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There exists the possibility of directly verifying the theoretical prediction of the existence of
excited states of the nucleons at about 45 Mev above the ground state by an inelastic photo-
electric dissociation process of the deuteron with vy-rays of energies larger than the excitation
energy of these states. The cross section o’ for such processes is calculated in terms of the elastic
cross section ¢ by using the simplest form of the strong coupling theory. The quantity o’/ hasa
maximum at about 87 Mev where it reaches the approximate value of 0.07. These processes
should be experimentally detectable and would furnish valuable information about the prop-

erties of nuclei.

I. INTRODUCTION

T present there exist two different forms of
the meson theory of nuclear forces which
can claim some chance of success, the so-called
strong coupling! and the weak coupling? theory.
In both theories charged and neutral mesons are
assumed to interact with the heavy nucleons
(neutrons and protons) in a symmetrical way
which guarantees the charge independence of the
nuclear forces. Neither is completely satisfactory
but the difficulties which remain may well be
beyond the scope of the present status of the
quantum theory of fields. On the basis of the
generally available experimental results on
atomic nuclei it seems impossible to make a
definite choice between the two theories.

The two theories distinguish themselves pri-
marily by the different kind of approximations
which are considered for the calculation of the
forces between two nucleons at sufficiently large
separation from each other. In the strong coup-
ling case the forces are obtained by a development
into falling powers of the coupling parameter
while the weak coupling theory uses a develop-
ment in rising powers of this constant. But this is
not the only distinction between the two theories.
Itis well known that in arelativistically invariant
field theory with point sources the interaction
term in the Hamiltonian leads in higher approxi-

! G. Wentzel, Helv. Phys. Acta 13, 269 (1940); 14, 633
(1941); 15, 685 (1942); 16, 222 (1943); 16, 551 (1943).
J. R. Oppenheimer and J. Schwinger, Phys. Rev. 60, 150
(1940). W. Pauli and S. M. Dancoff, Phys. Rev. 62, 85
(1942). W. Pauli and S. Kusaka, Phys. Rev. 63, 400
Eig‘gg R. Serber and S. M. Dancoff, Phys. Rev. 63, 143

2 W. Pauli, Phys. Rev. 64, 332 (1943).

mations to divergent results. In order to discuss
the validity of an approximation it is necessary
to compare the first-order term with the higher
order terms in the expression for the nuclear
forces. Thus some kind of a model of the nucleon
is necessary which leads to convergent results.
One possibility is to “smear’’ the nucleon over a
finite region in space by introducing a source
function U(x). With this method the relativistic
invariance of the procedure is destroyed but all
the approximations are finite, and it is found that
the weak coupling is inadmissible. With the
source function one has introduced essentially a
new parameter ‘‘a’’ which we may call the effec-
tive radius of the nucleon and which may be
defined as

d*xd’x’.

1 f Ux)U(x')

a |x—x'|

This quantity is identical with the so-called spin
inertia which enters in the classical theory of
spinning particles.?

The model with the extended source is not the
only possibility of a model which leads to a
convergent theory. The other possibility is the so-
called A-limiting process of Wentzel and Dirac!
which has the remarkable feature of leading to a
convergent classical theory of particles interacting
with a field without destroying the relativistic
invariance of the theory. However in quantum
mechanics some of the approximations are still
divergent so that the A-limiting process serves its

3 H. J. Bhabha, Proc. Roy. Soc. A178, 314 (1941).

* G. Wentzel, Zeits. f. Physik 86, 479, 635 (1933); 87,
7%6( (;9\;‘)1). P. A. M. Dirac, Ann. de L’Inst. H. Poincaré 9,
13 (1939).
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purpose only if it is coupled with some other
formalism which takes care of the remaining
terms.® The condition for weak coupling is
different from the condition in the case of the
extended source, and it is found that the weak
coupling condition can be fulfilled in this theory.2

In spite of the entirely different approach of
the two methods the result for the nuclear force
between two nucleons is strikingly similar in the
two cases. The essential difference between the
two theories is to be found in the prediction of the
existence of excited states of the system ‘‘nucleons
plus meson field” in the case of strong coupling.
The excitation energy of these states is in the
case of pseudo-scalar meson field

AE=€{S(S+1)_'%}1

where s is a quantum number which may assume
all half-integer values, %, £, -- .. The parameter
e is related to the coupling constant f of the
dimension of length and the nuclear size ‘@’ by
the formulal!

e=ahc/4f%

The first excited state will then be 3¢ above the
ground state of the nucleons. The ground state
of the nucleon isdoubly degenerate corresponding
to the two states “proton’’ and ‘‘neutron” of the
nucleon while the excited states allow higher
values for the charge as well as the spin. Thus the
first excited state for instance has total spin § and
the charge number may assume all integer values
from —1 to +2.

For the discussion of the physical consequences
of this theory the magnitude of € is the decisive
factor. If e is large compared to the energy of a
two-nucleon problem, then the force which
derives from the strong coupling theory is
identical with the weak coupling case apart from
a numerical factor.® If ¢ is comparable or even
smaller than the total energy in question, then
the nuclear force exhibits entirely new features.

Foradiscussion of the nuclear forces, scattering
experiments with high energies will therefore be
of particular interest. Such experiments were

8 P. A. M. Dirac, Proc. Roy. Soc. A180, 1 (1942). W.
Pauli, Rev. Mod. Phys. 15, 175 (1943).

8 W. Pauli and S. Kusaka, Phys. Rev. 63, 400 (1943).
M. Fierz and G. Wentzel, Helv. Phys. Acta 17, 215 (1944).
G. Wentzel, Helv. Phys. Acta 17, 252 (1944).
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carried out by Amaldi? and co-workers and by
Champion and Powell.? It is the angular de-
pendence of the N-P scattering which was meas-
ured by these authors up to energies as high as
14 Mev. The results show a marked preference of
the scattering in the forward direction. It is
interesting that the weak coupling theory in any
of the symmetrical forms is at variance with this
result.® This feature is directly related to the
exchange character of the nuclear forces which
causes a reversal of the sign of the potential in
P-states and thus a strong backwards.scattering.

On the other hand the strong coupling theory
leads to the correct angular distribution for an
isobar-energy ¢=15 Mev.1® This seems to be an
indication that the strong coupling variety of the
meson theory with its prediction of the isobaric
states of nucleus corresponds to reality.

In view of this conclusion it seems of con-
siderable interest to look for other experimental
phenomena which would give even more direct
evidence for the existence of the excited states of
the nucleons. Thus for instance if scattering
experiments with nucleons were carried out with
an initial energy of the scattered particles larger
than 2AE=6¢ in the laboratory system, the
scattering will contain an inelastic part where one
of the nucleons is excited. Calculations indicate
that the ratio of the inelastic to the elastic cross
section will be of the order 0.03 for an initial
energy of the scattered nucleons of ~100 Mev in
the laboratory system.!

This paper treats the theory of another possible
process which could be observed and which
would furnish a clear cut and simple proof of the
existence of excited states of the nucleons, the
inelastic photo-effect of the deuteron. If the
deuteron is irradiated with 100 Mev y-rays which
can now be produced with the betatron or similar
devices for accelerating electrons, then one would

7 E. Amaldi, D. Bocciarelli, B. Ferretti, G. G. Trabachi,
Naturwiss. 30, 582 (1942).

8 F. C. Champion and C. F. Powell, Proc. Roy. Soc..183,
64 (1944).

9 L. Hulthén, Arkiv. f. Mat. Astron. Fys. 29, No. 33
(1943). B. Ferretti, Nuovo Cimento 21, No. 1, 25 (1943).
J. M. Jauch, Phys. Rev. 67, 125 (1945).

10 G. Wentzel, Helv. Phys. Acta 18, 430 (1945). Accord-
ing to a private communication of Professor Wentzel, it
seems however impossible to reconcile such a low value
of e with the instability of the !S-state of the deuteron.
This question needs therefore further investigation and

more accurate exgeriments should be performed.
1 J. L. Lopes, Ph.D. Thesis, Princeton University.
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observe in addition to the normal photo-dissocia-
tion a certain fraction of dissociations with
excitations of one of the nuclear particles. Be-
cause of the change in velocity, such dissociation
protons would produce a considerably stronger
ionization in a Wilson chamber and could there-
fore be in principle detected.

The excited states of the nucleon have a very
short lifetime because of the emission of a mag-
netic dipole radiation. The electric dipole and the
electric quadrupole radiation are zero in the
strong coupling approximation.* The transition
probability is easily calculated from the well-
known formula

64
P=——p3| Mma|?,
3 he?

where » is the frequency of the emitted radiation
and M., is the matrix element of the magnetic
dipole moment operator which was calculated by
Pauli and Dancoff.} One obtains in this way for
the lifetime

r=1/P=1.15X10"15 sec.

The decay radiation carries within the average
the excitation energy of the nucleon. Because of
the Doppler effect it may fluctuate around this
value by as much as 30 percent. This fact may
make the identification of an excited proton
difficult. However if the neutron is excited by this
process this difficulty does not appear.

2. NOTATIONS AND FORMULATION OF
THE PROBLEM

We consider in the following the two-nucleon
problem with the interaction operator which
follows from the charge symmetrical theory with
a mixed pseudoscalar and vector field. The two
coupling constants and the two values of the
masses shall be taken as equal in magnitude. We
obtain in this way the strong coupling form of the
theory which was originally proposed by Mgller
and Rosenfeld.? In the static approximation of
the interaction operator (nucleons at rest) no
tensor force is obtained in this theory. It is very

h" I am mdebted to Professor W. Pauli for discussion on
t 1s
ferencel page 1
s (“ ;: Mgller and L. Rosenfeld Kgl. Danske Vid. Sels. 17,
1940)
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likely that the correct nuclear interaction should
contain a tensor force already in the static
approximation but we disregard this force for the
problem which we want to discuss here. The total
value for the cross section is probably not
appreciably influenced by this approximation
although for some of the finer features of the
photo-dissociation, as for instance the angular
dependence of the emitted protons, the tensor
force would be essential.’® The approximation
introduces a considerable simplification in the
calculation.

In this theory a nucleon is described by the
following commuting variables: the position
vector z, the spin vector s, and the isotopic spin
vector t.* The commutation rules of angular
momenta apply for s and t. The magnitudes of
these vectors together with their third component
form a complete set of commuting quantities
with respect to the internal degrees of freedom.
In a representation in which these quantities are
diagonal we have

Sz=t2=S(S+1), (S=-%,%,---), Sg=m, t3=n,
—s<n,m<s, (mn==+} £3 -..).

The physical significance of s is the spin while for
t only the component ¢;3 has a simple physical
interpretation. The charge quantum number of
the nucleon is ¢3+%=n-+4%. For the ground state
we have s=%, n=23. Thus the charge is re-
stricted to the two values 0 (neutron) and
1 (proton).

We distinguish the two sets of variables for the
two nucleon problems withindices : 2,81, t1 ; Z;82, ta.
The quantum numbers s, m1, #1; S2, M2, 2 May
be used to label the internal states of the two-
nucleon problem. The interaction operator be-
tween two nucleons may be written

Ve SR L

r

where p is the mass of the meson, 7= |z;—2.| and
I' is a certain operator, operating only on the
internal degrees of freedom. T is the generaliza-
tion of the operator (=;-%2)(o:1:-02) of the weak

13 Cf. for instance, W. Rarita and J. Schwinger, Phys.
Rev. 59, 556 (1941).

4 We use in the following the notation of W. Pauli and
S. Kusaka (see footnote 1). The units are atomic units
k, ¢,and 1 cm.
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coupling theory, where ¢ and = denote the ordi-
nary and isotopic spin matrices. In case e is large
compared to the average energy we can disregard
the matrix elements which connect the ground
state of the nucleons with its excited states. For
the remaining matrix elements we have then!

T—¥(z1-%2) (01 09).

The total energy of the two-nucleon system in
the absence of any external perturbation will
then be

1 1
Hnuc ="~P 2+——P 2
o oM
exp ["ﬂ"]r

r

Fel(s1+2)°+ (s2+5)* =2} +(fw)?

The first two terms represent the kinetic energy
of the two nucleons, their masses being taken as
equal. The third term is the isobar energy, and
the fourth term is the interaction energy.

We consider now these two nucleons under the
influence of a radiation field described by the
operator of the vector potential

1 1
A(x)=—o
= B

X {a(k) exp [tk-x]+a*(k) exp [ —skx]}.

e
Hint= -
M

e 1

2+ oy

where here and in the following we use the
abbreviation ‘“‘conj.” to denote the Hermitian
conjugate of the preceding expression. We re-
mark that by virtue of (1) the order of the factors
p and A is not important. For the field energy
alone we have from electromagnetic theory

Hiiea= 23 kla*(k)a(k).

Since the field operators a, a* satisfy the commu-
tation rules

[(l.—(k), as*(k,)]= 51’36101:'1

the above expression for the field energy may also
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To simplify the calculations we have adopted the
usual procedure of describing the field in a cubical
box of volume V=LIL3. If we impose periodic
boundary conditions, the vectors k are restricted
to the values k;=2mn;/L with integer numbers #;.
Since we are dealing with a pure radiation field
the vector A(x) satisfies the condition VA=0,
which implies for the operators a(k)

k-a(k)=0. (1)

The interaction of a charged particle of charge
e with an external electromagnetic field is ob-
tained by replacing in the force free Hamiltonian
the momenta p by p—eA where A is to be taken
at the position z of the particle. This leads to
terms in the Hamiltonian which are linear and
quadratic in A. The quadratic terms do not
contribute anything to the photo-dissociation of
the deuteron. They lead rather to scattering of
photons, processes which are not considered in
this paper. In the following we disregard, there-
fore, the quadratic terms. Since the charge of the
elementary particles may be any positive or
negative integer in this theory corresponding to
the state of the internal degrees of freedom, we
must replace the scalar quantity e by the more
general charge operator defined above: e(¢3+3).
We obtain in this way the operator for the
interaction of the electromagnetic field with the
nucleons the expression

{(tV43)p1-Az1) + (P +3)p2- A(zo) }

{(tsV4+3)p1-a(k) exp [1kz, ]+ (t:? +3)p2-a(k) exp [ikzs]+conj.},

be written as
Hiicla= 2 kn(k, \),

where n(k,A\) denotes the number of photons
with propagation vector k and polarization . In
our problem the unperturbed state of the field
will be described by one of the n’s of a given k and
A being equal to 1 while all the others are equal to
zero. Thus Hyielq simply reduces to Hyjela =R°.
The total Hamiltonian for the problem of the
photo-dissociation may now be written as follows

H=H\wa+Hiieta+ Hint. (2)
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We have disregarded in this expression for H the
interaction of the field with the magnetic moment
and the meson field directly. As Pais has shown,
both these effects give a negligible contribution
to the cross section in the energy region which we
are going to consider.!®

A considerable simplification of the problem is
obtained if we transform to a new set of variables
of which some are constants of motion. Now it is
easily seen that S=s;4s;and T =t;+4t; commute
with the Hamiltonian (2) and hence are constants
of motion.'® A commuting set of integrals is
obtained from these if we consider

S2=S5(S+1);
T*=T(T+1);
Ss=M;
T3=N.

S and T are integers and represent the values of
the total spin and isotopic spin which for a given
set of s, s» are subject to the conditions of the
vector model

[s1—s2| €S, T< s1+52. 3)

M and N, which represent the third component
of the spin and isotopic spin are restricted by

—T<NKT.

The quantum numbers S, T', M, N, s.s; form
again a complete set of numbers for labeling the
states of the internal degrees of freedom of the
nucleons. The advantage of this set is however
that the operator T is diagonal with respect to
S, T, M, N and decomposes for each set of these
numbers into submatrices with respect to s; and
s2. The transformation of the operator I' to this
representation was carried out by Fierz.!? It will
not be necessary to write down here the complete
expression for these matrix elements since we are
going to use them only for a very special case.

For the following it will be convenient to
introduce the coordinates of the center of mass

18 A. Pais, Kgl. Danske Vid. Sels. Mat.-Fys. Medd. 20,
No. 17 (1943).

18 See W. Pauli and S. Kusaka, reference 1, page 407.

17 M. Fierz, Helv. Phys. Acta 17, 181 (1944).
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and the relative coordinates for which we write
Z=13(z1+2,),
Z2=2,—2,.

The corresponding transformation of the mo-
mentum is

P=pi+p: P=3(p1—P2),
with the solutions

z21=Z+3z, p1=3P+p,

z,=Z—13z, p,=3iP—p.

3. PERTURBATION THEORY

The problem which we want to treat here is the
interaction of electromagnetic radiation with the
deuteron. It is of course necessary to make a
perturbation calculation where we consider the
interaction energy of radiation with the deuteron
as small compared to the energy of the deuteron
and the radiation alone. Such a procedure in-
volves the exact knowledge of the unperturbed
wave function, in this case the wave function of
the deuteron in the ground state and in the
dissociated state.

The deuteron problem in the strong coupling
approximation leads to a very complicated
eigenvalue problem since the operator T' has
matrix elements which connect the ground state
s1=S$=13 with an infinite series of excited states.!?
Fortunately it is possible to show that for suffi-
ciently high values of the excitation energy AE
the influence of the states with s;7% or s,#% are
negligible. The condition for this to hold was
shown by Pauli and Kusaka! to be that | Ep | KAE,
where Ep is the binding energy of the deuteron.
This condition is well satisfied for AE~45 Mev
since | Ep| =2.17 Mev. We decompose therefore
the operator T' into two parts I'=Ty+T';, where
T'y contains only the diagonal elements of T and
I'; contains the off diagonal elements. These
latter will be important for the calculation of the
inelastic photo-effect but they are unimportant
for the calculation of the unperturbed wave
functions of the deuteron. The Hamiltonian of
the problem may then be written in the form

H=H0+H”

18 M. Fierz and G. Wentzel, Helv. Phys. Acta 17, 215
(1944) ; G. Wentzel, Helv. Phys. Acta 17, 252 (1944).
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where
Hym—Prp—pt e s+ D (2]
aM M
eHr
2 To+k°,
+(f#) , o+ (4)
eHr e
H'=(fu)*—T1——{(t:*+3) (P+p) - A(z))
r M
+ (@ +3)GP—p)-A(z)}.
with A(z;) given by
1
A(z) =\—/—I; 2k (2k°)*{a(ky Nex
Xexp [1kz;]+conj.} (1=1,2), (5)

H’ is the perturbation term in our problem. The
differential cross section for the photoelectric
effect is given by perturbation theory to!

do=27V|9M|%dpE, (6)

where dpr represents the density of final states
per unit energy range for the initial energy E. 91
stands here for the matrix elements of the
perturbation energy which connect the initial
with the final states. It is equal to

m=HIF’=f‘I’IH"I/FdT )
for the direct transitions and
HI II’HIIF’
M= qg——mm 8
EI _EII

for the indirect transitions. In the first case we
obtain the first-order effect of the elastic cross
section whereas the second case describes inelastic
processes with excitation of the isobaric states.
This latter case also contains a second-order
correction to the elastic photo-effect which is
however negligible and is disregarded here. There
exists no direct (first-order) transitions which
would excite the isobaric states. This is caused by
the fact that the perturbation energy H’ is a sum

1 Cf. W. Heitler, The Quantum Theory of Radiation
(Oxford University Press, New York, 1936), first edition,
p. 121,
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of two operators, the first of which gives only
rise to transitions of the internal states of the
nucleon whereas the second changes one of the
numbers of the photons in the radiation field. A
simultaneous change of both kinds is therefore
only possible through a second-order transition of
the type (8).

For the wave functions ¥y, ¥y, ¥r which
describe the initial, intermediate, and final states
we have the following expression

Wy =q)(1k,x)lllp(1) 5311 /25321 /251', 063, 1
X éxM, Mobn,01/4/V exp [“KZ]. (9)

Here ¢(1x,) denotes the wave function of the
radiation field with one photon present of momen-
tum k and polarization in the direction ey. ¥p(z)
is the wave function of the deuteron which in the
ground state is a spin triplet (S=1) and an
isotopic spin singlet (T'=0). The total charge is
N+1=1 so that N=0, while M, the spin com-
ponent in the xs-direction may assume the three
values M,=0, 1. Since the: interaction operator
is diagonal with respect to M it follows that the
cross section is independent of M, and we may
take for the initial state ar: arbitrary value of M,
and calculate with it the total cross section
without any further averaging. The last factor in
(9) represents the wave function of the motion of
the center of mass with momentum vector K.
The wave function is antisymmetrical with re-
spect to interchange of the two particles as it is
required by the exclusion principle, since the
symmetry character of the spin-isotopic spin
function is (—1)5*T and ¢p(—2z) =y¥n(2).

For the intermediate states II which in the
elastic case (7) are the final states, we have two
possibilities since the transition may occur to
states with T=1 as well as T'=0. Since the
Hamiltonian (4) is symmetrical in the two par-
ticles these states will again be antisymmetrical
as the initial states I. If the energy of the ejected
particles is sufficiently high we may treat them as
free, a procedure which is characteristic for the
Born approximation. We write therefore

—c

1
X 53_ 10M, Mo&)v, 00s11 IZS&zlﬁweXp [1,'K’Z]

sin xzdr, 1]

COS KZdr, 0

(10)
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Here x denotes the value of the relative mo-
mentum of the two particles and K’ is the
momentum of the center of mass.

The final states F have one of the quantum
numbers s =$. Since the operator I' is symmetrical
in 5152 and the initial state is s;=s,=14, it is only
the symmetrical combination of these two states
which can occur as final state. The inequality (3)
forbids any final states with T'=0, thus only one
final state is possible described by the wave
function

2\} 1
\Pp=q)(0) (-——) sin K'Z&T, 155, 15M,M05N, o
14 V2

1
X { 8311 /28323 /2+ 5313 /25321 /2}—-— exp [@K'Z]. (11)
VvV

The energy of the unperturbed system which
belongs to these states is

1
E=E=—K+Ep+k°,
4M

1 1
EII=—'—'K,2+_K27 >
4M

1
T; (12)

1 1
Erp=—ZK"4+—«"243e.
AM M
From the conservation of energy we have
1 1 1
—K?+Ep+k'=—K"2+—x"243e.  (12')
4aM 4M M

For our special choice of the initial state of the
radiation field we have for the matrix element of
the field operators

®(1)a*(&K'N)B(0) = danOyxr
®d(1n)a(k’\)®(0) =0.
From (5), (7), (9), (10), and (11) we find for the

(13)
(14)
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different matrix elements??

e
Himn/=—
M A\/EV

(x-ex) 0k kK-

1
Xfxbp*(z) exp [—Ek-z] cos xzd%, (15)

e
Him = ——

M /R e

: 1
X f ¥5*(z) exp [——kz] sin xzd%, (16)
2

, 16 (fw)?
IIp =—
|4
exp [—ur]
Xf —————sin xz sin ¥'zd%.  (17)
r

The é-function in the first two equations expresses
the conservation of momentum

K+k—K'=0. (18)
The relations (12’) and (18) which are four
equations with six variables determine the energy
of the ejected particles as a function of their
direction. This dependence is useful if one has to
distinguish experimentally between protons which
are emitted in the elastic or the inelastic process.
We have for the velocity vp of the proton which
is emitted in the direction § with the incident
y-ray if the deuteron was initially at rest (K=0)

k |2 }
vp=——lcos 0:l:(4——sin2 0) }, (19)
2M |k|2

where |k|? has to be taken from the energy
Eq. (12') without or with the last term 3e
according to whether the process is elastic or
inelastic.

4. EVALUATION OF THE CROSS SECTION

For the evaluation of the integrals in (15), (16) we assume for the wave function of the deuteron

in the ground state

¥n(z) =(8/2m)}(1/r)e "

with 8= (M|Ep|)L

20 The numerical factor in Hiy, ¢’ is obtained from Fierz’ expression of the matrix elements for I' (cf. reference 17).



282 J. M. JAUCH

With this function the integrals may readily be evaluated and we have

[wr@ [ x ] (87p)" e (20)
z) exp | ——k-z | cos xz= (8~ ,
R 8+ (x+30)) (B (x— 31
fll/ *(z) exp[ ik z] sin ¥z 1(87B)} xk (21)
D —-k- xz=—1i(8x ,
2 B2+ (x+3k)%) (824 (x— 3k)?)
exp [ —ur] 8mrx v’
f ——————sin ¥z sin ¥'z= . (22)
r (4 (e —x")1) (u2+ (x+x")?)

The density function dpg for the final states with propagation vector « situated within a solid angle
dw around a fixed direction (34, ¢) is given by

1V 2dlc
T2 (2n)8

K“—— =

w
dE 3273

dpg Mrdw. (23)

For the differential cross section of the elastic photoelectric effect we obtain from (6), (20), (21), and
(23) for an incident radiation with momentum k and polarization direction e,

62

(62+K2+T}k2)2+(x'k)2

1
do=— .
(B4 1) — (- 10)?

21 ME°

3K(ex"<)2l
If we average over all directions of the polarization of the incident light we obtain for
1 27
(ex-x)a?=x«?sin? 9— f cos? pdo=3k2sin? d.
21I’ 0

For the total cross section we obtain then by integrating over all the directions of « the formula:

82 B2+K2+i‘k2 52+K2+%k2+lfk
o= x{ In -2 (24)
MEk? Kk B2+«2+1k2—xk
For kk<<B2+«*+1k? this expression goes over into the formula of Bethe and Peierls,*
2 e? Bk?
(25)

"T3ME (B eIyt

These two expressions (24) and (25) are only then appreciably different from each other if /M ~1 for
100-Mev y-rays k/M~3%. For these energies the error due to the simplified wave function of the
deuteron is probably still larger. It must be remarked also that for 2~ M the relativistic effects which
we did not consider here become important. The inelastic cross section is obtained from (6) and (8).

2L H. A. Bethe and R. Peierls, Proc. Roy. Soc. A148, 146 (1945). In comparing our formula with theirs,.one has to
remember that the unit of charge is so chosen that e?=4x/137.
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For oM we obtain with the help of (20) and (22)

(8 )} B2+x*+1k?
sm———(fu) k°)lV\/Bf( Bg+xz+lk2)z_(x k)?

x-x 1

X
(u2 K242 —4x-x'

d. (26)

1
Ep+k——kr——2
M M

The integration must be carried out over all values of the wave vector for the intermediate states.

The last factor has a pole for
k= (MFEk*—B2—1k2)

The value of the integral would thus become undetermined unless some boundary conditions for the
wave functions are introduced. The condition which is here necessary requires that in the intermediate
states for large distances from the scatterer only out-going spherical waves shall exist. As is shown in
the appendix this condition leads for the integration over the magnitude of « to the rule that the pole
must be avoided by displacing the path of integration around the pole into the lower half of the
complex «k-plane.

We carry out first the integration over the angles. Here a simplification is possible if the energy of
the y-radiation is not too large; more precisely, if

kk/(B*+k* 4R 1. (27)

This is the same condition which allowed us to replace (24) by (25).2 In this case we may neglect the
variation of the denominators and we obtain for 9% the simplified expression:

' (&r)* (- €) ()
=— 2__ )
(f") ( ) (2r)3 T Ve S o e

The integration over the angles is now easily carried out and the result is

B\ (8m)}
. _?( fuy? (_) am
with

; fao 4dK
o (A24?) (B2+K2)2(C2—'K2).

Ar=grtiee,

B= I‘2+K/2r

C2 = kM__ﬁ2 1
Since the integrand is an even function in k, we may extend the path of integration from — © to + .
The pole k= — C on the negative real axis will then be avoided by displacing the path of integration
into the positive imaginary half-plane. Since the integrand goes to zero like x—* for large « we can

complete the path of integration by a large half-circle in the positive imaginary half-plane to a closed
path and then use the theorem of the residues. With this method we obtain

I=ir{Res (44)+Res (iB)+Res (C)}.

# This approximation corresponds to the neglection of multipole transitions. For 100-Mev y-rays the error due to this

gproxunatlon is about 20 percent. Neglecting the tensor force introduces an uncertainty which is probably larger than
is error
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A detailed numerical discussion shows that the first two terms may be neglected for y-rays with
energies ~100 Mev.? We find thus for the integral the approximate value
o Cc3
I=1— .
2 (4*+CH(B*+C?
The cross section for the inelastic photo-effect becomes then
k'3 (M —pB2—1k?)3

B
o’ =0.053(fu)‘e?*— — .
k3 M (u+«"2+kM—B2—1k2)*

The ratio of the inelastic to the elastic cross section is

Py (ME— 82— 1BV (ME — B2 — 1k2— 3¢ M)}
—=0.08(fu)* M2 - .
o (u2+2ME—282— k2 —3eM)*

For k~100 Mev we may neglect the term %k? in all these brackets and we have, writing x= Mk
B o Jo=0.08(fu)* M2F(x),
xHx+3eM)E
Tt 3eMA22)¢
F has a maximum at x=3%{3u?—6e M+ [ (3u?—6eM)?+18e M (u2+3eM) }} which corresponds to an
energy of the incident vy-rays of 87 Mev. For this value of the energy we have
' /a~0.125 X (fu)4.

For (fu)* Pauli and Kusaka® find the value 0.14 while Hulthen? obtains ~0.58. Hulthen's value is
calculated without the tensor force which furnishes additional attractive potential in the ground state
of the deuteron. This is the reason for the somewhat higher value. Since we have calculated without
the tensor force throughout, Hulthen'’s value is probably the better. The correct value would probably

F(x)

be somewhere between these two. With Hulthen’s value we find for ¢’/o near the maximum:

¢’ /o ="17.2 percent.

5. CONCLUSION

It is seen from (28) that the ratio of the number
of inelastic to the number of elastic photoelectric
dissociations of the deuteron is near the maxi-
mum about 7 percent. The maximum is reached
for an initial energy of the y-rays of 87 Mev if we
assume the first excited states of the nucleons at
45 Mev. Itis conceivable that a systematic search
for the inelastic dissociation process might lead to
the discovery of the excited states of the nucleons.

APPENDIX

We use the stationary state method of perturbation
theory and write for the problem

(H+H')Y=Ey.

2 [ am indebted to Mr. E. Gross for some help with the
evaluation of these integrals.
( u If) Hulthen, Arkiv fér mat. astr. och fysik A28, No. 5
1942).

(28)

E is the total energy, H is the unperturbed Hamiltonian
given by (¥), and H' is the perturbation energy. The states
are labeled by &, «, s where k stands for the state of the
radiation field, « describes the relative motion of the nu-
cleons, and s contains the quantum numbers for the internal
states of the nucleons. We write then for the wave function
the development

v=vot+v1+yat---,

where the terms are arranged in rising order of smallness.
For these wave functions we obtain then the following set
of equations:

Hyo=Eyo,

H'y=(E—H)o,

H'y=(E—HNWn, «--.

Let the state of the unperturbed system be denoted by
Vo(kokoSo). Since H is diagonal in the variables kokoso, this
function will be a é-function in these variables representing
a photon with momentum and polarization, characterized
by the letter ko, a deuteron in the ground state with center
of gravity at rest (xo) and the internal degrees of freedom se
of two nucleons in the ground state.
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From the second equation we obtain then

1
E—Ex

where E is the energy which belongs to the state (k'«’s’).
The second term is so chosen that this solution when
transformed to X-space represents only outgoing spherical
waves provided that we define an integration over the pole
E=EFE; always by its principle value.® The second-order

Va(B'x's") = (B'x's’ | H'| koxoso){ —ind(E—Ex )},

% Compare P, A. M. Dirac, The Principles of Quantum
Mechanics, Clarendon Press, Oxford, second ed., p. 195ff.
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solution which is of interest in our problem becomes then

3 (b, x, s|H'|B'c's')(B'k's' | H' | Boxoso)

1
'#i(k! K, S) —E—E}F Kate?

1 . 1
X{E_Ex—nr&(E—Ex)f-.

The summation on the right-hand side is equivalent with an
integration without é-term in such a way that the path of
integration is displaced in the complex «-plane around the
pole in the negative imaginary half-plane. This was the
procedure used in the text.
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The pair theory of Marshak and Weisskopf was investigated assuming strong coupling. The
strong coupling criterion is A = (Nf/u)>5 where f=coupling constant, u=heavy electron mass,
N= f U*(x)d*, U(x)=source function of the nucleon. N2=1/xa?, where a =source radius (all in
units where A=c=1). With this condition, the magnetic moment turns out to be of order 47,
and of magnitude too small to account for the observed anomalies. The leading term in the
potential of the force between two nucleons (for 745 >2a) is independent of the spin orientations,
of the coupling constants, and of the type of coupling (as long as no derivatives of the heavy-
electron field quantities occur in the coupling term). This potential is identical with the one
calculated by Jauch and Houriet, but was not considered by Nelson and Oppenheimer. The
next term in the potential is of order A73. It corresponds to a superposition of a (Z4-Zz) term, a
tensor force term, and an ordinary force. Being of order 472 it is too small, however, to fit the

experimental results.

1. INTRODUCTION

HIS paper deals with the strong coupling
version of the meson theory proposed by
Marshak and Weisskopf.! In this theory the
meson field quantity is assumed to be a complex
spinor. The associated quanta (mesons) are then
heavy electrons in all respects. They satisfy
Dirac’s equation in the absence of interactions
with nucleons. The negative energy states are
taken into account by the usual hole-theory
approach. The interaction term with the nucleon
is assumed to be quadratic in the meson field
quantities. This identifies the theory as a ‘“pair
theory.” The name refers to the fact that in the
weak coupling approximation the mesons are
emitted and reabsorbed by the nucleons in pairs.
*Now with RCA Laboratories, Princeton, New Jersey.

1R. E. Marshak, Phys. Rev. 57, 1101 (1940); R. E.
Marshak and V. F. Weisskopf, Phys. Rev. 59, 130 (1941).

The particular interaction term proposed by
Marshak and Weisskopf is of the form

Hi=fy*(2) P (2). (1.1)

Here H; is the interaction term in the Hamil-
tonian, f is a coupling constant, ¢ is the meson
field quantity (an operator), a cross denotes its
Hermitean conjugate, z is the position of the
nucleon in question, and P, is one of several
operators which are possible if we want the theory
to be relativistically invariant. Marshak points
out that it is possible, in a weak coupling theory,
toeliminate all but one of them by a consideration
of the deuteron problem.

It is true, however, that a weak coupling
theory based on an interaction term of the form
(1.1) can never explain the anomalous magnetic
moments of the proton and neutron. Since H;
contains both ¢+ and ¢, the isotopic spin of the



