PHYSICAL REVIEW VOLUME 69,

NUMBERS 9 AND 10

MAY 1 AND 15, 1946

Space Charge in Plane Magnetron

LEIGH PAGE AND NORMAN I. Apawms, JRr.
Sloane Physics Laboratory, Yale University, New Haven, Connecticut

(Received February 18, 1946)

The space charge equation for the plane magnetron is solved, the current is obtained as a
function of the magnetic field, and the effect of the magnetic field on the distribution of

potential and charge is discussed.

EFORE attempting to apply to the cylin-
drical magnetron the method employed by
the authors to solve the space charge equation
of the cylindrical diode,! it was felt desirable to
develop the theory of the limitation of current by
space charge in the plane magnetron. Although
the space charge equation of the plane magnetron
can be solved in closed form and is of sufficient
importance to have merited attention, the authors
of this paper have been unable to find its solution
in the literature. Following the present paper is
an investigation of the more important space
charge equation of the cylindrical magnetron.
The plane magnetron consists of two infinite
parallel plane electrodes a distance d apart be-
tween which is a uniform magnetic field H
parallel to the electrodes. Let the ion-emitting
electrode or cathode be the plane y=0. Then the
equation of the anode is y=d. The Z axis will be
oriented parallel to H, and saturation emission of
ions from the cathode with negligible initial
velocities will be assumed. Evidently the excess V
of the potential of any point above that of the
cathode and the volume density p of space charge
will be functions of y only.
With Heaviside-Lorentz units, the fundamental
equations involved in the theory are
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where j is the constant current density.

1L. Page and N. I. Adams, Jr., Phys. Rev. 68, 126
(1945).

Put ®=—2(e/m)V 20, @=eH/mc. Then, from
(1) and (2),
P2=%—-Q%:=U,
and, after p is eliminated from (3) by means of
(4), it is found that U satisfies the differential
equation
aUu 92_2]
dy? +2 U’
where J=(¢/m)j. The boundary conditions at the
cathode require that U and dU/dy vanish at
y=0. The function U must vanish again at
cut-off.
The first integral of (5) subject to these
boundary conditions is

®)

@U/dy) = (8T Ut—4Q2 )1 (6)
To get the second integral put
E‘—L—’f sin* @, yz;f—é.
% 933
Then (6) becomes
dt=4 sin? 649,
of which the integral is
£=20—sin 24, ©)

since ¢ and 6 vanish together. Evidently the zeros
of U corresponding to the cathode and to cut-off
come at 6=0 and 6=, respectively. At cut-off,
then, §=2mr.

From the defining equations for sin 6 and £ it
follows that

sin @
T/ (5.
sm‘a
——1/ (1+4————

Hence, if we calculate corresponding values of 8
and ¢ from (7), we can plot the ratio of J to
(2/9)®t/y? against the ratio of (eH/mc) to ®¥/y,
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as in Fig. 1. Since the value of J in the absence of
a magnetic field is (2 /9)®%/4?, the ordinate repre-
sents the ratio of the current actually existing to
that which would exist for the same ® and y if the
magnetic field were not present. Furthermore,
since $=Q%y? is the condition for cut-off, the
abscissa represents the ratio of the magnetic field
present to that required for cut-off, with the
specified ® and y. In Table I are listed the figures
used in plotting the curve. The most interesting
feature of the curve is the fact that the current
decreases only slightly with increasing magnetic
field until cut-off is imminent,

If ®p specifies the potential difference between
the electrodes when the plane of cut-off y=D
coincides with the anode y=d, then ®p=QD?,
and the potential difference between the cathode
and a parallel plane at a distance y, is given by

y2

@ D
Furthermore, the charge density p is given by
e Q2 Pp

mp—Z sin?g 2D?sin?6’

TasBLE I. Dependence of current on magnetic field.

sint 0
+4—1).
52

eH Jot /z@* eH /3t /2 ot
—f— J/-— —f — J/-—
mef v 942 ¥ 9y
0.000 1.000 0.683 0.919
0.070 0.999 0.729 0.905
0.139 0.997 0.771 0.890
0.208 0.993 0.809 0.875
0.275 0.988 0.844 0.860
0.341 0.982 0.901 0.829
0.405 0.974 0.943 0.799
0.466 0.966 0.971 0.771
0.525 0.955 0.993 0.738
0.581 0.944 0.9996 0.720
0.634 0.932 1.0000 0.716

TasLE II. Distribution of potential and charge.

(®a/d?)

3/D /2D (y/D)¥*  P/(2p/D% 2/9(y/D)=*k (®p/D?
0.00000 0.00000 0.00000 ) © —
0.00645 0.00097 0.00120  5.237 62.83  23.25
0.0486 0.0145 0.0177 1.447 1.668  6.12
0.1486 0.0655 0.0787 0.764 0.792 296
0.3065 0.1768  0.2066 0.553 0.489 1.88
0.5000 0.3513  0.3969 0.500 0.353 1.41
0.6936 0.5639 0.6139 0.553 0.284 1.17
0.8514  0.7682  0.8069 0.764 0.247 1.06
09514 09172  0.9357 1.447 0.230 1.013
0.9936 0.9880 0.9914 5.237 0.223 1.0008
1.0000 1.0000 1.0000 © 0.222 1.00000
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Fi1G. 1. Variation of relative current density with magnetic
field, potential, and distance.
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F1G. 2. Charge density with magnetic field (solid curve)
and without magnetic field (broken curve) as a function of
relative distance.

or, if P=(e/m)p,
PD? 1

®p 2sin?f

In Table 11 are given both ®/®p and P/(®p/D?)
for values of y/D ranging from 0 to 1, that is,
from the surface of the cathode to the plane of
cut-off. Since the first of these ratios is equal to
(v/d)** when no magnetic field is present, values
of (y/D)*? are listed for comparison with ®/&®p.
The striking feature of the table is that the
potential distribution is so little affected by the
magnetic field. The charge density becomes
infinite at the plane of cut-off as well as at the
surface of the cathode, as expected. At both ends,
however, nearly the entire rise takes place in a
very narrow layer close to the limiting plane. As

Pd? 2 (y)“

@ o\d/ ’
when no magnetic field is present, values of
(2/9)(y/D)~t are given in the fifth column for
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comparison. In addition, the ratio of P to ®p/D?
is plotted against y/D in Fig. 2 for both the case
where a magnetic field is present (solid curve)
and the case where there is no magnetic field
(broken curve). The total charge per unit area on
the anode is twice that which would be present on

a condenser at the same potential as compared
with four-thirds as much in case the magnetic
field is absent.

In the preceding discussion the plane of cut-off
has been supposed to coincide with the anode.
Suppose, now, that the potential or charge
distribution is desired for a case where the dis-
tance d of the anode from the cathode is less than
the distance D of the cut-off plane. The potential
of the anode being known, ®; as well as d is
given. Hence, in the specified magnetic field, the

I. ADAMS, ]JR.

quantity
M=o,/0d?

is a known quantity. By use of the cut-off relation
$p =Q2D?,
s D?

T dp d?

Values of this quantity are given in the last
column of Table II. From the value of M can be
determined the ratio d/D and hence the potential
and charge distribution everywhere between the
electrodes. For example, if M is found to be 2.96,
then d/D=0.1486 from the first column in the
table, or the distance between the electrodes is
only 14.86 percent of the distance from the
cathode to the (virtual) plane of cut-off.
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The space charge equation for the cylindrical magnetron is solved, the current is obtained
as a function of the magnetic field, and the effect of the magnetic field on the distribution of

potential and charge is determined.

HE object of this paper is to apply the methods employed in discussing the space charge equation
of the diode! to the cylindrical magnetron consisting of two coaxial cylindrical electrodes of

radii @ and b (@ <b) in a uniform magnetic field H parallel to their common axis. The inner electrode
or cathode emits ions (electrons) with negligible initial velocities. These ions are accelerated toward
the outer electrode or anode by a radial electric field because of a difference of potential between the
electrodes. Saturation emission of ions from the inner electrode is assumed.

While Brillouin? has discussed the particular solution of the space charge equation corresponding
to circular paths of the ions, very little progress seems to have been made in solving the space charge
equation for the more important case of ions originating on the inner electrode.

With polar coordinates 7, 6 in a plane at right angles to the common axis of the electrodes, the
fundamental equations required are, in Heaviside-Lorentz units,

X 2e
P20t = ——V(r), 1)
m
d( 26) = ® Hri (2)
dt r= mc ™

1L. Page and N. I. Adams, Jr., Phys. Rev. 68, 126 (1945).
2 L. Brillouin, Phys. Rev. 60, 385 (1941); Elec. Comm. 20, 112 (1941).



