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points would require a radical departure of the
force between electron and the aluminum nucleus
from the Coulomb force. Moreover, it would
have to be energy dependent and Z dependent in

order to be consistent with the agreement of
aluminum points at 2.00 Mev and copper points
at 2.27 Mev with the Mott formula. Unfortu-
nately, the data for aluminum at 2.27 Mev were
among the last taken before research of this type
was interrupted by the war. These measurements
with aluminum will be repeated as soon as
circumstances permit as they nom indicate for the
larger angles an interesting divergence from
theory.
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All of the theoretical treatments of the thermal separa-
tion co1umn published up to the present time have been
restricted by the assumption that the column consists of
two parallel plane walls, one hot and the other cold. Ac-
tually, nearly all of the separation columns used in practice
consist of two concentric cylinders, the inner cylinder
often heing simply a hot wire. The theoretical treatment
of the plane case which was given by Furry, Jones, and
Onsager is here extended to include the cylindrical case.
The extension is carried through in general, that is, for a
gas whose physical properties are arbitrary functions of
the temperature. It is found that the extended treatment
is formally very similar to that already given for the plane
case. The difhculty of the calculations is enormously in-

creased, however, bv the explicit appearance in the charac-
teristic difFerential equation of the radius as a function of
the temperature. The solution is here carried through in
detail only for a perfect gas whose viscosity, thermal con-
ductivity, and diR'usivity have the same temperature
dependences as those of a Maxwellian gas. Exact numerical
solutions for a few cases have been obtained, but the com-
putations were so tedious that it was found desirable to
develop approximate methods of solution. Two difkrent
kinds of approximate solutions are given: a series solution
useful when the ratio of radii is not larger than about four
or 6ve, and an asymptotic solution valid when the ratio
of radii is large, as in the case of the hot-wire types of
separation column.

HE theory of the functioning of the new ap-
paratus' for isotope separation by thermal
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diR'usion has been investigated by various
writers. ' ' The quantitative agreement between
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theory and experiment has been found to be
reasonably good. ' It therefore seems worth while
to try to improve the theoretical treatment by
dispensing with an idealization which has been
involved in all of the calculations so far pub-
lished: namely, the assumption that the processes
take place between plane walls. In actual practice
one is usually concerned with concentric cylin-
ders. In some cases' the radii of the cylinders are
so nearly equal that the results for plane walls are
fairly accurate; in many cases, however, the
inner cylinder is simply a fine wire, and the
"plane case" formulas are completely inap-
plicable.

Ke shall first show how the formulation in
terms of a master function, which was used in

FJO, can be extended to the cylindrical case. We
then specialize the formulas to the Maxwellian
case, in which heat conductivity, viscosity, and
diA'usivity are proportional to the first, first, and
second powers of the absolute temperature, and
carry out various specific calculations on this
basis.

The present paper is devoted entirely to the
task of determining for the cylindrical case the
constants II, E„and Z~ which enter into the
transport equation of the thermal separation
column.

I. GENERAL FORMULATION

Ke shall carry through the formulation in
strict ana, logy to the argument in FJO, Eqs. (6)—
(26). For convenience of comparison, we shall
number the analogous equations here as (106)-
(126). The notation is the same, with two ex-
ceptions: (a) Instead of the Cartesian coordinate
x, we now have the variable r of cylindrical
coordinates, the limits being r j and r2, we assume
ri &r~, corresponding to T1& T2, because we take
the inner cylinder to be the hot one. (b) The
symbol Q has a dilferent meaning, 2s Q being the
heat How by conduction per unit length of the
cylinders, in cal./cm-sec.

the theoretical point of view, see R. Clark Jones and W. H.
Furry, Rev. Mod. Phys. , submitted for publication. This
article includes a summary of the results of the present
papers

A. O. Nier, Phys. Rev. SV, 30 {1940}.The calculations
made in the present paper show that the agreement is even
better than is indicated by Nier.' For example, in the case described in reference 8.

The equations of the temperature field are now

27rQ =2s rX( dT—/dr),

p T2

Q log (rq/rm) = XdT,
Q TI

(a/ar) = -(Ql/r~)(a/aT)

(106)

v(Tg) =v(T2) =0. (109)

The equation for the Aux of species 1 is, of course,
just Eq. (10) of FJO:

J~ p[vc, +D——( grad c~-
+ac~c2 grad log T)]. (110)

(In order that this equation be strictly correct,
the density p should be considered as the density
the gas would have if all of the molecules were
of species 1.)

The formulation given in FJO is based on cer-
tain simplifying assumptions which are not really
essential and the use of which can be avoided by a
procedure given by Bardeen. " Although the
argument of Bardeen can readily be extended to
the present case, we shall, for simplicity and
brevity, adhere to the procedure of FJO.

Ke accordingly apply the stationary condition,

dlv Jg=0,

which, when we use (110) and (106), becomes

(a/a T) (pD/") [(ac~/a T) —(nc~c2/T) j
= (Xpr'/Q') [v(ac,/as) D(a'c, /as') j. (112)—

As in FJO, we omit the term in (a'c~/as' ); the
effect of longitudinal diffusion is of course to be
included later in a simpler way. We use, then, the
equation

(a/aT) (pD/X) [(ac,/a T) (nc&c,/T)j-
= (Xpr'/Q')v(acg/as). (112')

' J. Bardeen, Phys. Rev. 58, 94 (L} (1940}. The ex-
tension of this argument to the cylindrical case is given
essentially by changing the variable x to r and replacing p
by rp throughout.

For v parallel to s, av/as = av/aq = 0, the hydro-
dynamical equation in cylindrical coordinates is

r '(a/ar)rq(av/ar) =(dp/ds)+pg, (107)

and substitution from (106) gives

(Q2/Xr') (d/d T) (rl/X) (dv/d T) = (dP/ds) +pg. (108)

The boundary conditions are, as before,
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In terms of the function 6 de6ned by

(Bci/Bs)G(s, T) = (rXQ'/pD)A,

=Q L(Bc,/BT)
—(acicg/T) $, (113b)

(112') can be written

(B/BT)(pD/) )(Bci/Bs)G(s, T)
=) pQ'r's( Bci/Bs). (114)

The final assumption made by FJO is that
(B'ci/BsBT) =0. By just the same arguments as
were used in FJO (Eqs. (15)—(17)), this leads to
two consequences: The total transport of gas
along the tube is zero, and G is a function of 1
only. Equation (114) can then be solved for s:

s(T) = (1 /X pQr') (B/BT) (pDG(T)/X). (118)

By substitution of (118) in (108) and dilferentia-
tion with respect to 1, we obtain the differential
equation for G(T):

d 1 d ii d 1 d /pD ) dp
G T =g—.120

dT Xr' dT X dT Xpr' dT l, X ) dT

The boundary conditions can readily be obtained
from (113a), (109), and (118):

G(Ti) =G(T2) =G'(Ti) =G'(T2) =0. (121)

We can now obtain the expression for v~, the
upward transport of species 1. By (106) we have

On using (106), we obtain

Zg = (2s /Q) XpDr'd T.
Q Tl

(126)

The problem for the cylindrical case has now
been given a formulation which is, formally,
precisely analogous to that of the plane case. The
practical difhculties of solution, however, are
enormously increased. This is due to the appear-
ance in the differential equation (120) of the
factor r, which must be obtained as a function of
T by the integration of Eq. (106). This leads to
complicated calculations even when the tempera-
ture dependences of the properties of the gas are
assumed to be very simple.

IL THE MMWELLIAN CASE

Formulation in Terms of Dimensionless
Quantities

We assume that the quantities

(l~/T) (n/&) (pD/~) (pT)

effect of diffusion along the tube, since this effect
was omitted when (112) was replaced by (112').
The term required is —X&Bci/Bs, where

p 1'1

Zg = 2s )' pDrdr.

fl r] T2

(2 /Q) ) c srmdT (115) are all independent of T. From (106) we then
obtain by integration

Substitutions of (118) in (115) gives

ri (2s/Q')——

By partial integration and use of (121)and (113b)
we now obtain the transport equation in standard
fol 1Tl,

&=(X/QT)iT, t, =(X/QT)iT;. (2)

The quantities t1 and t2 can be determined from

2 log r = —(X/QT) T'+const.

We now introduce the dimensionless variable f

and the dimensionless parameters ti, t2.

r i =HciC2 —E~BCi/BZ, (123) t,/1, = T,/T„ (3)

with coeScients given by

r2
Il= —(2s/Q')

i
(pDn/XT)G(T)dT, (124)

0 Tl
and

&.= (2~/Q') I (pD/lb) IG(T) l'dT (125)

In order to obtain the correct transport equa-
tion, we must add to (123) a term which gives the

42 ti2=2 log (ri/r, )— (4)

To save writing we introduce a length ro, de6ned
by writing (1) in the form

r'=rP exp (—t').

We also introduce a new master function y
which differs from G by a constant factor:

G(T) = —(QT/X) &(X'pg/sD) ra'y(t) (6).
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The dilferential equation (120) now takes the
form

t —' exp (t')—exp (t2)—= t—',
et dt' dt ~=(2~/6') {~p'g/s}

For the "nearly plane case, " r&/r2 not very
large, it is convenient to de6ne the shape factors

(7)
h', k.', k»'.

with the boundary conditions

v(t ) =v(t ) = v (t ) =v (t ) =o.

The formulas for II, E„and K~ reduce to

II=2m" {p'gt'/rt} ro' " (ay/t)dt,
t|

~ —,'(rg+r2) (rg —r2)'(2u)'k, ',

(9)
E»=2m {pD} -', (rg+rm)(ra —r2) k»',

h'=6!.t'2[exp (—-', tP)+exp (—-'4') j '

(19)

(20)

-', (rg+ r2) (r g
—r2)'(2u)'h', (18)

E.= (2~/9!) {p"'g'/O'D }

E,=2m ~ {p'g't'/rt'D} ro' y'dt,

E„=2~{pD/t} r,'! t'exp ( t')dt. —

(10) ~ [exp ( 2tP) ——exp (—24') j '

(2u) ', ( / )(y/t)dt. (21)

k,'=9! t7 2[exp ( —-', ti')+exp (—2t2')j-'

.[exp (——',tP) —exp (——,'4')] 'In these expressions the quantities in curly
brackets are independent of the temperature.

The results of the computations may be stated
conveniently in terms of the following definitions
of dimensionless "shape factors" h, k. , k~.

P t2

(2u)-' ! ~'dt, (22)
Jc,

H = (2s./6!) {u '
p/gg }g r ~4 h,

Z.=(2~/9 ){p g ./& D}, r8 k..,
E» 2m" {pD}g ——rPk»,

h=6!tP exp (2tP) i (n/a&)(y/t)dt, (15)
J t1

Here the quantities in curly brackets are to be
evaluated at the arithmetical mean temperature
2' = (Tm+ T~)/2. We have used the abbreviations

k»' ——t '2[exp -( —t~') —exp (—tP)]—'

(12)

(13) ~ t2 exp ( t2)dt —(23).
J

(14)

k.=9!tP exp (4tP) I y'dt

P t2

k» =tv ' exp (t~') t' exp (—t')dt.

(16) t = (t,+t,)/2,

u = (&T/2T) = (T2 —Tg)/(T2+ Tg)
= (t, t,)/(t, +t,)—(25).

Here the quantities in curly brackets are not
independent of the temperature, and have been
given the subscript 1 to indicate that they are to
be evaluated at the lower temperature Ti. In the
extreme cylindrical case this is the most reason-
able simple choice of a temperature characteristic
of the gas as a whole, since only a very small part
of the gas is at temperatures near T2. Equation
(15) has been written in a form which can be
applied when the quantity a varies witb the
temperature; 0.~ is the value of n at the tempera-
ture T».

The numerical factors in Eqs. (12)—(14) have
been chosen to correspond to those in the
formulas for the plane case as given by FJO,
with the correlations 8—+2mr~, 2m —+r~.

In the limit (r~ rr)/r&~0, the facto—rs h', k.', k»'

approach limits

h' —+f(2u) = 1+u'/7+ u'/21+
k, '—+1,
k»' —+1+u'/3

(26)

and Eqs. (18)—(20) become identical with the
results of FJO for the plane case, with the
identifications B~w(rq+r2), 2w~rq —r2. With
these identihcations, the coefticients of k', k, ', and
k»' in Eqs. (18)—(20) are identical with the H~'&,

X,&", and X~& & of reference 7.
Since by (7) and (8), the function y depends

only on t, t&, and t2, it follows from (15)—(17) and

(21)—(23) that the shape factors h, k„and k», and
k', k,', k&' depend only on tj. and t2. By writing



Eqs. (3) and (4) in the form

2 log (ri/rp)
tp

(Tp/Ti)' —1

2 log (ri/rp)
t~2

1 —(Ti/Tp)'

(3')

it is evident that t j, and t2 are in turn functions
only of the two ratios ri/r p and Tp/Ti. The shape
factors are therefore functions only of the two

numbers ri/rp and Tp/Ti. Our problem is to
determine the values of the shape factors for any
given values of these two ratios. This is done by
computing the shape factors as functions of the
convenient dimensionless parameters tj and t2,
whose values are related to those of ri/rp and
Tp/Ti by (3') and (4').

The Formal Expression for the
Master Function

In order to obtain the solution of (7) which
satisfies (8), we must obtain a particular integral
of (7) and four linearly independent integrals of
the homogeneous equation

e=exp (—t') e;=exp (—t') (i= 1, 2), (30)

exp (—x')dx,

f;=~ exp (—x')dx, (i=1, 2),

(31)

g=~ exp (—2x')dx,

f+ ti

g;= )~ exp (—2x')dx, (i=1, 2).

but in so doing it is convenient to impose the
following conditions: (a) The sign affixed to the
resulting determinant must be positive. (b) The
function y(t) must occur in only one element, and
with coefficient +1.Under these conditions one
may still use Eq. (27), with h defined as the
cofactor of the element which contains y(t).

The functions y, I, v, m can all be expressed in
terms of exponentials and error functions. For
shortness and flexibility we shall introduce the
following special notations:

6P c4
t ' exp (—tP)—exp (t')—=0.

dt dt' dt

The lower limits are left unspecified, but are to
(7&) be the same throughout any expression in which

these symbols appear. We also define

We denote the particular integral by y, and, since
s =constant obviously satisfies (7'), we may
denote the integrals of (7') by u, v, w, 1. The
solution of (7) which satisfies (8) is then

pt
fp, I exp (———x')dx,

&p

F00

f,„= exp (—x')dx,

where
y=p/h,

e
Vy 5)g 1

oem

Vg Ky 0
v~' m2' 0

6 =cofactor of y in ~.

(27)

fip —— ' exp ( —x')dx,
J t1

pt
exp (—x')dx = f„, —

gati

fp; = exp (—x')dx,
60

(33)

Here the prime means difkrentiation with respect
to t, and subscripts 1, 2 indicate that the function
is evaluated at ti, tp, respectively. (The use of u
as one of the integrals of (7') should not be con-
fused with the use of the same symbol as the
parameter defined by (25).)

In carrying out the computation of y, the
determinant (28) may be manipulated in any of
the usual ways, and its order may be reduced;

f;„= ~ exp (—x')dx (i =1, 2);

and got, gt, etc. , are to have corresponding
meanings.

A set of solutions suitable for use in (28) is

y= ',ef g; u=f',-v—=f; w=s. (34)

Equation (27) holds independently of our choice
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p2 = —7/10,
a2 = —1/3,
b2 ———1/2,
d2 ——13/15,

of the lower limit of the integrals. &e may also We then have
replace (34) by a set in which an arbitrary linear
combination of u, e, m, 1 is added to y, and in
which u, v, m are replaced by any three such linear
combinations which, together with I, make a
linearly independent set.

p4 =3/10
u4 = 1/10,
b4 ——1/6,
d4 =61/140,

(39)

to which (7) reduces if we set exp (t')~1.This is,
apart, from a constant dimensional factor, the
equation for the Maxwellian plane case as used

by FJO. For this equation the simplest choice of
a set of functions y, u, v, zv, 1 is obviously

y= —t'/6,
u=t, V =t2, ZV =t'. (36)

We therefore wish to take our set of functions
in the forms:

~ = -(t'/6) {1+p.t'+ p«'+- "I,
u = t {1+a2P+a4t4+
v =P {1+b,P+ b,t4+

w = t4{1+dlt'+d4t'+

This can be accomplished by setting

y =~f(e+-1) g, —
u=f,
v=1 —e,

w =6(1 e f')——

(37)

(38)

GI. THE NEARLY PLANE CASE

We now consider the case in which r2 is not
small compared to r1, so that the plane case
formulas retain the significance of first approxi-
mations. The factors h', k, ', kd' defined in Eqs.
(18)—(23) can here be expressed as power series in

log (r|/r~), the leading terms being given by (26).
From (3) and (4) we see that if log (ri/rq) is

small, and T./T& is not too close to unity, then
tb t2, and, a fortiori, t are small numbers We .pro-
ceed by expanding y in ascending powers of these
quantities. As a first step it is desirable to choose
the set of solutions y, u, v, m, I in such a way that
the first terms in their series expansions are
linearly independent, in order to avoid needless
complication and heavy cancellation in the calcu-
lations. This can be done by considering the
equation

d p
t—1 t—2

dt dt3

Using (37), we can carry out the expansion of
the determinants e and b, defined by (28) and
(29), in terms of the quantities:

t'
l

l

tm

mt1

tn

t n

t2" 1

nt, -1

nt2n —' p

The result is:

t1

t2

mt1 -'
mt2™—1

1
t'n

+t n—1 p
+t n—1 p

(41)

—6c = e(3124)+[dye(3126) +pne(5124) ]
+[(a4—u2p2) e(3524)
+(b4 —bnd2) ~(3164)+d4e(3128)

+Pg(7124)+d,P,((5126)]+, (42)

b = b(124)+ [anh(324)+d25(126)]
+ [a4b(524)+a+28(326)
+(b4 —b2d2) 8(164)+d48(128)]+ . (43)

Here each quantity in square brackets is a homo-
geneous function of t1, t2, t, whose degree exceeds
by two that of the preceding quantity.

One can without much eR'ort evaluate those of
the determinants (41) which are involved in the
three terms written in (43). It is convenient to
write the results in the notation introduced in

(24), (25):
8(124) = 64t'u4,
8(234) = t'(1 —u') b(124),
b(126) = t'(5+3u') h(124),
B(146)= t4(15 —2u'+3u') 5(124), (44)
b(128) =2t'(7+14u'+3u') 8(124),
b(245) = t4(5 —6u'+u4) b(124),
B(236) =3t4(3 —2u~ —u4) 8(124).

The calculation of the quantities e(klmn) is
facilitated by the fact that these functions and
their first derivatives vanish at t =t1and t =t2, so
that (t —ti)'(t —tg)' is a factor of c(ktmn). One can
see by inspection what powers of t occur and
what coef6cient 8 has, and this usually suSces to
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tc Tg/T1 f h1 hg kc1

0.0 1
0'.1
0.2 3/2
0.3 13/7
04 7/3
0.5 3/1
0.6 4/1

1
1.001
1.006
1.013
1.024
1.039
1.061

0
0.101
0.203
0.307
0.415
0.527
0.648

-0,174 0-0.169 0.172-0.154 0.344-0.128 0.516-0.092 0.688-0.044 0.861
+0.018 1.033

—0.213-0.198—0.153-0.078
+0.028
+0.163
+0,329

0-0.033-0.066-0.098-0.129-0.158—0.186

0-0.0002—0.001—0.002—0.003-0.005-0.007

Tzm. E I. Series coefhcients for the nearly plane case
mth a=constant.

The integrals required for h' and k,' can be
evaluated by use of the formulas

pl
(1—s')'s"ds

(0 for odd n,

16
for even e (48)

I (n+ 1)(n+3) (n+5)

determine the form of e(ktrnn). For example, we
see that

e(3126) = b(126)te+2, +t,t+t,te+t, te

= (Ate+Bt+C)(t t,)&(t—t,)&. —

The requirements that the coefhcient of t3 be
8(126) and that the coeScients of t4 and t'
vanish provide three equations from which A, 8,
C can be determined.

Ke shall write the results in terms of the
quantities t and u, and a variable s:

s = (2t t, t,)/(—t, ,+—t,);
t = t(1yus),

(t —t )'(t —t )'= i4u'(1 —s')', (45)
dt = tuds,

t, &t &t„—1&s &1.
We find:

«(3124) = —8(124)(t'u4/4) (1—s')',
e(3126) = t'(15+2u'+6us+u's') e(3124)
e(5124) = t'( —10+2u' —4us) e(3124),
«(3524) = t'{—5+6u' —u4

—4(1—u') us }e(3124),
e(3164) = i4{45—24u' —u4+12(3 —u')us

+2 (3—u') u's' }e(3124),
e(3128) = t4{70+56u'+3u4 (46)

+8(7+.2ue) us+2(14+ue)ues&
+8u's'+u's4} e(3124),

e(5126) = t4{50 10u'+4u'—
+40us+2 (5 +u') u's' }e(3124),

e(7124) = t4 {—105—14u'
+3u' —4(21+2u') us

—28u's' —4u's' }e(3124).
From (27), (42), (43), (39), (44), and (46) we

obtain:

y = {i'u'(1 —s')'/24} {1yi'L —2 —(u'/5)
—(12us/5) —(13u's'/15) j
+ t4L2+ (4u'/15) + (139u'/2100)
+ (24us/5) + (104u's/525) + (24u's'/5)
+ (239u4s'/3150) + (16u's'/7)

+ (61u4s4/140) ]+ }. (47)

he(u) =1,
hz(u) = 176u/210 =0.838u,
he(u) = —(73/420) + (571/1575)u'

= —0.174+0.363u'.

(55)

(1—s') 's"ds
~ —1

-0 for odd m,

768
for even n,

-(n+1)(n+3)(n+5)(n+7)(n+9) (49)

and the integration for k~ is of course performed
by expanding exp (—te) in power series. The
other factors occurring in (21)—(23) must also be
expressed as power series in t, and multiplied by
the series obtained by integration. The results
can then be expressed as power series in log (r4/re)

by using the relation

2t'u=log (rg/re), (50)

which follows from (4), (24), and (25).
We finally obtain the series:

h' =he(u)+h~(u) In (r~/re)
+he(u) {ln (r4/re) }'+, (51)

k,'=1+k,g(u) ln (rg/re)
+k, e(u) {ln (r,/re)}'+ , (52)

ke' = 1+(u'/3) +keg(u) ~ ln (r4/re)
+ke, (u) {ln (rq/r, ) }'+ . (53)

For n independent of 1we get:
he(g) =f(2u) = 1+0.143u'+0.048u4+
h, (g) = (9u/10) f(2u) + (23/30u) {f(2u) —1 }

= 1.010u+ 0.165u'+ 0.059u'+
he(g) = {—(17/60) +(3499/8400) u' }f(2u) (54)

+ {(23/30u')+(53/72) } {f(2u)—1 }
—(37/80u') {f(2u) —1 —(u'/7) }

= —0.174+0.496u'+0. 088u4+

These coeScients can of course be computed
readily enough when n is any polynomial in T,
or any power series which converges rapidly in
the range in question. For example, for n 0~: lwe
obtain
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kgi(u) = —(u/3) {1 —(u'/5) }
= —0.333u+0.067m',

(u) = —(u'/15) {(1/3) —(u'/7) }
= —0.022u'+0. 010u4.

(57)

The amount of labor required to obtain suc-
cessive terms in this series formulation increases
very rapidly, so that it does not seem worth
while to go beyond the terms given here. The
three terms we have obtained are presumably
adequate at least up to ri/ri=3; some com-
parisons with the results of numerical computa-
tions from the exact formulas are given later. The
radii of convergence of the series of course remain
unknown.

Some values of the various coefficients are
given in Table I. The quantities h~ and h2 are for
0{. independent of temperature. The table is not
extended beyond I=0.6 because large values of
T2/Ti are not practicable in the nearly plane
case.

IV. SOLUTION BY NUMERICAL INTEGRATION

The integral in Eq. (17) can be expressed
easily in terms of known functions. The result is

4=-,' —(t2/2ti) exp (ti' t,')+ ,'f„.—(58)-

The values of the integrals in (15) and (16) can

The coeHFicients which occur in k, and k~ are

k, i(u) =284u/165 = 1.721u.
k, i(u) = —(703/3300) + (339044/225225) u' (56)

= —0.213+j..505u',

likewise be worked out, for any chosen simple
temperature dependence of ot., in terms of expo-
nentials, error functions, and a small number of
new functions defined by integrals. Such a
formulation would have the aesthetic advantage
of involving only the values at t~ and t2 of various
functions of a single variable. The formulas
would, however, be so extremely complicated
that the only way to give them any practical
meaning would be to carry out a quite tedious
process of numerical evaluation for each given
pair of values t7„ t2. Actually the most feasible
procedure for determining the behavior of the
functions h and k. seems to be to choose various
specific pairs of values of ti, t2, plot the function y
for each such pair, and perform numerical inte-
grations ad Roc according to (15) and (16). This
is essentially what we shall do. In order to carry
out such a program with some economy of eRort,
it is desirable to have available two diA'erent

algebraic translations of the formula (27) for the
function y.

Formulation with t& as Lower Limit of All

Integrals

If t~ is taken as the lower limit of all the
integrals used in (31) and (32) to define the
symbols used in writing (34), then several ele-
ments in the second and fourth rows of the
determinant (28) vanish automatically. The
evaluation of the determinants e and 8 is then not
dificult, and one obtains from (27):

v =2(e+ei)fii gi~

Afire—

+Ci—(ei e 2tifi~)—, —
2fi~(t~ei —tiers —titm fig) ——',(ei —e2)' —2(t~ —ti)ginA=

2fi2{ (ti+ti) fig —(ei ei)}-
fig(3em+ei+2tif ii) —4gim

Cg=
4 {(ti+tg) fii —(ei —ei) }

(59)

(60)

(61)

This formulation is convenient for dealing with
a set of cases in which tj remains the same.

Formulation with t2 as Lower Li~~t

The evaluation of the determinants is of course
simplified just as much if t2 is taken as the lower
limit in (31)and (32).For convenience we reverse
the limits of all integrals, with corresponding sign
changes, in writing the result:

y=ggm $(e+ei)f& Af—22+C~(2tf i—+er, e) (62)—

where

fin(3ei+e2 —2tifig) —4gii
C2 ——

4 {(ti+ t2)f,m
—(ei —e2) }

This formulation would be more convenient for
dealing with a set of cases in which t~ remains the
same. It can also be used as a starting point in
obtaining an approximate solution for cases in
which rg&&r2.
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The Extreme Cylindrical Case

The parameter t2 occurs in (62) in two quite
dilferent ways: (a) As a factor in certain terms in
numerators and denominators; (b) in the ex-
ponential e2 and as a limit of integrals. The limit
(r2/rq)~0 corresponds to tq +~;-the result of
setting t,~~ in (62) is not, however, a very good
approximation to any practical case, since (r2/r&)
= 10 ' corresponds only to t2 4. A good approxi-
mation is rather to be obtained by setting t2—+ ~
only where it occurs as described in (b); we thus
set

fln~f tnt gln~gfa&y st~0 (64)

"See, for example, L. Page, Introductioe to Theoretical
Physics, second ed&tion (D. Van Nostrand Company, Inc. ,
New York, 1935), p. 260.

This procedure introduces errors which are only
of order (r2/r~)'. The fractional errors in the
results are then of order (r,/r~)', unless the terms
retained cancel heavily. Strong cancellation will
indeed occur for low values of t2 (less than about
2.5), and in practice this is what limits the
application of the formulas obtained by these
approximations.

The physical basis for the distinction between
the two ways in which $2 appears is quite simple.
The finite radius of the wire affects the values of
H, Z„and Zq. (a) because it exerts a restraining
effect on the convection, and (b) because the wire
occupies a certain amount of cross-sectional area.
The second eRect is obviously of the order
(r2/r~)', and it is the second effect which we are
ignoring in the approximations (64). The terms
which we are retaining are inversely proportional
to t2, and therefore depend only logarithmically
on rg/r2.

We may show by a simple analogy that the
restraining eRect of the wire on the convection
may be expected to depend logarithmically on
rq/r2. Consider the case of ordinary pressure-
driven lamellar How between two concentric
cylinders of radii r~ and r2. In the approximation
in which we ignore terms of the order (r2/r~)'
compared with unity, the total rate of flow F is
given by"

( 1F= F (1—0 (65)
log (ri/rs)]

where Fo is the rate of flow (given by Poiseuille's

formula) for r 2/r~ 0.——We see from this relation
that for a ratio of radii as high as 100, the
presence of the wire reduces the flow by 21.7
percent.

When (64) is substituted into (62), (60), and
(63), we obtain after some algebraic manipulation
the expression

where

(66)

t'" = (&~/f ~-) ti— (69)

We now make a further approximation similar to
those indicated in (64) by replacing t2 by ~ as
the upper limit of the integrals in (15) and (16).
We thus obtain

h„—(h"/tg)
h 6!tP e—xp (2tP).

1-(S"/t,)

k„—(2k )"/tn) + (kn"/t2')
k.=9!t&'exp(4tP), (71)

I1 —(& /t~) I'
with

(70)

Irs 00

h„= (n/+i) (y„/t) dt,
Q t1

h" = (a/ai) (y "/t)dt,
Q t1

p 00

y„'dt,

k "= y„p"df„ (73)

Equations (67)—(73) express h and k asymptoti-
cally in terms of the quantities It, It", k„, k~",
k2", which are functions of fj. only. The sole
dependence on I2 is that indicated by the explicit
appearance of t2 in (70) and (71).

It is important to remember that (70) and (71)
do not simply indicate the first terms in power
series or asymptotic series in (1/t2): the error

V =gi 2sf~—+(gi +tiff '
sifts —)(f~ /fi )'

+(2&~fi —2gi- —t~fi ')(f~ /fi-), (67)

v"=~"(g - l f -—)+(t g '')—(f-/f -)'
+ (-,'e,f,„—2g,„—t)f)~') (e/2 f,„), (68)
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involved in using (70) and (71) is not given by a
power of (1/ti), but is of the order of exp (—t')

(rs/ri)', as we have already discussed in some
detail.

The formulas (70) and (71) are adapted, and
much more strongly so than (59), to the treat-
ment of sets of cases in which IJ. is held fixed and
]~ is given various values. It is interesting to note
what such cases have in common physically.
From Eq. (2) we see that if Q and Ti are given, ti
is determined. Thus if the outer radius rb the
lower temperature r~, and the heat dissipated by
conduction per unit length per second, 2+Q, are
given, the factors H, E„E~ are completely
determined by (12)—(14), except for the depend-
ences of the factors It, k„kg on t2. Any two cases
of' such a set have the same temperature field

throughout the region which is occupied by gas in

both cases. The specification of r~ then fixes the
inner boundary of this region and, by (3) and (4),
the temperature at this boundary.

In experimental language, one may say that
such a set of cases is realized when one has a
number of identical outer tubes, maintained at
the same tempej. 'ature, but containing coaxial
wires of various sizes, provided that the tempera-
tures of the wires are adjusted so that the heat
How by conduction is the same per unit length in

all the tubes.

Numerical Data for Use in the
Asymptotic Formulas

The f'unctions y and y" can be tabulated
readily, since excellent tables are available for all
the functions involved. " " In order to avoid
interpolation, we obtained fi from Burgess's
tables" and g&„ from the British Association
Tables. "The elimination of interpolation in this
manner w'as a considerable saving of time because

~ J.Burgess, Trans, Roy. Soc. Edinburgh 39, 257 (1899).
This article contains tables of Hj(t}= (2/(~)&)f0~ ..

t =0.000 to 1.250, interval 0.001, 9 places,
t =1.000 to 1.500, 0.001, 15 places,
t ~1.500 to 3.000, 0.002, 15 places,
t =3.0 to 5.0, 0.1, 15 places.

'3 British Association Mathematical Tables (Cambridge
Umversity Press, London, 1931), Vol. 1. On pp. 60-71
there is a table of Hho(2t) =2gg„.

2t = —7.0 to 6.6, 0.1, 10 places.
"F. %. Newman, Trans. Camb. Phil. Soc. 13, 146

(1883). This article contains tables of the descending
exponential e ~:

@=0.000 to 15.349, 0.001, 12 places,

heavy cancellation made it necessary to obtain
numbers from the tables accurate to nine places
for the smaller values of t. In the worst case, the
use of nine significant figures led to results
accurate to three.

In Table II we give the values of y„and y", so
that they may be available for numerical use in

applying (70) with any specified temperature
dependence of e.

In Table III are listed the coeKcients (72) and

(73), the values h„and Ii" being for a independent
of temperature.

Comparison of Exact and Approximate
Results

The function y was tabulated for t~=-,' and
several values of t2, the calculations being based
on the exact formula (59). The coeKcients Ii and
k, were then calculated by numerical integration
from (15) and (16), for the case n—=ni.

The comparison of these exact results with the
results obtained from the approximate formulas
(70), (71) is given in Table IV. It is seen that the
agreement is excellent for (ri/r2) =20, and is
tolerably good even for (ri/r&) = 6.5:

In Table V we compare the exact results with
the results obtained from the series expressions
(51) and (52) for the nearly plane case; again we
take n=—O.I. The table also shows the comparison
between the results obtained from (58) and those
from (53), for the shape factor kq'. The compari-
son is made in terms of the quantities Al', k.', kg',

which di8'er from h, k„k&only by easily computed
factors (cf. Eqs. (21)—(23) and (15)—(17)). It is
seen that the agreement is excellent for (ri/r2)
=1.45, is fairly good for (ri/r2) =2.72, and is
passable even for (r,/rm) =6.5.

These comparisons indicate that the two types
of approximation taken together cover the whole

range fairly well.

Tables for the Extreme Cylindrical Case

By using the results given in Table III, we can
compute from (70) and (71) the values of Ii and k,
for a chosen value of (ri/r&)&&1 and for certain
values of (Ti/T, ) = (t,/ti) which are determined
by the available values of t&. By graphical
interpolation we can then obtain h and k, for
other values of Tm/Ti. Tables VI and VII were
constructed in this way. Table VIII gives the
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Twsr. E II. Values of y„and y".

O.s
~~ x~o ~"xylo

tt, =0.8
y~ x&o' v" x&o'

fg ~1.0

~„xylo~

~"

xylo~

h =1.2
~„xios ~"

xylo

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.3
2.5
2.7
2.9
3.1

52
20

7
2

263

120
50
19
7
2

0 Q

187 283
542 835
867 1360

1073 1714
1141 1863
1096 1831
975 1672
816 1439
650 1181
497 931

0
465

1242
1826
2078
2Q37
1805
1486
1153
854

181
71
25
8
2

792
2148
3216
3731
3738
3393
2866
2288
1746

423
178
68
24

8
2

0
155
391
543
585
543
456
357
264
186
126
83
33
12

0
286
730

1032
1133
1075
925
742
564
410
288
196
83
31
9
2

0
450

1069
1403
1428
1256
1002
745
524
353
144
53
18
6
2

Q

891
2150
2871
2980
2678
2187
1668
1207
837
364
142
53
19
6

values of kq calculated from (58) for the same
values of rg/rr, and T,/T, .

V. DISCUSSION

Behavior of the Transport CoeRcients in the
Extreme Cylindrical Case

A rather surprising feature of the results given
in Tables VI and VII is the great diR'erence be-
tween the dependences of H and E.on T2/T~ in
the highly cylindrical case and in the plane case.
Whereas in the plane case both coefficients in-

crease (as (hT/T)') with increasing T~/T~, in the
highly cylindrical case H is rather insensitive to
this ratio and E, decreases strongly as T~/T~
increases. This result would hardly be expected
without calculation, but it can be made plausible
by physical considerations. For high values of
T&, the gas near the hot wire becomes highly
conductive of heat and very viscous. This has the
efkct of reducing the convective How. Now H
depends both on the convective How, which is
decreased, and on the temperature gradient,
which is increased. E„on the other hand, de-
pends only on the convective How, and indeed
quadratically.

This behavior of H and E, should be of con-
siderable utility in practice. It seems likely that
it depends rather strongly on the temperature
dependences of the gas coeScients, and for this

reason calculations for other dependences are
desirable.

It is probable that the value of H would 'be

rather strongly inAuenced by any marked tem-
perature dependence which the factor 0. might
have. Since the assumption that a depends on a
power of the temperature is quite arti6cial and
probabIy decidedly lacking in verisimilitude,
numerical integrations were not carried through
for such cases. Whenever the temperature de-
pendence of 0. for a given gas may become
reasonably well known empirically, it can be used
together with the results tabulated in Table I I to
carry out an ad hoc numerical integration for the
value of H.

It is easily shown" that the eRectiveness
of a unit length of column is measured by
II'/(E, +E&). By adjusting the value of r&,

however, it is always possible to make E~ any
speci6ed multiple of E,. The power ef6ciency of
a column may thus be measured by EP/E, Q. For
any given gas this ratio is independent of r~,
provided that the temperature T~ is held con-
stant, as will usually be the case in practice, and
is proportional to I'tP/It, .This factor, which may
be considered as a measure of the relative power
eSciency, is tabulated in Table IX.

Perhaps the most interesting feature of the

"See reference 7, Eq. (333).
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t1 O.S 0.8 1.0

TABLE III. Values of h, k", etc.

1.2

recent work of Trautz and Sorg" that the
coeScient of viscosity of methane is

0.838 X10 e

1.409 X10 e

0.729 X10~
1.221 X10 e

2.056 X10 e

1.3327

1.113X10 4

2.076 X10 4

2 178 X10-e
4.029 X10 e

7 47 X10-e

1.5070

0.2565 X10 4

0.5113X10 4

0.157S X10 e

0.3112X10 e

0 6161 X10-e

1.6390

0.5314 X10 e

1.132 X10 e

0.897 X10 '0
1.892 X10 &e

3,995 X10 'e

1.7809

g=1.51X10 4 poise, (75)

and from the same reference we find that at this
temperature the coefficient of viscosity varies as
T"'. That is to say, the power by which g

depends on the temperature is
TABLE IV. Comparison of exact and approximate results

for the extreme cylindrical case with t1= $.

h(exact) h(from (70)) k&(exact) k&(from (71))
Ke have further

n =0.78.

3 798
2.5 20.1
2 6.52

0.984 X10 1

0.875 X10-1
0.666 X10 i

0.984 X10 1

0.872 X10 &

0.594 X10 1

0.356 X10~ 0.356 X10 &

0.286X10 e 0.287 X10 e

0 170 X10 e 0.145 X10 e

hl hl ks' k ' ka'
te r&/ri (exact) (series) (exact) (series) (exact)

ka'
(series)

TABLE V. Comparison of exact and approximate results for
the nearly plane case with t1 = $.

p=4.47&(10 4 g/cm' (77)

if we consider that methane is chiefly C"H4.
The value of D may now be estimated on the

basis of the inverse power model from a formula
given by one of the writers. '" From Eqs. (29) and

(31), and Table I of reference 17, we find from

(76) that
1 1.45
1.5 2.72
2 652

1.127 1.127 1.207 1.209 0.996
1.475 1.522 1.964 2.024 0.930
2.066 2.35 4.02 4.09 0.814

0.991
0.919
0.745

D = 1 406'/p =. 0 475 cm'./sec.

The value of n has been determined experi-

results tabulated in Table IX is the fact that the
entries vary as little as they do. The largest entry
is only 1.73 times the smallest. The table further
indicates that with a small temperature ratio, the
concentric tube type of construction is the more
ef6cient, whereas for gases which permit a large
temperature ratio, the hot wire type of construc-
tion is more eScient.

+r1tre 15
»/»X

0.059
0.091
0.092
0.075

0.059
0.098
0.103
0.092

40

0.100
0.109
0.103
0.085

60

0.101
0.113
0.108
0.093

TABLE VI. Values of h with n =constant.

0.100
0.116
0.114
0.102

r1= 2.458 cm; r~ = 1.746 em;
T, =300'K; T, =573'K;
log (ri/rm) =0.342; u =0.313.

(74)

Comparison with Experiment

A rather extensive comparison of experiment
with the theory presented in this paper, as well as
with other aspects of the theory of the separation
column, is given in Part IV of reference 7. In
particular, we present there a detailed comparison
with the results of Clusius and Dickel, of Nier,
and of Taylor and Glockler. The agreement is

found to be good.
In order to avoid unnecessary duplication of

material, we shall present here only the compari-
son with the experimental work of Nier. '

The column used by Nier had the specifications

TABLE VII. Values of k..

40

0.0162
0.0088
0.0046
0.0025

60

0.0183
0.0105
0.0056
0.0031

TABLE VIII. Values of kd.

r1/re 15lTe/T1

0.61
0.75
0.91
1.08

0.60
0.73
0.87
1.01

40

0.70
0.83
0.97
1.11

60

0.68
0.81
0.94
1.07

Qrt/r2 15
»IT1%

0.0144 0.0184
0.0095 0.0130
0.0045 0.0068
0.0022 0.0034

0.0207
0.0128
0.0072
0.0040

0.67
0.78
0.90
1.03

At the mean temperature 436.5', we find from the
"M. Trautz and K. Sorg, Ann. d. Physik 10, 81 (1931).
'7 R. Clark Jones, Phys. Rev. 58, 111 (1940).



ISOTOPE SEPARATION B Y THERMAL DIFFUSION

mentally by Nier" who finds

e =0.0077. (79)
TI/Tg+

15

TAar. R IX. Values of k'tP jk, with n=constant.

These data are all for a pressure of one atmos-
phere.

Substituting the data (74)-(79) in Eqs. (18)—
(20), we find

0.46
0.54
0.54
0.51
0.48

0.44
0.59
0.68
0.58

0.41
0.59
0.67
0.67

0.57
0.66
0.71
0.61

0.57
0.66
0.71
Q.65

0.56
0.64
0.69
0.68

II/li' = 2.585 X10 ' g/s«. ,

K./k. ' = 1.041 X 10 ' g-cm/sec. , (80)
Ka/4'=1. 997X10 ' g-cm/sec.

Furthermore, we find upon substituting (74) in

Eqs. (51)—(57)

fi' = 1.109; k, ' = 1.176; kg' =0.998. (81)

could be fitted exactly by the formula

1.34/P'
log g, =1+0.126/P4

If we multiply numerator and denominator of
this expression by 1.283, we have

Combining (80) and (81), we have finally

H=2. 866 X1 0' g/sec. ,
K.=1.224X10 ' g-cm/sec. ,

Ka ——1.992X10 ' g-cm/sec.

On the basis of the transport equation

rl HC1C2 (K +Kd) (BC1/8$)

(82)

(83)

1.72p/P'
log g.=

1.283+0.161r/P4
(87)

Comparison of (87) with (85) indicates that the
assumption of a parasitic remixing (cf. Eq. (70)
of reference 3) given by

Z~/K, =0.283,

1.710/P'
log g, = 1+0.1628/P4

(85)

where I' is measured in atmospheres, and where
we use I.=7.3 meters.

Nier found that his three experimental points

A. 0. Nier, Phys. Rev. 55, 10Q9 {1939}.

it has been shown by Furry, Jones, and Onsager'
that the logarithm of the equilibrium separation
factor is

III.
log q, ="X+X,'

where I. is the length of the column. Since it
follows directly from (18)—(20) that the coeffi-
cients II, E„and Xg are proportional, respect-
ively, to the second, fourth, and zeroth power of
the pressure, we have from (82) and (84)

leads to a discrepancy between theory and
experiment of 0.6 percent. The excellence of this
check is of course fortuitous, since the physical
constants used are not known to this accuracy; in
particular, the probable error in the measurement
of n is several percent.

It will be remembered that Nier found a
discrepancy of about 10 percent, and a value of
K~/K, equal to" about 0.78. The improved check
and the much smaller value of K~/K, found in
the calculation given here are due primarily to
the inclusion of the corrections (81) for the
cylindricity of the apparatus, and secondarily, to
the use of the better viscosity data of Trautz
and Sorg.

"Nier actually found X„/X.=0.63, but this larger value
follows if we match the coefFicients of I' ' and P ' with
equal fractional errors, instead of placing all of the burden
on one of them.


