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The rigorous solution of the integral equation for the
stationary energy distribution in the case of slowing down
without capture is given. Its relation to the average energy
loss is discussed (Sections 1, 2}.In Section 3, the problem
of mixtures is treated. It is shown, in particular, that for
mixtures of a light and a heavy substance concentrations
exist for which the energy distribution is at the beginning
entirely determined by the energy loss in the heavy sub-
stance and at the end by the energy loss in the light sub-
stance. The effects of capture are discussed in Sections 4—6.
It is shown that the solution assumes a simpler form if the

ratio of the mean free paths for scattering and capture
varies slowly over energy regions of the order of the average
energy loss. The case of 1/v—capture is treated in detail
(Section 5); rapidly varying capture is discussed in Sec-
tion 6. In Section 7, a simpli6ed treatment, based on the
concept of neutron age, is given, and its limitations are
discussed. Section 8 contains the discussion of the effects
of the chemical binding on the energy distribution. An
expression for the mean square distance of diffusion and its
mass dependence is derived (Section 9).

HE process of slowing down neutrons by
elastic collisions has been studied chiefly in

hydrogeneous substances' ' where the protons,
because of their large scattering cross section,
are the chief agents for slowing down. However,
for a number of problems, such as the production
of small energy changes for the investigation of
nuclear energy levels, ~ ' as well as the study of
the diffusion in the atmosphere of neutrons,
produced by the cosmic radiation, ' the knowledge
of the energy distribution of neutrons slowed
down by collisions with nuclei of higher mass is
essential. An expression for the distribution in

energy of neutrons which have sufkred a given
number of collisions has been given by Condon
and Breit. ' In the present paper the derivation
of the general energy distribution with and
without capture will be attempted.
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1. The integral Equation of the Slowing Down
Process

We consider a homogeneous medium of
infinite extension in which per second Q neutrons
of energy Eo are produced. The energy of these
neutrons is changed by collisions. We ask for
the stationary energy distribution. So long as
we are not interested in the spatial distribution
of the neutrons, the distribution of the sources in
space is immaterial. We will first suppose that
no capture of neutrons occurs. If we measure the
energy by x=EO/8, and use for convenience a
logarithmic energy scale, we may write for the
number of neutrons between logx and log x
+d(log x):

p(x) dx/x =QD (v)/v7E(x) dx/x. (1)
Introduction of the quantity E(x) defined by
Eq. (1) considerably simplifies the following
analysis. In (1), v represents velocity; /(v), mean
free path for scattering. l(v)/v is the lifetime of
a neutron of velocity v against a scattering col-
lision. The quantity E(x)(dx/x) represents the
average number of collisions a neutron ex-
periences in the interval between log x and
log x+d log x.

We further denote by k(x, x')dx/x the chance
that a neutron shall be in the interval dx after one
collision, if its energy before the collision was
Z0/x'. The function k(x, x')dx/x will depend on
the interaction. For its integral we have

F00

k(x, x')dx/x = 1.
~o
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Under stationary conditions the number of' col-
lisions in an interval dx/x must be equal to the
number of' collisions which bring a neutron into
this interval. The number of collisions which
bring a neutron from the interval dx'/x' into the
interval dx/x is

K(x') k(x, x') (dx/x) (dx'/x').

Therefore we get as condition for a stationary
distribution:

X(x) =k(x, 1)+ I'"Z(x')k(x, x')dx'/x'.

The first term on the right-hand side takes care
of the neutrons which reach the interval dx/x
directly in one collision from the source.

If the collision is always connected with a loss
in energy, we may narrow the limits of the
integral in (2), writing

&(x) =k(x, 1)+)f X(x')k(x, x')dx'/x'. (2a)

If capture occurs, it has to be accounted for by
multiplying the collision function k(x, x') with
the relative probability of scattering, vis. ,

f(x') =l(x')/t, (x'), where I is the total mean free
path (for capture and scattering) and I, the mean
free path for scattering alone:

X(x) =f(1)k(x, 1)

+ "f(x')Z(x')k(x, x')dx'/x'. (3)
1

E( )xd/xxremains the average number of col-
lisions in the interval dx/x, which may now be of
either the scattering or capturing type. (1) re-
mains unchanged if we understand by / the total
mean free path.

I. SLOWING DOWN WITHOUT CAPTURE

2. Substances Containing a Single Type of
Nuclei Only

(A) Protons

If the neutron energy is large compared to the
vibration quanta of bound protons (~~ ev) the
protons can be considered free and at rest. In
this case the energy distribution after one col-
lision is constant in the energy scale, which gives:

x'/x for x)x'
k(x, x') =

0 for x &x',

so that (2a) becomes:

1
X(x) =— 1+

i
X(x')dx' .

x

(5) is solved by Z(x) = 1, which, introduced mto
(1), gives Fermi's" ' well-known result.

This gives
p = (M —1/&+1)' (6)

1 x'
for px&x'(x

k(x, x') = 1 —P x

and

.0 for x'/p&x and x')x,

E(x) =
(1—p) x

1+ I"1~(*')d '

for 1(xKp ' (8a)
1 f~

X(x) = X(x')dx' for x)p '.
(1 —p)x 2,.

(8a) can be solved directly; its solution is

(Sb)

Xo(x) = x&«'-"'.
1—

The solution of (8b) is a function of x which is
equal to its own mean value in the interval
between px and x. If (8b) were valid for all
values of x, its only solution would obviously be
%=const. We shall see in the following that this
is the asymptotic solution of (Sb) for large x.
Furthermore, we see from (Sa, b) that X is
discontinuous for x =p ', indeed we have

& (p-') &.(p-') = p/(1-p)--
and hence from (9):

& (p ') = (p """' 1)—1—
The physical meaning of this discontinuity is,
of course, that for values of x larger than p ' the

(8) Nuctei of Atomic Weight 111

For free nuclei initially at, rest and an angular
distribution of the scattered neutrons spherical
in the center of gravity system, the energy dis-
tribution after one collision is again constant in
the energy scale, but extends now only from Eo
to pZ0, where
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Equation (18) together with (14), (13), and (9)
contains the complete solution of the integral
Eq. (Sa, b). We shall first investigate its asymp-
totic behavior. As shown in Appendix I, the
polynomial A„(I ) has for large n the asymptotic
value

neutrons can no longer enter the energy interval
directly from the source.

In order to solve (Sb), we shall make use of a
substitution which will map the region of the
variable x between 1 and ~ on the interval
between 1 and 1/p. We call Z„(x) the solution
of (Sb) for values of p "&~x~&p '"+'), introduce
the variable

v N

A. ..(I) = +
1+log vi 1+log v~

(19)
I/(& —p)

log p"x (11)
where vi and v2 are the two roots of the equation

which varies between s = 0 for x =p " and

s —pi/(i —u) l()g p
—)/() —n) —t.

for x=p-'"+", and put

X„(x)=Zo(x)J.(s). (12) —pi/(i —n) (21)

—v log v=1, (20)

(11a) which for $~0 go to 0 and 1, respectively. From
the definition (11a) of I, we see tha, t

Substituting (11) and (12) into (8b) we get

J„(s)=J,„(0)— J„,(s')ds' for n&0,

Now we have to find v2. In general, it is not easy
to find i/2 from (/i (see Section 3). In the present
case, however, it is possible. The result is;

Jo(s) =1 (13)
s2 —pn/ (i—n) (22)

and by recurrent application of (13)
n ( s)mJ.(s) = Z J.=(0)

m-0
(14)

We write now (14) for s= 1' and introduce (15)
into it. This gives

n i—. ( I.)teJ.-)(I') = J-(o) = 2 J.---i(o)
m-0 15

for n&1. (17)

From (16) and (17) we can now determine J (0)
by iteration. The lesult ls

J-(0) =A-(I) P"(' "'A—- (I)-, -
ss-1

A.(I) = g (m —)i)=,
~0 5$4

Ao(I) =1 A-i(l) =o (18a)

(14) expresses the value of the function we look
for in terms of its values at the edges of' the
intervals. We have now to determine the latter
values. We see from (Sa, b) that Z is continuous
except for x =p '. Hence we have

J„(0)=J„ i(I') for ri&1, (15)

and because of (10)

From (21) and (22) one also gets the relation

v2 =v)/p =v)~.

We can now find the asymptotic value for the
polynomial J„(0).From (18), (19), and (21) we
have, taking also (23) into account:

J„.,(0) = v2%

1+log v2
(24)

The term with vi has dropped out. In order to
find J„„(s)we may introduce (24) into (14) and
replace the upper limit ri of the sum in (14) by
infinity. This gives:

1 —pJ„„(s)= i/2" exp ( —s/i/g), (25)
1+log v2

1 —pJ -= X
—ui(I —I))

1+log v2
(26)

Now we can find the asymptotic expression for
X by simply putting (26) and (9) into (12). We
get at once:

1x = (27)
1+log v2 1+[P/(1 —P)j log P

and, by making use of the definition (11) of s
and of the relation (23)



G. PLACZEK

2.8

27.

ji 26-

2.5 .

MiI2

Fcr.. 2.

50
loo a

loo II/p)

I.B
M~ I2

L6

Me 4
L4 LS

F&G. 3.

55
Iog s

lo8 II/y3

M~2

I0 ~

8

4
si. I

0

po

go 4

FIG. i.

5
Iq8 a

lo8 (I+j

a4

-8
L4 I.S 2.0

FiG. 4.

3.0 5.5

Io8(Vp)

40

So E„is a constant. Its physical signihcance is
very simple: it is the reciprocal mean logarithmic
energy loss in one collision. "

This means simply that the average number of
collisions X(x)dx/x in a given energy interval is

asymptotically equal to the logarithmic w'idth

dx/x of that interval by the logarithmic width of
the interval which is in the average traversed by
one collision.

In order to see the dependence on M in a con-
venient direct way, the following expansion is

2.0

I.S

O IO

I 0.5

0

-0$
I.O

-2e
-2S'

L4 L5 2.0

Frc. 5.

M 1——+-
I+Lp/(1 —p) j log p 2 3

1 r 16 8
(2)a)

18M E 15M 45M' )

Ch'
(log h)A„——,(log h')k(h', 1)—,

log h'dh' = 1+t p/(1 —p}j log p. (28)1-p f

useful:'8 The mean logarithmic energy loss in one collision is
given by X-=
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TA,BLE I. The values of E for the extrema between y=0 and y=4.

M/2
6.3384
2.3513
1.3787

—500

—335—184

359
290
180

74

—141—108—58.6—16.7

25.4
17.8
7.95
1.63

1.75
1.72

&(x) &0'

—23.8—15.6—6.03—0.91

2.00
2.00

4.36
2.64
0.82
0.088

2.54
2.50

—2.74—1.55—0.43—0.034

2.95
2.94

0.83
0.44
0.10
0.0053

3.36
3.31

—0.41—0.19—0.04—0.001

3.81
3.78

From this expansion it is seen that E„=—,'M+ 3

is a good approximation already for moderate
values of M. Indeed, even for &=2 the error
is only 3.3 percent.

If we want to assume that X is asymptotically
equal to a constant, then the value of the
constant can be found by simpler ways. As shown
in Appendix II, the integral equation (Sa, b) can
be transformed into the equivalent form

f dx
E(x) = 1+p I E(x')

1 p ali x'

for Px&1, (29a)

p r' dx'
E(x) =1+ i~ E(x'), for px&1. (29b)

j. p+ x

Putting E in (29b) equal to the constant E„,
we find at once (27)."The behavior of the com-
plete solution and the way in which the constant
asymptotic value of E is reached is shown in

Figs. 1—5, which give E as a function of
y=log x/log (1/p). This measure of the energy
gives, for di8'erent masses, equal extensions to
the maximal energy regions which may be
traversed in one collision. As we have seen
already, E is discontinuous for x=1/p, i.e.,
y=1. Therefore, as can be shown from (13), its
nth derivative is discontinuous for x=p " or
y=n.

Figure 1 gives (1 p)E as functio—n of y for

y =0 to y =4 for the masses M = ~, 12, 4, and 2.
E first rises according to (9), drops discon-
tinuously at y = 1, goes on rising to a maximum,

"Formally equivalent to this derivation is the following
one: The number of neutrons going per second from the
region x&xo to the region x&x'o must be equal to the
number produced per second, i.e., to Q. This gives:

f"'" "f—
"

Z(x)—a» =1, (3O)

from which again (27) results by putting X=X„,Equation
(30) can, of course, also be obtained from the integral
equation by using together both forms (Sb) and (29b).

reaches a minimum with discontinuous tangent
at y =2, and approaches with oscillations of
rapidly decreasing amplitudes the asymptotic
constant value E„. The oscillations can be
better seen from Figs. 2—5, where the relative
deviation from the asymptotic value, i.e.,
(E—E„)/E„ is plotted on an enlarged scale
for the same masses for y = 1 to y =4. Table I
gives numerical values for the extreme deviations
of K from its asymptotic value. The first tw'o

columns give the masses and K„, and the fol-
lowing 9 columns show the relative deviation
from the asymptotic value:

h(y). 10'= (E—E.,)/E. , 10'

for y=0, 1, and all the following extrema up
to y=4. The values of y at which E is extreme
are only slightly diferent for different masses;
they a,re given in the last two rowsfor M = 2 and
M= ~ only. (Table I.)

It is seen that the deviations are smaller for
light nuclei. It must, however, be remembered
that the maximum energy loss in one collision is
smaller for heavy nuclei, so that the deviations,
if plotted in the energy scale, extend farther for
light nuclei. For a heavy nucleus Z varies in
the first interval by a factor e, but the interval
comprises only the region between Eo and
Zot 1 —(4/M) j, while e.g. , for deuterium, the
variation in the first interval is only 37 percent,
but the interval extends from 8 to Z/9. Since
one has experimentally always to do with
neutrons of a certain width in initial energy, the
deviations of X from the constant value will, in
general, be directly observable for light nuclei
only. However, the importance of these vari-
ations lies not so much in the direct effects near
Eo but rather in the fact that they will start
anew from every point where capture becomes
important.
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3. Mixtures II, Eq. (32) may be transformed into

+ i c,(x')X(x') . (37)
"'l

X(PsZ) x'

If the medium in which the neutrons are p,
slo ed do n co tains nucl i of dilfe e t ato ic

S

weights 3f„ the energy distribution after one
collision Lcf. (7)j will be determined by the
function:

(x'i x' c,(x') tt'p, xl
k(x, x') =y/ —

f

—Q pf(xj x * 1 —p, &x')

The function p(u) is 1 for u (I, 0 for u &1 and
discontinuous for u = 1.c.(x') =I(x')/l, (x'), where
l(x') is the total mean free path and I,(x') the
mean free path for scattering at a nucleus of
type s. c, is a measure of the concentration,
g, c,=I. Introducing the kernel (31) into the
general Eq. (2), we get:

For x)p~
'

(p»- denoting the smallest p), (37)
reads:"

p, t* dx'
X(x) = 1+Q c,(x')X(x') . (38)

s j —p, gee X'

If all the mean free paths are constant or vary
all in the same way with energy, the c, are con-
stants. In this case, (38) is again asymptotically
solved by a constant E„,for which we And from
(38) (with constant c,):

xX(x) = Q c,(1)p(p, x)
s

r p
—l

1++ log p, (39)

where

+ c.,(x')E(x')dx', (32)

for u&1
) (u) =p(u)+I{1—p(u) I

= (33)I for n&1.

As in the discussion of Eq. (3), we see that E(x)
is discontinuous at all the points x=p, ', the
discontinuity being

X.(p.-') -X-(p.-') =—G.(1)p
1 —p,

(34)

If we arrange the quantities p. according to their
magnitude, calling the largest of them p~, then
in the interval 1 &x (p& ' Eq. (32) becomes

1
xX(x) = Q c,,(I)+ c,(x')E(x')dx' . (35)

s 1

This equation is solved by

c,(1) p. ~, dx'
X(x) = Q exp Q c,(x') . (36)

s I —p, 1 —p, dg x'

From this solution we can proceed to construct
the complete solution in a manner similar to,
though more complicated than, the treatment of
the case of a single substance. We shall do this
later for a signi6cant particular case, and shall
now derive the asymptotic solution.

We use the fact, that, as shown in Appendix

cp )
xX(x) =

~
1+

~
1+ X(x')dx'

1 —p)

for px (1. (40a),

c
xX(x) =

i
X(x')dx

1 —pa„.

+(1—c) 1+ X(x')dx' for px) 1. (40b)

"If hydrogen (p =0) is present in the mixture, this region
does not exist, but since the term referring to hydrogen in
the sum in Eq. (37) drops out because of the p in the
numerator, (38) is equally valid in this case for x&pI, &

'.

As can be easily checked this constant is again
equal to the reciprocal average logarithmic
energy loss in one collision. For variable mean
free path it is easily seen that (39), with the r.
depending on x, is a good approximation provided
the quantities c, vary slowly enough with energy,
so that the variation of (39) in a region of the
extension of the average logarithmic energy loss
is small.

Ke now derive the complete solution for the
special case of a mixture of hydrogen with
another substance, the concentration of which,
in the above mentioned units, we denote by c.
If the mean free paths are constant, the equation
for this case becomes Lcf. (32)]:



The equivalent I'orm (37) of these equations is: and, using (43), (43a), (42), and (6),

X(x) =q

( 1+ i 1+ Z(x')
1 —pJ &, x'

px & 1 (41a)

cp p dx'
~(x'), Px) 1. (41b)

E„(x)=Eo(x)G„(u),

Q CV Z

(43)

(43a)

Lfor s see Eq. (11)),where u runs from 0 to

n ( N)n~

G„(u)=Q G- (0)
m 0 Sg 0

(44)

The solution of (40a) or (41a) is according to
(36):

Z, (x)=i 1+ cp )
1 —pj

If we denote again by E„(x) the solution for

p "&x&p "+', the substitution

s c pep/(& —p) (51)

but, in contrast to the previous case, it now does
not seem possible to express the other solution
si as a function of p and c in closed form.

However, part of the discussion can be done
without explicit knowledge of si. We put

Hence

s& log s2 —pE
$2 log sy

(52)

log si ——p
—' log s2 ——log s~+e log p. (53)

This gives, if we insert the value of s2 from (51)
and put p =q:

1 (sg s,)"z.,(p-") = +
1+log s2 1+log sI

cp ( s2)
X I+

i
I-—

( . (50)
1 —p( ski

Now we have to 6nd the solutions si, 2 of Eq.
(48). From (20), (22), and (44) we see that

G (0) =A (P) — A —i())
1 p cp—— (46)

(54)

~--(k) = +-
1+log SI 1+log s2

(47)

where the polynomial A is de6ned by (18a).
While (45) is identical with the corresponding
Eq. (14) for the polynomials J„(s), (46) differs
from (18) by the different variable (g instead of 1)
and the different factor of A„~.The latter arises
from the fact that the discontinuity at x= p '

has now a different magnitude. The solution
Z„(x) is again an oscillating function. We
introduce into (46) the asymptotic expression
(19) for the A. :

p ~n (1 ~)gn
G„,,(0) = —i + —,(49a)

1 —P+cP l 1+log s2 1+log s|
1 (& 1)q

—se

E...(q") = +
&+log s2 e log q —log s2 —1

(50a)

and, using (49a), (43), (43a), (45), (51), (53),
(54):

Equation (54) has only one solution c&1. For
c=o, ~= ~; for c=i, &=1.

Introduction of (53) and (54) into (49) and
(50) gives

where s ~ and s~ are now the solutions of

—s Iog s=g (48)

Z.,(x) =-
C —log g

which for $~0 go to 0 and 1, respectively.
Introducing (47) into (46), we have

(e —1)x '
(55)

c
i

e — ((logq) —1
q
—I)G. -(0) =

1+log sg 1 —p+CP
sg" (+

1+log sj E

From (54) it can be proved that the factor of x '

(49)
1 —p+cp g,j with increasing x and goes 6nally over into the
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constant Z, given by the first term of (55) in
agreement with the general expression (39).
Various expansions for e can be derived from
(54) for various cases. In particular, for
1 —c=c2«1, 1 —P=C2«1, one finds:

2C2
e —1 =

I 1+0(n) +O(c2) ) . (56)

Equation (55) then becomes

i
Z.,(x) =

a/2+c2+O(n22C22, nc2)

2cix "+'""i'(1+O(22. , c2)+
CI2/222+ C+O(a', C2', aC2) I

Since o«(i, we can apply this asymptotic
expression for X already for values of x not
noticeably different from one. Therefore, we can
interpret (57) in the following way: Z first
reaches very rapidly the value Z„(1)= 2/a,
which is the 6nal value if no hydrogen were
present. With increasing x, the influence of
hydrogen comes into play and Z decreases until
it 6nally reaches the constant value given by the
first term of (57), i.e., the reciprocal mean
logarithmic energy loss of a neutron in the
mixture. This variation of X is especially im-
portant in the case C2»n/2, for which there is
a considerable difference between the energy
loss in the pure heavy substance and in the
mixture, since the latter is entirely due to
hydrogen. (57) here becomes

transition to the entirely diAerent final value will
only start long after the oscillations have died
down.

In the more general case that c2 is no longer
small compared to one the transition will take
place earlier, but, in order that E should be
determined by hydrogen from the very be-
ginning, it is necessary, as we can see from (42),
that i —c2=c&&n, while for X to be determined
by hydrogen only in the end it is, of course,
sufficient that the mean energy loss in the
miXture iS the Same aS in hydragen, ViZ , C2». c2/2.
In the opposite case c2«n/2, (57) becomes

2 2C2
Z., = 1+ —(x—i'+&2"'& i —1)

and the deviation from the case of the pure heavy
substance is small throughout. '4

The eSects discussed here may be considered
as characteristic in general for the slowing down
process in a mixture of a light and a heavy
substance.

II. SLOW'ING DOWN WITH CAPTURE

4. The Equations

Putting (7) into (3), we have

1 f4

Z(x) = f(1)+ i f(x')K(x')Cx',
(1 —p)x

Px & 1 (59a)
i

Z(x) = f(x')K(x')dx', Px&1. (59b)
(1—p)x

1 (2 1)
~
X [2+(2&2/ a) 1

C2 (tX C2 P
(57a) The equivalent transformed equations are (cf.

Appendix II):
At the beginning the neutron density is here
entirely determined by the heavy substance, at
the end, entirely by hydrogen. "The transition
takes place for xo=(2C2/n) exp La/2C2], or in
numbers n of intervals: n =o(1 2/c )2log (2ci/a),
which is always a large number when the above
approximation is valid. Moreover, as one can see
from (32) to (36), the function Z will in the first
intervals, where it is still oscillating, be exactly
identical with the function for the pure heavy
substance, as shown in Figs. i and 2, and the

'3 It is to be remembered that the neutron density is
Q(l/v)X{x)Ch/x, where l =c~lIf is the average mean free
path, so that the factor cg drops out.

Z(x) = i—
fO Z dxI-g(I)+ (p-g(x'))K(x'),J, x'

px (1 (60a)
'4 This case requires some attention in connection with

the treatment of capture. We consider the integral
JI*E(x')dx' which enters into Eq. (40b). Writing

X(x) =Z„+m(x}
we find from (57b)

M(x)dx =2/n, (58)

c2 has dropped out. In spite of this, (58) is not valid for
c~=0. This can be easily seen by noticing that the second
part of (57b) contains cg as factor and therefore vanishes
throughout for c2=0. Actually, the integral (58) in this
case is of the order —~ because of the contributions of the
first intervals where the asymptotic expression (57b) is not
yet applicable.
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, dx
E(x) =1-g(i) — ' g(x')E(x')

~l x'

P &' dx'
f(x')E(x'), , Px &1 (60b)1— x'

where g(x) = 1 f(—x) = 1 —l(x)/t, (x). The solution
of (59a) or (60a) is:

f(1)
E(x) = x"«' »

1—
1 I* dx'

&& exp — g(x') . (61)
1—Pap x'

For hydrogen (p=0) (59a) is valid everywhere,
and therefore the complete solution in this case
reduces to

, dx
E(x) =f(l) exp — g(x'), (61a)x'

which is in accordance with Fermi"s' result.
The solution in the region px & 1 can in

principle be found by repeated integration from

(61), in the fashion of Section 2. This procedure
has, however, only limited interest since in most
of the practical cases the capture sets in only for
energies considerably lower than the initial
energy. Therefore, it is suf6cient to investigate
how the asymptotic solution of the equation
without capture is modi6ed by the capture.
This is done by considering (59b) and (60b)
valid for all values of x. The methods of solution
will be different according as the variation of g
in one interval is slow or rapid,

Before entering into these methods, it will be
useful to discuss Eq. (60b) somewhat more
closely. Multiplying (60b) with

a=1+f log f/(I —f)
the average logarithmic energy loss in one col-
lision, we have

S(x) =aP(x) + ~~ f(x')S(x'), (62)
1 — Jy~ x'

where

by the capture, and

f' , , dx
P(x) = 1 —g(1) —

~ g(x')E(x') x'

is the probability that the neutron is not captured
below x.

Adding p log p/1 —p to both sides of (62) and
dividing by c, we obtain

S(x) =P(x)

p ps dx+, If(x') S(x') —S(x) I . (63)
(1—p)a J„, x'

In the presence of the second term in (63)
consists the essential difference between the
mechanism of capture in heavy substances and
in hydrogen, for which it is zero. It is of special
importance if the capture is large, or small but
rapidly varying, in which cases it entirely modi-
hes the solution. Its physical meaning is that the
efkct of capture occurring at a point x~ on the
value of S at a point x2 depends on the distance
between these points. This may be understood
by 6rst considering the case in which the total
change of S in the region considered is small. In
this case all the capturing points may be con-
sidered as independent sources of neutrons taken
away of amount g(x&)(dx&/xq), the change in S
due to every point x, will then be given by the
initial solution of the equation without capture
and thus exhibit considerable variations, as
shown in Fig. 1, which will extend a few intervals
beyond x~. If the total change is no longer small,
these variations will in turn inAuence each other.

If capture occurs only above a certain energy,
5 will approach a constant value a few intervals
below this energy, whereupon the second term in

(63) will vanish, so that the value of the constant
is given by

1 &, , dx'
S=P = 1 —— g(x') S(x'), . (64)

g al x'

If the change in S is small, we may replace S(x')
in the integral by one and have

1 t', dx'
S= 1 —— g(x')

c J x'

is the ratio between X and the asymptotic
solution of the equation without capture (see
(27)) and gives thus the relative reduction of E

If the capture occurs in a number of discrete
regions, separated by regions without capture as
may be the case with absorption lines, we may
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apply (64a) for every region separately, writing

SI„- I', dx'
So —Sk g

——— g(x'), , (64b)
a dg x

where Si, is the value of 5 before entering the
capturing region k and the integral has to be
taken over this region. From (64b) we may find

the final 5 even if the total change in 5 is large,
provided the changes due to every single region
are small.

5. Slovr1y Varying Capture

We first consider the case of constant capture.
Here, the assumption that the capture vanishes
in the hrst intervals is not valid. However, it can
be easily seen that the solution obtained by con-
sidering (59b) and (60b) valid everywhere will

differ from the asymptotic solution of (59a, b)
only by a constant factor. If we use the homo-
geneous form (59b) of the equation, the solution
will contain anyhow an undetermined constant
factor, which, besides, is immaterial for the
following. (59b) with constant f

powers of vo.

a„vo'

f .=o s! '

a,
b, =—=1-

s!
1 ' (log g)

q
—1 g m!

and have

w= Q 6gvo .

Reverting this series, we obtain:

1 ' (log q)"'
=s! 1 — P — . (68)

q —1 g m!

It is easily seen (cf. (28)) that the coeScients a,
are the average s —t powers of the logarithmic
energy loss in one collision.

Now we put

5(x) = 5(x')dx'
(1 —p)x ~„.

(65) b2 2b2 —baa

a a a'

is solved by
S(x) =Cx "0, (66)

b,a& —5b,b~+5b, 3

w'+ . (69)a'

f (1 —p)(vo-1)
(67)

Equation (67), which is similar to (54), has only
one solution vo ~)0. For f=1, vo=0, for f=0,
vo = ~. Of the val ious possible expansions for vo,

the following is of particular physical interest.
The right side of (67) can be written as an

integral, as follows:

Putting now

1 1 "y-"dy
1 —p3,

(67a)

where C and vo are constants.
Putting (66) into (65), we obtain the following

equation for vo..

1—vp

P(x) =gS(x)/vga. (7o)

The coefficients of the powers of m in the brackets
of (69) are of the order of one. They are exactly
one in the case of hydrogen, since for this case
(cf. (61a)) vo

——g =w/(1+w). For large masses,
1 —p=a«1, we have, as is best directly seen
from the integral in (68), b„= 'a(/s +I)!, which
makes the coeScients in (69) 1, 2/3, 5/9, 34/135,
etc. Thus the expansion (69) will always rapidly
converge if m«1. Breaking off at the term 5
will give an approximately correct result for 5
if (w'+'/a) log x((1.

It is now of interest to calculate the second
term in (63) for constant capture. Introducing
(66) into the integral and using (67), one obtains

" (- vo log r)'
S.

Thus 5(x) —P(x) is small compared to P(x) if g
or w is small. For large w, however, voa/g is large
and the second term 5—P will be even large

we obtain the following expansion of 1/f in compared to P.



Ke now consider the case of slowly variable
cap'tllre. Ncglcctlllg the vai latloll of f 111 one
interval, we have

d log S/d logx= vp(x),

vp(x) being determined by (67) . According to
our assumption there is no capture in the 6rst
intervals, hence S(1)= 1 and consequently

S(x) = exp — vp(x') . (71)J, x''
If, in particular, w is small throughout, we may
use the expansion (69) for vp. Its first term will

be suf6cient if

Thus, for large masses and small m, the ex-
pression

S(x) = exp —(1/u) mr(x')dx'/x'

will have a wide range of validity. We now may
improve (71) by correcting for the neglected
variation of f within one interval. Differentiating
(60b), and putting

d log S/d log x = v(x)

we obtain

w'(x') dx'/x'((a.
Putting

V= Vo+Vj,

This condition is for small a, i.e. , large masses,
perfectly compatible with the 6rst term being
large compared to one, vis. ,

where vp is given by (6) and vl is the correction
term to be determined, we develop f and v in

the interval:

w(x') dx'/x'))a.
f(Px) d l~ f(x)=1—log q
f(x) d log@

(73)

E(llrx) I' dx' dv(x) (log q)'
=exp v(x ) =exp v(x) log q—

E(x) J„x' d log x 2

d vp (log q)' dvp (log q)'-
= CXp (vp+ vl) lOg q- =g'o 1+vq log g-

d loge 2 d logx 2
(74)

log g dvo
Vy— «1.

2 d loge

Introducing (73) and (74) into (71) and using

(67), we obtain finally

p, d ( log/I
Vy= } log f+v, }, (75)

1 —pdlogxg 2

w = (x/x. ) l, (77)

where x, is a constant. Thus we may use w as a
measure of the energy, putting S(x) = rrp(w), and
have for the solution:

dm
pr(w) =exp —2 I vp(m')+vl(w') I, (78)

~o K

where

where we have replaced dv/d log x by dvp/d log x case of the mean free path for scattering being

and assumed that constant and the mean free path for capture pro-
portional to the velocity (I/Ir law for the capture
cross section). This makes

which by (67) goes over into

} vp+ } log q. (76)
P g&—
1 —p

If a«1, g&(1, (75) reduces to

vl ———~pdg/d log x. (75a)

An example for slowly varying capture is the

where vp and vl are given by (67), (69), and (75).
We may do still a little better, since it is here
possible to take the variations of the capture
within one interval not only approximately but
exactly into account. For this purpose we intro-
duce (77) into (59b), which gives the equation

2 r '" w'pr(w')
w' pr(w) = dw', (79)

1 —r' J„„1+m'
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where
r =p& = (M —1)/(M+1).

We now expand io(w) in powers of w

where
2 1 —r'+'

s+2 1 r'—
(81)

The expansion (80), (81) is of some use for
small masses. For larger masses, however, the
coefficients P, increase rapidly with increasing s,
and in the limit of o.—+0 one finds

(-1) &~i

s!
so that

lim (p(iv) =e 4 '.
a-+0

For large masses, therefore, an expansion of log q

rather than y will be useful, as is already sug-
gested by (78) with (69). Its coefficients can be
determined by introducing it into (79) or also

by rearranging (80). One finds

2 1+r+r'
io(w) =exp- %

1 —r 1+2r
1+3r+2r'

iv' — (82)
2(1+2r)'

The coefficients of (82) are very near to the coef-
6cients obtained by the approximate treatment,
which result from putting (69) and (75) into (78).
This may be seen by expanding both in powers
of a or 1/M.

It will now be of interest to compare the
effects of 1/v-capture in light and heavy slowing
down agen'ts. As in the discussion of (71), we see
that the higher terms in (82) will in the case of
large masses only come into play at energies for
which already most of the neutrons have been
captured. Expressing r by M, we have

io(w) =exp L
—(M+ s)ui+viaMv'3 (83)

~' s(~) = Z P.~', Po = 1
@=0

and introduce this expansion into both sides of
(79). Comparison of the coefFicients of equal
powers of m on both sides gives after some cal-
culation

P(v) dv = Ql, (M+ ',)-
( 4)v, 1 t'v, )'

Xexp —
I

M+-
I

—+™I—I3) v
(86)

and for hydrogen

2Ql, vdv
f(v)dv =

(v+v, ) '

f(v) has a maximum which lies for hydrogen at
v= (v, /2) and for large M at about v = (2/M)v, .
It also may be noted from (86) and (87) that the
neutron density in the energy scale has no
maximum in the case of hydrogen, while for
larger M a maximum occurs at about (3/M)'Z, .
In connection with the fact, that the capture in

heavy substances already comes into play for
energies at which o, is of the order of o,/M rather
than of the order 0., as in hydrogen, it has been
proposed' to use slowing down experiments in

heavy materials for the detection and measure-
ment of small capture cross sections. It may
further be noted that the low energy cut-ofF is
for large M considerably sharper than for
hydrogen, which opens experimental possi-
bilities of a difFerent kind. By slowing neutrons
down in a heavy substance containing a small
and variable admixed amount of boron or
another element with 1/v capture, it may be
possible to produce a continuous neutron spec-
trum with variable lower limit, which would be

where terms of the order w' and Mw' have been
neglected.

For hydrogen, on the other hand, we have
from (61a) and (77)

o (~) =1/(1+~)'. (84)

Going over to the neutron density as given by
(1), and denoting by f(v) the neutron density in
the velocity scale we have

dr 2Ql dv
4(v)dv= -u(~)—= o(~)—

X C

2QI. dv
o (~)— (83)

a(1+u~) v'

Putting w = v, /v, where v, is the velocity at
which the mean free paths for scattering and
capture become equal, we obtain for large M,
using (27a):
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with

5(x) = f(x')5(x')dx',
(1—p)x

5(xo) = 1.

(88) can be solved by differentiation with the
result:

5(x) =e«*& 1—p I'* dx

x f* dx
x(x) = p »g ~ g(x')

1 —p x, h*. x'
'

(89)

It can be shown from (89) that the solution for
rapidly varying g differs from the case of slowly
varying g even if g&&j.. The solution in the fol-
lowing intervals ((xo/p) (x ((xo/p'), etc.) can
be found from (89) by successive integrations.
After the capturing region has been passed, 5
mill be subject to Huctuations and finally tend to
a constant value, which, with the help of (64),
may be derived directly from the solution in the
capturing region without explicit knowledge of
5 in the Auctuating region in between.

A case of rapidly varying g is the capture by
absorption lines. Its discussion mill be given in a
separate paper.

'7. A SimpMed Treatment and. Its L~~~tations

We shall now illustrate some of the results
obtained above by comparing the actual slowing
down mechanism with a simpler idealized one.
If the loss in energy, which takes place in jumps
of different magnitude occurring at diR'erent
times, were instead continuous, the velocity

very useful for the analysis of nuclear energy
levels. %'bile this method is not in pri. nciple dif-
ferent from the usual boron absorption method
of neutron spectroscopy, it is not subject to the
well-known di5.culties which make the analysis
of boron absorption data impracticable as soon
as thicker layers have to be employed.

6. Rapidly Varying Capture

If f does no longer vary slowly within one
interval, the treatment of the preceding section
will not hold. In this case it is necessary to solve
the equations rigorously. This is not dificult, if
the occurrence of capture is limited to one or
even a few intervals. Assuming that the capture
is negligible for x (.xo, we have for the region
xo (x (xo/p:

of a neutron mould be a function of its age.
(Actually, to every age corresponds a velocity
distribution and vice versa; these distributions
can, at least for constant mean free path, be
explicitly derived, the velocity spread for any
given age being of the order IIIA, for hydrogen and
of the order v„„/gM for large masses. "We find
the relation between velocity and age by putting
the relative change in velocity dv/v equal to one-
half of the average logarithmic energy loss e in
one collision times the probability that a collision
occurs, which is

[e//, (v) ]dt: dv/v = cavd—t//. (v),

dt = —(2/a) /. (v) dv/v'.
(90)

2 7'o dv dv
Xexp —— w(v') ——, (92)

a J, v' vo

where /, //, has again been denoted by w. (92) is
identical with Eq. (71a) except for a factor
/, //=1+w. For large M this factor is of no
importance, so that the simplified treatment will
here be justified under the conditions of validity
of (71a), vos. , w slowly varying and

which is also rather obvious from the assump-
tions. For hydrogen, on the other hand, the
changes of the neutron distribution caused by
capture may be given wrongly by (92) even if
they are small, as is the case for 1/v capture,
"G. Placzek, Phys. Rev. (to appear later).

We now ask for the number N(t)dt of neutrons
of age between t and t+dt If no .capture occurs,
all ages are equally probable, and N(t) is there-
fore equal to Q, the number of neutrons produced
per second. Including capture, we have ob-
viously:

~' dI,
'

N(t)dt = Q exp — — dt,
"o ~.(t')

where o, = D,(v)/v) is the lifetime of the neutron
against capture, which is in general a function
of velocity. We now obtain at once the velocity
distribution by introducing (90) into (91):

2Q/, (v)
P(v)dv = N(t)dt =—
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where the change of f by the capture is in first
approximation 3u—rf, while (92) gives —2~.
This is connected with the fact that the velocity
spread for any given age in hydrogen is larger
than in heavy substances.

8. Modi5cations at High and Low Energies

Our results will break down at high and low
energies because of changes in the mechanism
of the collision. As soon as the neutron energy
exceeds the energy of the first excited level of
the nucleus in question, inelastic collisions will

occur, which make the slowing down much more
rapid. Another, less important, effect at high
energies is the deviation of the angular distribu-
tion from spherical symmetry in the center of
gravity system. This effect may occur as soon as
the neutron wave-length becomes of the order
of nuclear dimensions and may change somewhat
the collision function k(x, x').

At low energies the collision function will be
modified by the chemical binding as soon as the
energy transfer to a free nucleus in one collision
becomes of the order of the vibration quanta,
thus, for large 3f:E —,'Mfi+. These energies are
of the order of several volts for heavy substances.

While the binding completely changes the col-
lision function for E &-,Mkco, it will not affect
the average energy loss unless the energy itself
becomes of the order of the vibration frequen-
cies." This may be seen from a schematic
example. We consider the collision of a neutron
with a particle of atomic weight 3f&(1,elastically
bound in an isotropic field of force of vibration
frequency ~, and being in the ground state n =0
before the collision. We assume the neutron
energy E to be large compared to Ace, but small
compared to -', &Aced.

For this case the cross sections 00„ for the
transition 0—&n, which can be found from the
theory of the scattering of neutrons by bound
protons, "reduce to

1 !'4Z) "

(rA+1)! gh j
where r~ is the cross section for a fixed nucleus,
which for large 3II is not appreciably difI'erent

9. Spatial Distribution

The spatial distribution may be characterized
by the average square distance of diffusion (r')A„

as a function of initial and final energy. General-
izing the standard treatment as given by Fermi'
and Bethe, "one finds

r * I,'(x')K(x') dx
(r')A, (x) =2

J i 1 —(cos 8)A„x'
(93)

where 0 is the scattering angle in the system of
the observer. Equation (95) is valid if log x is
large compared to the average logarithmic energy
loss and /, varies slowly within regions of the
order of the latter. The denominator contains
the effect of the angular assymetry of the scat-
tering in the system of the observer. In our case
the scattering is isotropic in the center of gravity
system. Therefore we have

(cos A1)Ay =
g cos 8'8 cos 8~

—1
(96)

where 8 is the scattering angle in the center of
gravity system. We now express cos 8 by cos 8:

1+3fcos 8
cos 8 =-

(1+M'+M cos 8)
(97)

Integrating (96) with (97), one finds

from the cross section of the free nucleus. Only
the transitions 0~0 and 0—+1 are of importance,
and hence the energy loss is given by

Ilco(rgi/og ——2E/3f.

Thus, instead of frequent small losses of maxi-
mum amount 4B/M we have a rare large loss of
amount Aoi, the average remaining 2E/3f.

The formulae for the energy distribution will
therefore remain valid down to energies of the
order of the vibration quanta if the capture is
small and slowly varying within regions of the
order of the vibration quanta so that only the
average energy loss matters. In the opposite
case, however, the deviations will come into play
already for energies of the order 3E/2 times the
vibration quanta. This effect may play a role in

the study of absorption lines.

'~ I am indebted to Professor H. A. Bethe for pointing
this out to me.

'~ N. Arley, Kgl. Danske. Vid. Sels. Medd. 16, 1 (1938).

(cos 0)A„——2/33L
'8 H. A. Bethe, Rev. Mod. Phys. 9, 69 (1937).

(98)
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C=4.1.
dx

(r')g„(x) = C» I,'(x') x'' The decrease is caused by the diminuition of the
forward asymmetry of scattering, which in this
case overcompensates the change in energy loss.
For M&2, C increases again and becomes for
3E&&1

(99)

C=

Putting for E the inverse average logarithmic which gives the well-known formula for hydrogen;
energy loss and using (98), we write (95) in the for &=2
form: (99b)

C= %+4/3. (99c)

For M= f, For mixtures, (99) becomes (notations of Sec-
(99a) tion 3):

l.'(x') dÃ
(r')g„(x) =2

( cp(x')Pp & jr 2 cp(x')i x'
1++ log p,

~

1 —-P
E ~ 1 p~ —J E 3a ~~)

(100)

This gives for air C=15.6 and 15.8 for low and
high energies, respectively. From (99) it may
be seen that the effectiveness of hydrogen in

slowing down the neutrons in a small space is
caused by its exceptionally large scattering cross
section rather than to its small mass. If its mass
were 2 or 4, the distance required for slowing
down would be even smaller.

It remains now to discuss the capture in

mixtures, which presents many interesting
features and is also of practical importance. The
treatment will be given in another connection.
It has already been shown in Section 3 that in

mixtures of a heavy and a light substance there
are for certain concentrations enormous devi-
ations from the asymptotic value of E, which
extend over many intervals. Without entering
into details, it may therefore be concluded
already that in such cases the mutual correlation
of the e8'ects of capture occurring at diR'erent

energies will be of primary importance and act
over distances much wider than for single sub-
stances.

It is a pleasure to thank Professor H. A. Bethe
for many interesting discussions.

APPENDIX I

Asymptotic Evaluation of A„(I)

We write the polynomial

n—j I'm

A„(I.) = g (m n)"—
m~0 5Z ~

as the diR'erence of two inhnite series:

~.(I) = T(I) B(t-),

CO I'tn

T„(I)= P(m —v)"—,
m=0 fP1 ~

(I ia)

ca (~I.)m+a

B.(I) = Z
y~—0 78 e

(I ib)

Both series converge if I'(e '. T„(I) can be
evaluated rigorously. We put

g= —v log v. (I2)

Equation (I2) has two roots v, and vm, which for
1~0 tend to 0 and 1, respectively. Expanding I
in powers of log v2 and introducing this expansion
into (Iia) one obtains"

p 8

2(I) =
1+log v2

(I3)

nz
1+—=X'. Iog I'= —(1+&)

n

"Polya-Szego, Aufgaben end Lehrsarse ass der Analysis
(Verlagsbuchhandlung Julius Springer, Berlin, f926).

The series B„(I')consists of positive terms, which,
if e is large, have a sharp maximum. Hence we
may get the asymptotic value of B„(f)for large
n by using Stirling's formula and replacing the
sum by an integral. Putting
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we get
(2n~ 1

I(1-y ')s "I""'dy,
&m )
(2nq i r."

er &»dy.
E~J

(14)

F(X) =~&'I —v+log (I —
X ') I.

From F'(y~) =0, we get

(I5)

= —y+log (1 —y~
—').

y~' —1
(I6)

The integrand has a sharp maximum, the loca-
tion of which we determine as follows:

We have

APPENDIX II

Transformation of the Integral Equation

Differentiation of (32) gives

xZ'(x) =P I c,(x)X(x)
e 1 —p,

—(1—
i (p.x))'(p.x)Z(p.x) I (I»)

Equation (1I1) is not valid at the points x =p, ',
for which Z is discontinuous. E itself is discon-
tinuous for the points x=p, '. We multiply
with dx/x and integrate from 1 to x, taking the
discontinuities into account. The left-hand side
gives:

Putting

we have
f=te ',

—y=1 —t+log t

j(I7) Z'(x') dx' =Z(x) —Z(1)
—2 (1—ii(p~)) I Z+(p x) X (p x)—I. -

and hence may write (I6):
yM

1 —t+ log t = 1 — +log, (I8)
1 —yM

from which we get:
y~' =~/(I —~). (19)

Equation (I7) goes over into (I2) by putting
t = —log v and hence has two solutions tj. ~& 1 and
t~~&1 which tend to ~ and 0, respectively, for
I-+0. Since y'=1+(m/n) is positive, we see
from (I9) that the solution applying to our case
18 t j = —log vy.

We now evaluate B„by integration around
the maximum:

f 4n
&.-(f) =

~ „ I e~p L~(y.~)j (I10)F"(y.v)&—
From (I5, 6, 9) we have

—ny~
F(y,ir) = = nti, —

F"(yM) = —4~(~i —1)'.

From (36) we have

c, 1
Z(1) =Q

Introducing (34) we get

pg
Z'(x')dx' =Z(x) —l. —Q
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Integration of the right-hand side of (II1) gives

X'(x') dx' = P c.(x')Z(x')
Jg 1 —pl v ) (p,xi x'

Hence,

Z(x) = 1+Q c.(1)ii(p,x)1—
dx

+ i c,(x')X(x'), — . (II2)
~ &(Pe~) x'

I f only one type of nucleus is present, this reduces
to Eq. (29a, b).

The same transformation, applied to the
equation with capture, gives the result:

Hence we get

&--(I.) =
tI —1

And finally, from (I1, 3, 11):

1+log vy

dx
X(x)+ g(x') X(x')

&1 x'

=f(1)+Z f(1)'(1)~(p.x)
1 —p

(I)= +
1+log vi 1+log vq

(I17) + I f(x') c,( )Zx(x'), . (I I3)
JX(Psx) x'


