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The space charge equation for the plane magnetron is solved, the current is obtained as a
function of the magnetic 6eld, and the eHect of the magnetic field on the distribution of
potential and charge is discussed.

EFORE attempting to apply to the cylin-
drical magnetron the method employed by

the authors to solve the space charge equation
of the cylindrical diode, ' it was felt desirable to
develop the theory of the limitation of current by
space charge in the plane magnetron. Although
the space charge equation of the plane magnetron
can be solved in closed form and is of sufFicient
importance to have merited attention, the authors
of this paper have been unable to find its solution
in the literature. Following the present paper is
an investigation of the more important space
charge equation of the cylindrical magnetron.

The plane magnetron consists of two infinite
parallel plane electrodes a distance d apart be-
tween which is a uniform magnetic field II
parallel to the electrodes. Let the ion-emitting
electrode or cathode be the plane y =0. Then the
equation of the anode is y =d. The Z axis will be
oriented parallel to II, and saturation emission of
ions from the cathode with negligible initial
velocities mill be assumed. Evidently the excess V
of the potential of any point above that of the
cathode and the volume density p of space charge
will be functions of y only.

%'ith Heaviside-Lorentz units, the fundamental
equations involved in the theory are

28*'+i'= ——~(y),
m

8
S=—jjH,

mc

(3)

ip(y) =i,

Put C —= —2(e/m) V &~ 0, Q =sH/rn—c. Then, from
(1) and (2), j'=4 —0'y'=—U,

and, after p is eliminated from (3) by means of
(4), it is found that U satisfies the differential
equation

d'U 2J
+2Qi =—, (5)

dy' U&

where J—= (e/m) j.The boundary conditions at the
cathode require that U and dU/dy vanish at
y=0. The function U must vanish again at
cut-oR'.

The first integral of (5) subject to these
boundary conditions is

(d U/dy) = (SJU&—4Q'U)&. (6)

To get the second integral put
4J' J

U=— sin' 8, y—=—$.
Q 03

Then (6) becomes

dg =4 sin' 8d8,

of which the integral is

)=28—sin 28,

since t and 8 vanish together. Evidently the zeros
of U corresponding to the cathode and to cut-oR'

come at 8=0 and tN =x, respectively. At cut-oR',

then, &=2s.
From the defining equations for sin 8 and $ it

follows that

( sin4 8) &

sin4 8) &

+4

where j is the constant current density. Hence, if we calculate corresponding values of 8
and ( from (7), we can plot the ratio of J to

(194$). (2/9)C»/y' against the ratio of (eH/mc) to C»/y,
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as in Fig. i. Since the value of J in the absence of
a magnetic field is (2/9)C'&/y', the ordinate repre-
sents the ratio of the current actually existing to
that which would exist for the same C and y if the
magnetic 6eld were not present. Furthermore,
since 4 =0'y' is the condition for cut-oR, the
abscissa represents the ratio of the magnetic field
present to that required for cut-oR, with the
speci6ed 4 and y. In Table I are listed the 6gures
used in plotting the curve. The most interesting
feature of the curve is the fact that the current
decreases only slightly with increasing magnetic
6eld until cut-oR is imminent,

If 4~ specifies the potential difference between
the electrodes when the plane of cut-oR y =D
coincides with the anode y=d, then Cg=Q'D',
and the potential diRerence between the cathode
and a parallel plane at a distance y, is given by

4' p t s1n 0 t—=—
I

I+"-
Cn D'g P

Furthermore, the charge density p is given by
Q~ C~~p

m 2 sinn 8 2D~ sin' 8

Txm.E I. Dependence of current on magnetic field.
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FIG. 1.Variation of relative current density @with magnetic
field, potential, and distance.
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FiG. 2. Charge density vrith magnetic 6eld (solid curve)
and without magnetic 6eld (broken curve) as a function of
relative distance.
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Twm. E II. Distribution of potential and charge.

or, if P—= (e/m)p,

PD'

4D 2 s111 9

In Table II are given both C/Cii and P/(Cn/Di)
for values of y/D ranging from 0 to I, that is,
from the surface of the cathode to the plane of
cut-oR. Since the first of these ratios is equal to
(y/d)41' when no magnetic field is present, values
of (y/D)"' are listed for comparison with C/Cn.
The striking feature of the table is that the
potential distribution is so little aR'ected by the
magnetic field. The charge density becomes
inhnite at the plane of cut-oR as well as at the
surface of the cathode, as expected. At both ends,
however, nearly the entire rise takes place in a
very narrow layer close to the limiting plane. As

Pd' 2 (yl -&

Cg 9 (dj

when no magnetic field is present, values of
(2/9)(y/D) & are given in the fifth column for
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comparison. ln addition, the ratio of P to C~/D'
is plotted against y/D in Fig. 2 for both the case
where a magnetic field is present (solid curve)
and the case where there is no magnetic field

(broken curve). The total charge per unit area on
the anode is twice that which would be present on
a condenser at the same potential as compared
with four-thirds as much in case the magnetic
6eld is absent.

In the preceding discussion the plane of cut-oR'

has been supposed to coincide with the anode.
Suppose, now, that the potential or charge
distribution is desired for a case where the dis-
tance d of the anode from the cathode is less than
the distance D of the cut-oR' plane. The potential
of the anode being known, C~ as well as d is
given. Hence, in the specified magnetic field, the

quantity

M =—C g/0'd'

is a knmon quantity. By use of the cut-off relation
CD ——O'D'

Cg D'
M=———

Cg) d2

Values of this quantity are given in the last
column of Table II. From the value of 3I can be
determined the ratio d/D and hence the potential
and charge distribution everywhere between the
electrodes. For example, if M is found to be 2.96,
then d/D=0. 1486 froin the first column in the
table, or the distance between the electrodes is
only 14.86 percent of the distance from the
cathode to the (virtual) plane of cut-olf.
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The space charge equation for the cylindrical magnetron is solved, the current is obtained
as a function of the magnetic field, and the e6'ect of the magnetic field on the distribution of
potential and charge is determined.

~HE object of this paper is to apply the methods employed in discussing the space charge equation
of the diode' to the cylindrical magnetron consisting of two coaxial cylindrical electrodes of

radii c and b (a (fi) in a uniform magnetic field H parallel to their common axis. The inner electrode
or cathode emits ions (electrons) with negligible initial velocities. These ions are accelerated toward
the outer electrode or anode by a radial electric field because of a difference of potential between the
electrodes. Saturation emission of ions from the inner electrode is assumed.

While Brillouin' has discussed the particular solution of the space charge equation corresponding
to circular paths of the ions, very little progress seems to have been made in solving the space charge
equation for the more important case of ions originating on the inner electrode.

With polar coordinates r, 8 in a plane at right angles to the common axis of the electrodes, the
fundamental equations required are, in Heaviside-Lorentz units,

2e
r2+rifJ2= V(r), —

m

d e
(r'b) = —Hrr, ——

dt mc
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