and which we have applied to a value
two-thirds of its upper limit unity.

The far formula (13) will give values of P accurate to better than one percent for p&&4(r/a& 8)
provided only that the magnetic field is small enough so that sp is not much greater than unity.
This means that the formula cannot be used close to cut-oA'.

CUT-OFF FORMULA

In order to apply the far formula (11) in the neighborhood of cut-off, where /=0, we need
far more of the leading terms (i.e., those in s2P2 and its powers) than have been computed so far.
Therefore we turn back to (8) and calculate to twenty-one terms the particular solution corresponding
to c=0 in (11). In this calculation we have included the contribution to the first four terms of the
series of the previously neglected term in I/p6 in (8), mainly for the purpose of showing how utterly
negligible is the contribution of this term for all except the very smallest values of p. The terms in c
in (11) can be added to this particular solution if needed, but they are negligible if cut-off occurs at
large p.

In order to avoid many zeros between the decimal point and the first significant figure of the
coeFhcients, it will be convenient to put

9
q —=—s'P' = 0.23684s'p'.

38

Then we find for the desired particular solution

1 0 1.030 2.241 0.891 1.064
P = 1—0.50000q 1+——0.11765q2 1+—+ —0.05578q' 1 — + +

p6 p6 p12 p6 p12 p16

—0.03324q4 —0.02227q' —0.01602q' —0.01209q' —0.00944q' —0.00757q' —0.00620q"
—0.00516q"—0.00435q"—0 00371q" —0.00319q"—0.00277q" —0.00242q"

—0.00213q"—0.00189q"—0.00168q"—0.00150q"—. (14)

TaaI.E I. Va1ues of P(q) near cut-o8 for large p.

1.03
1.0$
1.06
1.08

& —Ij'(e)
(uncorrected)

0.872
0.921
0.948
1.007

& —4(e)
(corrected)

0.907
0.988
1.047
1.257

It should be noted that, although P is a func-
tion of the two independent parameters P and s
for small or moderate p, it becomes a function of
the single variable (sp)2 for sufficiently large p.

From this series can be obtained the value of q
at cut-off for large r/a Afew trials .show that f
vanishes for a value of q a little greater than
unity. In order to secure greater accuracy, a

correction is made to the computed va. lue of f(q)
for values of q in this neighborhood by adding to
(14) a geometrical series with ratio equal to that
of the last few terms. The justification for this
procedure lies in the fact that the last few terms
in (14) in such cases have a nearly constant ratio,
and, furthermore, the correction is small. The
results are given in Table I.

The uncorrected values of P(q) obtained from
the twenty-one terms of (14) show that q is
certainly less than 1.08 at cut-ofF, and the cor-
rected values indicate that its value lies between
1.05 and 1.06, and closer to the first than the
second. Therefore we infer that, for large p, cut-
off occurs at q=i.05 with an error not greater
than one percent.
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CALCUI.ATIONS AND GRAPHS

Ke are now in a position to plot curves from
the formulas derived. We can cover all cases
except that in which cut-off occurs close to the
cathode. First we calculate iP as a function of s for
various values of p, although, in order to avoid
large numbers of zeros after the decimal point,
we shall use q—= (9/38)s'p' as variable instead of
s itself. In Table II are listed formulas for iP for
values of p covering the entire range from 1 up.
To and including p=2 the near formula (10)
is used, for p = 3 and greater p is calculated from
the far formula (13). In the region 2~& p~&4
the accuracy is least, as neither formula converges
very well in this range. This is indicated in the
table by giving fewer terms in the expressions for
itin this region. For P &~ 9 terms from (14) may be
added as cut-off is approac'hed, the accuracy
becoming greater the larger p. From the last
series we have already found that cut-off comes
at q = 1.05 for very large p. By the same method
we find that cut-olf comes at q = 1.06 for p =25.

The most important family of curves is that
giving the current plotted against the magnetic
field for a given C and p. From Eq. (7) de-
6ning s we have

J/2i&
0.6—

04—

and eliminating 0

2 4~ a2) 2

++1.05556qi 1 ——
)9 r2

& r')

(16)

where we have put j& =—27rrj and then substituted
J for (e/m)j Evid. ently j is the current density
at distance r from the axis.

TAsLH III. Current as function of magnetic field for r/a
very large.

0.2—
IH y'I2
(AC ~

l I I I l I l I I

0 0.2 0.4 0.6 O,S 1.0 12 l.4 16 LS 2.0

FIG. 1. Variation of relative current density with mag-
netic field, potential and distance. Upper curve r/a very
large, lower curve r/a = 125.

9
q

2

38 f9 s ji)&
&4ir m a'j

and the square of Eq. (7) defining f, if we
eliminate U by means of (5), becomes

C —-', 0'a'(r/a a/r)'—
P'2—

& ji)i
a'pf ———

I

44s m a')

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.05

1.000
0.949
0.895
0.838
0.776
0.710
0.638
0.557
0.464
0.349
0.177
0.000

0.000
0.648
0.914
1.110
1.284
1.430
1.560
1.678
1.?85
1.883
1.971
2.000

1.000
0.992
0.983
0.973
0.964
0.953
0.942
0.930
0.917
0.901
0.883
0.857

Eliminating j» from these equations we hnd

IIr 2.O548O(q) i
(15)

4 & [@+1.05556q(1 —a'/r')'j&
TABI.E II. Formulas for p for various values of p=—(r ja)&.

TAM. H IU. Current as function of magnetic field for
r/a = 125.

1.000
1.250
1.333
1.500
2.000
3.000
4.000
9.000

16.000
20.000
25.000
Very

large

1.000
1.398
1,540
1.837
2.828
5.196
8.000

27.000
64.000
89.443

125.000
Very

large

iI (q) where q =(9/38)s~p~

0
0.4413 —0.2547q —0.062q' —0.029q3 —0.015q4 —~ - ~

0.5098 —0,3092q —0.079q~ —Q.038q3 —0,02q4 —~ ~ ~

0.6122 —0.3814q —0.100q& —0.05q3 —- ~ .
0.7851 —0.463q —0.11q~ —~ ~ ~

0.9214 -0,480q —0.11q&—...
0.9745 —0.479q -0.12qs —.. .
1.0284 -0.4822q -0.107q~ —0,056q3—
1.0291 -0.4867q —0.109q~ —0.056q3 —~

1.0265 -0.4885q —0.1098' -0.0558qs —~

1.0232 -0.4904q —0.1110q~—0.0558qs—

1.0000 —0.5000q —0.1177q~ —0.0558q3 —~ ~ ~

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.06

1.023
0.973
0.920
0.864
0.804
0.740
0.670
0.591
0.499
0.386
0.217
0.000

0.000
0.633
0.893
1.091
1.257
1.401
1.530
1.649
1.758
1.860
1.957
2.000

0.934
0.926
0.919
0.912
0.904
0.897
0.889
0.882
0.875
0.868
0.864
0.845
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FIG. 2. Charge density with ma netic fieldg ic e (solid curve) and without magnetic
e roken curve) as a function of r/a.

Thai. m V. Distribution of potential and of space charge
when anode coincides with cut-off surface.

1.000
1.250
1.333
1.500
2.000
3.000
4.000
9.000

16.000
20.000
22.000
24.000
25.000

r/a [4 /4Bj0

1.000 0.000
1.398 0.009
1.540 0.012
1.837 0.020
2.828 0.044
5.196 0.091
8.000 0.136

27.000 0.343
64.000 0.620
89.443 0.781

103.189 0.863
227.576 0.946
125.000 1.000

/pl(@B/~) JH 8'I+Bl o lPI{+B/@) ] o

180.3
137.2
90.4
39.7
15.09
8.07
1.596
0.623
0.505
0.533
0.804

0.000
0.009
0.013
0.022
0.047
0.097
0.145
0.364
0.647
0.805
0.883
0.961
1.000

192.3
146.3
96.4
42.3
16.00
8.51
1.592
0.504
0.323
0.267
0.225
0.207

4&. 4V. Hull, Phys. Rev. LS, 31 (2922).

Ke have plotted two curves of the family
e upper oneunder consideration in Fig. i. Th

is for p very large, and the lower one for
/=25 (r/a=125). In both cases we have neg-
lected (a/r)' as compared with unity in (15) and

e calculated values for the two curves are&I6~. The
given in Tables III and IV. Only for q &~ 1 has it
been necessary to add a small correction to (14)
to account for the effect of additional terms

eyond the one in q". It will be noted that both
curves are very nearly horizontal, the second

accord with the experimental measurements of
Hull, ' who used a ratio of anode to cathode
radius not very different from 125.

Next we consider the distribution of potential
and of space charge for the case where the anode
r~b coincides with the surface r=8 of cut-oA'

C (r)2(a'l' ( a~)'
i

1 ——
I +O.94V5V—. (17)

Furthermore, if we put P —= (e/nz) p, it follows that
P= J~U~,~U, and the distribution of space charge is
given by

P 4 021053

4 s/B' 19qf gP

In Table V are given, in the third and fourth
columns, respectively, the values of C/Cs and
P/(C's/B') corresponding to the values of p as
given in the first column or of r/a as given in the
second, for b/a = 125. The values these two
quantities would assume if no magnetic field
were present, are given in the fifth and sixth
columns. It is to be noted that the potential
distribution is not greatly affected by the mag-
netic field. The charge density, on the other hand ?

rises very abruptly in the immediate vicinity of
cut-ofF when a magnetic field is present, becoming
infinite at the surface of cut-off. In Fig. 2 the
graph of P/(C's/B') plotted against r/a is shown
by the solid curve. The broken curve represents
the same quantity when no magnetic field is
present.

(18)

liimiting ourselves to the case where a/b((1. Then
5) gives C's ——-', O'B' at cut-off. Since, in general,

( a')' 18+
C=-,n"*

~
1—(+——,r'j 19 iI

it follows that the distribution of potential is
given by


