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The difFiculties of the classical theory of the electron are examined and methods to eliminate
them are given. It is shown that the whole theory can be derived from a division of the total
field created by a point charge in two parts, one which reacts on the generating particle and
accounts for the emission of radiation, another which does not react on the praticle but acts
on other particles. There are several types of motions of the particles depending on the kind
of field they generate, fields which are always solutions of Maxwell's equations. Only three
types of motions are, apparently, physically interesting: (a) motions with positive or negative
kinetic energy in which the particles radiate, and (b) radiationless motions analogous to the
stationary motions of quantum theory. It is shown that the field picture of Faraday and
Maxw'ell must be revised because npt all the electric actions between particles can be con-
sidered as arising from their interaction with a field. The whole theory of the particles and the
field can be derived from an action principle and boundary conditions for the equations of
motion of the particles and the field.

INTRODUCTION

THE classical theory of the point electron
- - presents serious difFiculties arising from the
divergences of the field on the particle's world
line: (a) The energy of the field diverges and
(b) the force acting on the particle is infinite, if
it is taken as the Lorentz force corresponding to
the total held at the particle's position.

The divergence of the force is perhaps the
worst difhculty. Dirac' has found a method to
overcome this difhculty and to justify the
equations of motion which were obtained
approximately from the Lorentz theory by
neglecting divergent terms and the terms which
depend on the particle's inner structure. Fol-
lowing Dirac's work, Pryce' has shown how it is
possible to get a 6nite energy of the electro-
rnagnetic field. However, these theories have
some unsatisfactory features. First, they in-
troduce infinite energies of unknown nature in
order to cancel out the divergencies of the elec-
tromagnetic ones. Second, they do not lead to
unique equations of motion and stress-tensors.
The second inconvenience is connected with
the 6rst one, because the lack of unicity is a
consequence of the indeterminateness of the non-
electromagnetic energies and momenta.

Later, Dirac' worked out the theory in a more
elegant way by introducing the so-called X-proc-
ess which has been already used by Wentzel. 4

The X-process enabled Dirac to build a Hamil-
tonian formalism. This method has the incon-
venienc of being of an entirely formal nature,
and it seems impossible to base on it a satis-
factory quantum theory.

However, there is a very simple method, sug-

gested by electrostatics, that has not been
worked out until now and which leads to a very
simple classical theory and can also be used in

quantum theory. ' The divergencies of the total
field on the electron's world line are due only to
the divergence of the electron's own field. A
similar divergence occurs already in electro-
statics but it does not lead to any difficulties.
Let us consider the static field created by n point
charges Q,', the force acting on Q; is

8s8gF;= —Q r;.
j 8' r'~'

the summation being carried over all the other
particles; r;; is the position vector of Q; in rela, tion
to Q;, and r;; is the distance between Q; and Q~.

~ This paper is a reduced and somewhat generalized
form of a more extensive paper sent to The Physi@a/ Review
in March of 1945 which will appear in the Sees. Bras. Math.' P. A. M. Dirac, Proc. Roy. Soc. Ale7, 148 (1938).

s M. H. L. Pryce, Pr~. Roy. Sx:.Alee, 389 (1938).

' P. A. M. Dirac, Ann. de 1'Inst. H. Poincard 9, 13 (1939);
Proc. Roy. Soc. A180, 1 {1942).

'G. Nentzel, Zeits. f. Physik 86, 479, 635 {1933};87,
726 (1934).

~ M. Schonberg, Phys. Rev. 67, 122 (1945}and 67, 193
(1945).
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The energy W of the field is

8g8p~=kZ E
s jy ~ rsvp'

Frenkel' made an attempt to extend this method
to the general dynamical case by assuming that
there is no self-force. But it is easily seen that it
is not possible to get the Larmor loss without
introducing a self-force. This was already shown

by Synge's work. ' We must look for some
invariant way of splitting the particle's held in

two parts: one which reacts on it and accounts
for the Larmor loss; another which does not act
on the generating particle, though inHuencing

the motion of the other particles. Such a division
of the 6eld was already proposed by Leite Lopes
and Schonberg. ' It will be the basic assumption
of this paper.

2. Besides the divergence diSculties there are
others of a different nature, related to the sta-
bility of motions of electric particles. It has been
assumed that there is no classical possibility of
stable accelerated motions of charged particles be-
cause of the radiation losses; the existence of sta-
tionary motions would be characteristic of quan-
tum mechanics. However, Fokker' has shown a
long time ago that it is possible to develop a classi-
cal theory of the motion of a system of charged
particles in which there are no radiation losses,
provided it is assumed that the force between
tw o particles-is half-retarded and half-advanced.
Fokker's theory did not include the possibility
of radiative processes and therefore was not duly
considered, until recently, when Wheeler tried
to use it as the starting point of a general theory
of the dynamics of charged particles. It turns
out that Fokker's interaction between two
charged particles is precisely that part of their
interaction which is due to the 6elds called
attached 6elds by Leite Lopes and Schonberg, '
the part of a particle's 6eld which does not react
on it.

Fokker's theory leads to satisfactory results
when applied to the motion of a particle in an
external 6eld and presumably also in the case of

' J. Frenkel, Zeits. f. Physik 32, 518 {1925).
~ J. L. Synge, Proc. Roy. Soc. A1V'l, 118 {1940}.' J. L. Lopes and M. Schonberg, Phys. Rev. 6V, 122

(1945).' A. D. Fokker, Zeits. f. Physik 58, 386 (1929}.

the motion of a system of particles which cor-
responds to the stationary motions of quantum
mechanics. On the other hand Eliezer" has shown

that the Lorentz-Dirac equations of motion do
not give always satisfactory results when applied
to the motion of systems of particles as well as
to the motion of a particle in an external field.
We shall see that it is possible to formulate a
consistent set of principles from which result
both the Lorentz-Dirac equations and the Fokker
equations, the type of equations of motion de-
pending on the type of motion, without giving up
Maxwell's equations for the 6eld which are always
satisfied. Though the 6eld created by a particle
is always a solution of the Maxwell equations,
their behavior at the boundary is not always the
same. The nature of the boundary conditions
imposed on the solution of the field equations
determines the type of the equations of motion
of the particles.

The same general principles which conciliate
the Lorentz-Dirac equations with Fokker's
equations lead also to a satisfactory theory of
motions with negative kinetic energy. It is
generally assumed that the investigation of such
motions belongs to quantum theory, but this
point of view is not quite satisfactory because
the existence of negative kinetic energies is not
a quantum effect. If we try to develop a classical
theory of such states of motion, there are con-
siderable difhculties arising from the impossi-
bility of "hiding" such states by means of the
Pauli principle, as it was done by Dirac in his
theory of the positron. However, it turns out
that the equations of motion of a particle with
negative kinetic energy are the same as those of
a particle with opposite charge and positive
kinetic energy, even taking in account the reac-
tion of radiation, provided it is assumed that
particles with negative kinetic energies generate
advanced fields in non-stationary states of
motion. The fact of generating advanced fields
gives to these particles properties similar to those
of holes, because the advanced fields result from
the superposition of converging spherical waves,
so that the particles which generate such 6elds
behave as sinks of energy.

' J. Eliezer, Proc. Camb. Phil. Soc. 39, 173 (1943),
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PART I. NOH-STATIONARY MOTIONS

General De6nitions

3. We shall consider only charged point par-
ticles without electric or magnetic moments.
Since the magnetic moment of the electron is a
quantum effect our theory will be applicable to
electrons. The motions of a system of charged
particles in which there is radiation of energy
will be called non-stationary motions, those in
which there is no radiation of energy will be
called stationary motions.

We shall assume that any particle has only
two kinds of momentum: the kinetic one 6~i, ;
and the electromagnetic one GI',

~

de'
6"k. = tSC1G z

potential. Taking in account the expressions of
the advanced and retarded potentials due to
Dirac'

f' de'
Ar„r(z) =2e h({x&—z&} {x„z„—})eds, (7)

-oo ds
+" dx~

A~,av(z) =2e 8({x"—z"}{x„z„})a—ds. (8)J" ds

we get
f'+" dxI'

Ar„(z) =e ~ 8({x&—z&} {x„—z„})ads. (9)
3 „ds

8 is Dirac's symbolic function, s' is the value of
s corresponding to a point on the particle's
world line such that

{xl'(s') —z&} {x„(s')—z„}(0. (10)

Equation (9) shows that the attached field does
not change when the sign of the elementary
interval ds is changed.

We shall call radiated field of a point particle
the dift'erence between the total field created by
the particle and its attached field:

however, in general we will not have

e
6"ei =—A "act',

C

m is the rest mass of the particle, e its electric
charge, and A&„t the potentials of the field which
acts on the particle. If we allow ds to take both
positive and negative values, we shall have b
positive and negative kinetic energies, the s
of the kinetic energy being the same of ds

rad F part F at.

ds = e(dx"dx„)&, a = &1.

The Equations of Motion
ign

4. Our theory of the non-stationary motions
of a charged particle will be derived from two

(5) basic postulates:

We shall call attached field of a point particle
half the sum of its retarded and advanced fields.

In our tensor notation the metric tensor g&r II)
has the components

F""acr= F""err+ F""rsai

F""raa = (F""rer—F""a ) a~v—
2

(12)

F01——8„

00 g 11 22 33 F&", t is the tensor of the external field.
It results from Eq. (13) that, in a non-

01 02 eg03 12 13 28 0g =g =s =g stationary motion with positive kinetic energy,

e field tensor F&" is taken in such a way that a particle generates a retarded field and, in a
non-stationary motion with negative kinetic

F02 =&y, F03 =~., energy, it generates an advanced field:
F32 =II„F13=II„, F21 =II„

E and I being the electric and magnetic vectors.
The field F„, is given in terms of the potential
by the relation:

F„„=BA„/Bx& —8A„/Bx",

F"".r = y(F""-~+F"".a )
F&" is a field tensor and A& the corresponding

F&"„t when e&0
F "part =

F&',d„when e &0

Dirac' has found that, on the world line of a
particIe, the diR'erence between its retarded and
advanced fields is given by the formula:

4 (d3x~ dx" d'x" dxI')
F""rvr —F""sav =—e{ (»)

3 (ds' ds ds' ds)
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Therefore on the particle's world line

(d'x~ dx" d'x" dx~)
I'""g g = geeI

'E ds ds ds' ds &

Taking in account Eq. (16), it is easily seen that

2 e' (d3x dx d'x. d'x")
+

3 c L, ds' ds ds' ds'&
(18)

Equation (13) shows that the radiated field
of a particle in non-stationary motion is a solu-
tion of the Maxwell equations corresponding to
a field of pure waves; Eq. (l.1) shows that both
F&"„,& and F&",~ are solutions of the Maxwell
equations which correspond to the current due
to the particle.

5. The equations of motion of the particle are

d x~ e dx
~~ "acg ~

ds c ds
(19)

Taking in account the expression (18) of the
self-force Eq. (19) becomes

d ( dxl' 2 e' d'x&) 2 e' dx& d'x„d'x"—imc
dsk ds 3 c ds'i 3 c ds ds' ds'

e dx„
=-F&", i . (20)

C dS

Hence when e=1, Eq. (19) coincides with the
Lorentz-Dirac equations. The electromagnetic
momentum of the particle is

e 2 ee' d'xt' e
G&,i A&,., ——— =—A—&„,+G&„,-(21)

c 3 c Is c

2 ee' d'xt'
Gv

3 C ds

Gt'„ is the four vector of the acceleration mo-
mentum, introduced by Schott" in the case of
positive kinetic energies, We see that 6&„ is the
part of the electromagnetic momentum of the
particle due to its radiated 6eld.

The third term in the left-hand side of the

"G.A. Schott, Phil. Mag. 29, 49 (1915)-

But F&"„q is the part of the particle's field which
reacts on it and, so, the self-force is

e dx„
+"seir =—~"'rat

C dS

equation of motion (20) corresponds to the
Larmor loss when e = 1. In the case of a negative
kinetic energy this term corresponds to a Larmor
"gain, "but it leads to a damping of the particle's
motion because, in order to stop a particle with
negative kinetic energy, it is necessary to supply
it with positive energy.

Equation (20) does not change if we change
simultaneously the signs of both the charge e

and the interval ds. Hence:
A particle neith charge e has the same equations

of motion as a particle uith charge —e and opposite
kinetic monsentum —G&i,;,.

The preceding theorem explains the reason
why it is necessary to assume that a particle in
a state of negative kinetic energy generates an
advanced field: otherwise it would not move as a
particle with positive kinetic energy and opposite
charge. It is important to keep in mind that,
though the particle with negative kinetic energy
moves as if it had positive kinetic energy and
opposite charge, it generates a field correspond-
ing to the real sign of its charge.

Proper Time in Motions with Negative
Kinetic Energy

6. The basic postulates I and II can be ex-
pressed in a more elegant form by introducing
a generalized conception of the flow of proper
time.

In relativistic theories the time appears in two
different forms: (a) as one of the coordinates in
the four-dimensional universe; (h) as the proper
time of the particles, measured by the length of
the arcs described on their world lines. Of course
the real signification of time must be attached
to the length of arc described on the world line.
This is seen clearly in general relativity because,
in a curved. universe, it is not possible to choose
the coordinates in such a way that the diHer-
entials dx' along the world lines of the particles
coincide always with the elementary intervals ds.

The usual ideas about the flow of time impose
the choice of a preferred orientation of the world
lines of the particles, in such a way that

dx'/ds) 0.

There is no strong argument against the assump-
tion that there are two possible orientations of



THEORY OF THE POI NT ELECTRON

the world lines of the particles, .corresponding to
two difkrent types of motion: motions with
positive kinetic energy, with dx/ds)0, and
motions with negative kinetic energy, with
dx'jds&0. Thus, our purely mathematical con-
vention (5) would correspond to the two possible
orientations of' the particles world lines.

Each observer chooses the coordinate x' ac-
cording to its proper time fIow and, thus, the
particles whose proper times do not flow in the
same direction as the observer's time appear as
having negative kinetic energies. Now it becomes
intuitive why particles with negative kinetic
energy generate advanced fields:

The fieLd generated by a particte in non
stationary motion is aLways a retarded fieLd for an
observer whose proper t&ne ftows in the same sense
as the particLe's proper time

This proposition can be verified easily by
observing that a change of sign of ds in Eq. (8)
transf'orms the advanced potentials of a particle
with charge e into the retarded potentials of a
particle with the same charge, moving on the
same world line.

Now the apparent asymmetry of the treat-
ment of the states with positive and negative
kinetic energies disappears. We may formulate
postulate II as:

The radiated field of a particte is hatf the dif
ference between its retarded and advanced fieLds

measured by an observer whose time fLows jn the

same direction as the particle's proper time.
From the preceding considerations it results

that the direction of time fIow for a charged
particle in non-stationary motion is always such
that there is an emission of energy for an observer
attached to the particle, when there are no in-
coming external waves. It is not necessary to
introduce statistical quantities such as the en-
tropy in order to define the direction of time
Row for an observer, the radiation of electro-
magnetic waves already selects a direction of
time flow.

Equations of Motion for Systems of Particles

V. The postulates I and II allow us to write
the equations of motion of a system of particles.
The 6eld F&";,„g which acts on the ~th particle
is the sum of the total fields F&";,p„g due to the

PART IL STATIONARY MOTIONS

8. Postulate I is a generalization of the law of
inertia which is presumably valid for any linear
6eld theory, provided we replace the tensor F&"„&

by the adequate quantities of the considered
field. It corresponds to the physical idea that the
radiated field gets detached from the particle and
behaves as an external field, so that the self-
force arising from it has really the character of
an external action.

Postulate II can be easily generalized. The
natural condition we must impose on a radiated
field is that it be a solution of the field equations
corresponding to a wave field. In the electro-
magnetic case this condition is satisfied if we
take

(Ira) Fa ——(Fa Fa )
2

(28)

other particles, of the external field Ii, ~&" in
which the system moves and of the partide's
radiated field Iit";,„g

F "v, act = P F "j,part+ F "ext+F""r,red' (24)
jy'i

because the fields Iit'"j, p f, are external fields for
the ith particle. Therefore the equations of
motion of the system are

d'x& e; (
mic =

l E F "j.part+ F "ext
ds,' c Qg~

+F""*,-a l (2~)
ds;

Formula (24) leads to an expression of the force
E;& which generalizes the electrostatic formula
(&)

e ( ) 2~e,'
Q Fav. +Far l+

c (jwi ) 3 c

(d'x & dx,& d'x;, „d'x;")xl,+, , l
(26)

4 ds ds; ds ds,')
It is convenient to define the radiation field of

a system as the sum of the radiated fields of its
particles

(27)

The radiative losses of a system are due to the
action of F&"„qon the particles of the system, as
we shall see later.
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q being an arbitrary constant. The non-sta-
tionary motions correspond to q= e. Let us
examine what results by assuming that

(IIb) (29)

part ~ at. (31)

Therefore condition I I b corresponds to a
vanishing self-force and to a total field created
by the particle equal to the attached 6eld. This
is an acceptable value of Ii&"„,t because it is a
solution of the Maxwell equations corresponding
to the charge and current generated by the
particle (any value of g would give an Fs"~„,
which satisfies this Maxwell system). Since there
is no self-force, there is no radiative damping of
the particle's motion and, presumably, no
emission of radiation. The value (31) of F""„„&
is precisely the value of the Fokker theorv' in
which there are no radiation losses.

Postulate I I b characterizes the stationary mo-
tions. Since there is now no self-force the equa-
tions of motion are

d'x~ e dx„
mc =—F&",xt

ds c ds

It is very remarkable that the order of the
equations of motion of a charged particle is not
always the same: in non-stationary motions the
equations are of the third order but they are of
the second order in stationary motions. This is
a consequence of the fact that the third-order
derivatives are introduced by Schott's accelera-
tion momentum G&., which does not exist in
stationary motions.

Let us consider now a system of particles in
stationary motion. It is easily seen that

From Eqs. (12), (28), and (29) it results that

act F ext

Taking into account the definition (11) of the
radiated 6eld we get

The most interesting type of stationary motion
is that of a system free from external actions.
This is the type originally considered by Fokker, '
it is a relativistic generalization of the e-body
problem of Newtonian mechanics.

dx& e,
G,"=tn;c +—Q A";,si.

ds; c jgi
(35)

Taking into account the expressions of the 6elds
in terms of the potentials, the equations of
motion can be written in the following form

dos& e; 8A";, at dx;, „

dss c jgi Bxs, p ds;
(36)

The rate of variation of the total momentum
of the system, for an observer in a Lorentz frame
of reference whose time is t, is in general not nil

d )dG;s ds;)—g, G,'=P~ ' '
~

~0,
dh

' '; &ds, dt's*; =.i

but its time integral vanishes

p+m r +~ dc&—Q G,&dt=g ds, =0. (38)
&-m d~ s s "-a)

Equation (38) may be considered as the law of
conservation of energy and momentum in sta-
tionary motions. It shows that there is no per-
manent loss of energy and momentum by
radiative processes. Equation (38) is a con-
sequence of the relativistic generalization of the
principle of action and reaction:

p+" BA";,t dx;, „
e; dSs

J ~ Bxs ~ ds;
p+" 8A'„-.t dx;, ,

Conservation of Energy, Momentum, and
Angular Momentum

9. The total momentum of the ith particle of
an isolated system in stationary motion is

ised P +, j, pare+ F ext
jydi = Q ~""p', ac+I'""ext.

p+j

Therefore the equations of motion are

d'x,& e; ( 't dx;, ,
m, c

' =—'~ g J";.,+~"...
~ds c Egg'

' ) ds;

(33)

(34)

The principle of action and reaction (39) is valid
even in non-stationary motions, because it
results immediately from the expression (9) of the
attached potentials of a particle.

The total angular momentum of the spinless
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particles which we consider is

(40)

1+"d3d "
ds, =0.

ds;
(41)

Equation (41) can be easily derived from Eqs.
(36) by taking into account the expression (9)
of the attached potentials of a particle.

Some Stationary Motions of a Particle

10. The simplest stationary motion is that of
an isolated particle. It results from the equations
of motion that it is a uniform rectilinear motion.
Dirac' has shown that the Lorentz-Dirac equa-
tion for a free particle has two types of solutions:
the uniform rectilinear and the self-accelerated
motions. We can get rid of the self-accelerated
motions by assuming as relativistic law of
inertia that: The motion of an isolated point
charge is stationary.

Another very simple motion of a particle is its
stationary motion in a Coulomb field. In this
case Eqs. (32) are the same studied by Som-
merfeld in the old theory of the atom. So we see
that the orbits of the old quantum theory cor-
respond to classical stationary motions; the
quantization rules of Bohr and Sommerfeld
select those orbits which correspond to the
quantum stationary motions.

Eliezer" has found difticulties in the applica-
tion of the Lorentz-Dirac equations to the theory
of the electromagnetic Kepler proble~ and to
the electromagnetic two-body problem. These
difficulties disappear if we treat those motions
as stationary motions. As we have already indi-

cated, there is an essential difkrence between
stationary and non-stationary motions due to
the acceleration energy. In stationary motions
there is no acceleration energy, which behaves
as an invisible source of energy and accounts for
the self-accelerated motions and other physically
meaningless situations. So, for instance, in the
self-accelerated, motions of a free particle the
acceleration energy tends to —~ when time

There is a law of average conservation of P, M,&"

in stationary motions of isolated systems

tends to 00 and, thus, allows the kinetic energy
to increase indefinitely, supplying at the same
time the radiated energy. It is necessary, in the
cases in which the Lorentz-Dirac equations are
valid, to introduce suitable time boundary con-
ditions in order to avoid the difFiculties due to
the acceleration energy. This was already done
by Dirac' in the case of a particle which receives
a light pulse. We will discuss later these time
boundary conditions in a general form. In
Eliezer's analysis the initial conditions ia. the
recessive motion of the electron are taken in such
a way that this motion is of the self-accelerated
type; the decrease of the acceleration energy
allows the particles to get apart with steadily
increasing relative velocity. The time boundary
condition that we introduce in Section I8 ex-
cludes such motions.

11. Synge' has discussed the electromagnetic
two-body problem, assuming that each particle
generates a retarded field which acts on the
others, but not on itself. He found that, with
these assumptions, there are no stable circular
orbits, though the rates of shrinking of the radii
are small. He found also an emission of radiation
at a rate much smaller than the Larmor rate.
The considerations we developed in Part I show
that the basic assumptions of Synge's theory are
not entirely satisfactory, because they exclude
the action of the radiated part of the field of a
particle on it, but not on the other particles. It
can be seen that the small emission of radiation
and the correlated shrinkage of the radii of the
circular orbits are precisely due to the inter-
actions between each of the particles and the
radiated field of the other. If it is assumed, as
we did in our theory of the stationary motions,
that the two particles do not generate radiated
fields then there will be permanent circular
orbits. (See Appendix I.)

It is noteworthy that, even in Synge's theory,
there are permanent circular orbits when one of
the particles has infinite mass. In this case there
are no radiation losses because the radiated field

of the heavy particle vanishes and, thus, there are
no dissipative forces acting on the light particle.
This shows that there is a radiative loss due to
the action of the radiated field of one particle on
the other.
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Electmm~metic Fie1d.s Generated, by
Pomt Proles

12. In Parts I and II we have shown how it is
possible to derive unique equations of motion
for charged point particles, avoiding the dif-
6culties due to infinite self-forces. The whole
theory of the equations of motion was built on
two basic postulates

of the system field+particles. In order to inves-
tigate this point let us introduce the stress tensor
of the 6eld T,I'

4&'rr" = p" totptot, ps+a&r"(p totptot, pp)

2'L—~pp', .tP', .t' "+'~ p(P"', .tP'. .t' ")j (47)

F&"&,& is the total field created by the particles
plus the field of the incoming external waves

~""b'av

P" sot= P" oat+Pa"rode

ppv d
— (ppv t ——par~ )

2

(42)
p "tot =pi p "i, part+ p "wsv

Our choice of the stress tensor is justified,
because there is a conservation equation

e; dx„-,
p»„..t—8(x' —x,')

X5(x' —x ')b(x' —x '). (49)

We may write, instead of (47),

= (P wav+ P i P i, rad) (Ptot pr+ Z j Pj sti pr)

%e considered three types of motions charac- BT&"

tenzed by the values —1, 0, and I of the
parameter q. These three types include all the
known motions of electric point particles, but
the theory of the equations of motion can be
developed for any value of g. In any case there
is a self-force E&,.if

1s

The total 6eld generated by the particle F&'„„&

~""pa~=~""as+~""raa

1+g j.—gp" rat, + p" ad» (45)
2

"'
2

and satis6es the Maxwell equations

BFI'"~„~ e dxf'
— = -4~- S( '-x(tx)) S(x' xt(j))-

Bx" c dI,

~~ "part ~~ part ~~" part+ +
Bx" 8x" Bxf'

Until now we have not investigated whether
there is conservation of energy and momentum

e dx,
E."seu =—~""ra@

c dS

2 e' I'd'x dx d'x d'x")
+

3 c kds' ds ds' ds' J

and the corresponding equations of motion are

d'xp 2 s' (d'xp dxp d'x„d'x "l
mc

ds' 3 c kds' ds ds' ds')
e dx„=—psr t (44)
c dS

+B."(P"-+Z P"',-d)(P. ' .+Z P;. ..)
+E Z (P""..tPj..t p. +a~.«P"', .tPj. .t «.). (5o)

~ jygj$

Equation (50) shows that Tp" diverges only as r '
at the particles' positions, because the radiated
fields are finite and the attached 6elds diverge
as r—' at the positions of the corresponding
particles. Therefore, the space integrals of the
components of the stress tensor over any region
are finite and they are not di8'erences of infinite
quantities, as it might appear from Eq. (47).

The momentum of the field is G&f;,i~

(51)

The components of G&f;,M are 6nite; thus we
have been able to get a 6nite energy and finite
momenta for the 6eld, without introducing
unknown quantities of non-electromagnetic na-
ture and without taking differences of in6nite
quantities.

13. The momentum G&f;,iq has a remarkable
property: it is a four vector. Let us represent
by Gpj(V) the momentum of the field contained
in a volume U of space. If we take as volume V
the entire space minus e small spheres of radii 0.
with centers at the point particles, we shall have
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at any point of V

(52)

According to a well-known theorem, it results
from (52) that the G"y(V) are the components of
a four vector. If we make a tend to zero, the
G"f(V) will go over continuously into the G&t;.tq
because the components of the stress tensor
diverge only as r ' at the particles' positions.
Therefore the G&~;,~~ are the components of a
four vector.

It is noteworthy that we have been able to
obtain a four vector of momentum for the field

without excluding the Coulomb forces, but only
the self-forces due to the attached fieMs. It is
well known that the classical objection against
the theories which consider the mass as being
of electromagnetic origin was based on the
non-vectorial nature of the fieM's momentum
6 f' $J But this objection disappears when we
take for the field's stress tensor the expression
(47). However, our theory does not lead, at least
in a straightforward way, to an electromagnetic
theory of the mass. So, for instance, the energy
of the field created by a particle in a free sta-
tionary motion is nihil.

The Poynting Vector

14. The components E of the Poynting
vector of the field, in which there are n point
particles, are

go c+Oa (53)

C CP=—[E...XH...j——g;[E;,.tXH;, .tj. (54)

From Eq. (49) it follows that

d—G'f;.tg—- —lim
~

(P n)ds
dt

d+s', vP'";,.t . (55—)

n is the unit vector on the outer normal of S.
The surface integral in the right-hand side of
Eq. (55) does not vanish automatically when
5-+~ because, in general, the electromagnetic
field varies inversely with the distance in the
wave zone, so that the Poynting vector varies

as the square of the inverse of the distance to the
point which we take as origin of the coordinates.
In order to make the surface integral tend to
zero, we must impose suitable boundary condi-
tions to the motion of the charged particles. %'e
shall examine later these conditions.

In order to investigate the behavior of the
fieM at the boundary it is convenient to replace
the retarded and advanced fields by their parts
which vary inversely with the distance. We
have:"

8
Eret + rety Hret [u X Eret jr

C Bt

1 8
(56)

E,g„—————A".g, H.g„——[E.g, Xu].
c Bt

u is the unit vector in the direction of the position
vector of the point in which the fields are com-
puted, relatively to the origin of the coordinates.
This origin is taken as a fixed point, inside the
charge distribution. A"„~ and A",q, are the
transversal parts of the retarded and advanced
vector potentials (we call transversal components
those perpendicular to u and radial those parallel
to u). In the wave zone we may take for the
transversal components of the retarded and
advanced potentials of the field generated by the
current density cJ the following values:

1
Jtr(xre xo g +~re)dxrtdxr2dxrt

1
(»)

A".~ =—~J"(x" x'+R+u, x")dx"dx"dx".
R 4

8 is the distance between the origin of the coor-
dinates and the point in the wave zone where the
potentials are computed. x' corresponds to the
time: x0= ct.

It results from formulae (56) that the Poynting
vector of a field, in which there are no other
waves besides those of the rg.diated parts of the
particles, is

[(~+n)'(& ' E,-t)'
16m

—(1—g)2(Q; E;,,g )'ju
c

Z*(E",-t —E",'-)u (58)
16m.

'~ W. Pauli, Handbuck der Pkysik (1933), XXIV/1, p.
203.
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fan+co

J
E';, „ddt = E';, ,gQt.

Hence, we have:

It can be seen that (see Appendix II):
p+CO ++CO

(P; E;...,)'dt = (P; E;.,„)'d~,

(59)

interior actions:

C

Prod [Etot XHtot j
4x

c——L(Q, E;,.) X (Q; H;, .)j, (65)

P'. =—[(Z*E;.,) X(P;H,;.,)j
4m

/+00 T++

PCh =—qu
4g

(Q; E; ..t)'.dh
——Q; [E„.t XH;, .tj. (66)

c=—gQ
4x

p+ 00 Taking in account Eqs. (59), we get easily,
(Z' Et, oao)'dt (60.) in the wave zone:

Equation (60) shows that there is a radiation
loss when q &0, a gain when g &0, and an average
conservation of energy in stationary motions
since g=0.

p+00

&-a«=

P;„ddt =0.

(67)

(68)

The Stress Tensor of the Radiation FieM

&5. Equation (50) shows that the stress tensor
of the total 6eld is the sum of two parts: a part
which contains the radiated 6elds of the par-
ticles and a part which does not contain these
fields. Ke shall call the first prat stress tensor of
the radiation 6eld and denote it by rl""»q

4~x~,.&;,= (F»,.+P; F-,...,)
X (Ft.t; o,+Q; F;,.t;,.)
+&b o(Fn to~++ F', ~od')

Equation (68) shows the conservative char-
acter of the actions due to the attached fields:
in the average they do not lead to any energy
loss. The radiation losses are entirely due to the
action of the radiation 6eld on the particles, as
it results from Eq. (67). Not only the particle's
own radiated 6eld, but alamo the radiated fields of
the other particles and the 6eld of the traveling
waves lead to radiative losses of energy.

The Actions at a Distance

X(Ftot'o +2'F; t o ) (6&).
Ke shall call the second part stress tensor of the
interior actions and denote it by T""; ~

4~T;„;,=P g (F;.,F,;.;, „
jy'i

+-,'b„&FI' ...tF,;.t;,.). (62)

Equation (49) can be split in two:

~T""»a

Bx

ding, p
(Ful +Q. Foo. &)

X b(x' x)b(x' xtt) b(—x' x t), —(63)—
s;( )dx,;,

~ P Ftto.
C Q'oot )

X b(x' —x;t) b(x' —xP) b(xt —x;t). (64)

~T"",me

8x"

We may define a Poynting vector for the
radiation 6eld and a Poynting vector for the "H. Tetrode, Zeits. f. Physik 10, 3ii (1922).

16. We cannot consider the interior actions
to be due to a field, because the interior force
which acts on each particle is due to the attached
fields of a)1 the others, so that there is no single
field which accounts for all the interior forces.

The interior actions of a system are the actions
at a distance of the Tetrode" theory; they are
also the same forces considered by Fokker' and
Wheeler. These actions at a distance are a
generalization of the forces of the old electro-
statical theory: it can be seen that the space
integral of 1";~ coincides with the electrostatical
energy W of Eq. (2), in the case of charges at
rest. Since we have now relativistic actions at a
distance, we can understand why they do depend
on the motions of the particles at different times:
they are actions at a distance both in space and
time. These interior forces do not lead to any
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loss Of energy, momentum, or angular momentum
as we have seen in the analysis of the stationary
motions; we also got the same result from the
analysis of the field.

In the same way as the interior forces, the
total forces acting on the particles actually do
not arise from any field, because for each particIe
we have a difkrent F&";,„t. This is the main
point of the theory of charged point particles:

In order to exclude infinite self forces ue must
introduce for each particle a different acting field
so that we can no longer say that the total forces
acting on all the particles arise from the existence

of a single field, as it happens in the Faraday
350,xwell theory.

Our theory of the point particles may be con-
sidered as a synthesis of the Faraday-Maxwell
theory of actions through a field with the
Tetrode conception of relativistic actions at a
distance. The total radiation field is, indeed, a
held in the Faraday-Maxwell sense and it ac-
counts for the propagation of the electromag-
netic waves. But, besides the field forces, there
are also actions at a distance which are due to
the attached fields of the particles and which do
not correspond to any wave propagation. The
circumstance that the attached fields are half-
retarded and half-advanced shows precisely that
they are not propagated, because they are sym-
metrical in relation to both directions of time
Row.

The di6'erence between the actions at a
distance and the actions through the field

becomes sharper in quantum theory: the radi-
ation field is quantized but the actions at a
distance remain unquantized. Presumably the
difhculties which appear in the quantum theory
of the interaction of point particles with fields
are all due to the physically inacceptable iden-
tification of the actions at a distance with actions
through the field. In particular, the nuclear
forces should be considered as actions at a
distance of non-electromagnetic nature.

PART IV

Boundary Conditions

17. The various types of motions of the par-
ticles are characterized by the kind of radiated
field they create. The radiated 6eld is a solution

of the Maxwell equations with no current
density which can be characterized by con-
venient boundary conditions. We may also
characterize the motions by means of theF;p t which are solutions of the Maxwell
equations corresponding to the current density
generated by the particle, determined by suitable
boundary conditions. Therefore, our whole
theory is contained in the Eqs. (69)

d-x;t' ei
m;c = (F&".„—,+Qr F&"),„„g

dsi c
dxi p—F~";.,) ', (69a)
dsi

8~A i part ei dxi
=4m — b(x' —x ')

Bx'Bxp c dt

XS(x' xP) e(x' —xP), (6—9b)

together with the boundary conditions for the
i, part

Boundary Conditions for the A&;, „.,t
It can be seen that the boundary condition for

0

A "i, part is

t'8 1 81 ( r)
(1+s;) lim r( —+——)A"; „„(r, t

&Br c Bti
'

& c)

i 8)= —(1 —g„) lim r~
————

~

k~r c (3t)

XA~;, „„ir, t+ i. (70)-
c)

The boundary condition (70) results immediately
from the well-known formulae

r J~(r, t r/c)—
A~(r, t) =

~

dr
v r

1 ~ 1 aA~(r, t r/c)—
d5

4z~~r Bn

1 t
-

t r&o(1/r)
A~( r, t4s,, k c& Bn

1 BA~(r, t r/c)—
+— — dS, (71a)

cr Bt
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t' Ju(r t+r/c)
A&(r, t) = dr

1 t 1 BA~(r, t+r/c)—dS
4x J8r Bn

if the motion of the system is not stationary.
Indeed, the rate of momentum loss by the ith
particle of a system is

2 eP dx,~ d'x, t' d'x;, ,
ns

1 BA~(r, t+r/c)
d5, (71b)

Bt

which give two alternative expressions of any
solution AI' of the d'Alembert equations

(72)

r is the position vector of the point where the
potentials are computed; V is a region of space
limited by the closed surface 5; n is the inner
normal of S.

Until now we have considered only systems in
which all the particles have the same value of

q; Eq. (70) corresponds to the most general
case in which each particle has its own q;.

18. Excepting the stationary motions in which

the equations of motion are of the second order,
the equations of motion are in general of the
third order. Therefore, it is no more sufficient
to give the initial positions and velocities of the
particles in order to determine their motions, as
it happens in non-relativistic dynamics. Dirac
has shown in a particular case, that it is possible
to determine completely the motion of a particle
by giving its initial position and velocity and
imposing a time boundary condition for t= ~.
This time boundary condition was introduced in

order to avoid motions with indefinitely in-

creasing self-acceler'ations of the particle. Since
the self-accelerations are due to the possibility
of an indefinite decrease of the acceleration
energy, we can generalize Dirac's time boundary
condition in the following way:

(III) "The acceleration energy and momentum
of the particles of a system cannot decrease or
increase indefinitely when t tends to & ~, if the
particles are not accelerated indefinitely by
exterior fol CeS.

It follows from this condition that, in general,
the acceleration of the particles of an isolated
system must tend to zero when t tends to + ~,

so, if its acceleration does not tend to zero when
t tends to + ~, the total amount of radiated
energy will be infinite and, since there is con-
servation of energy, this can only happen if the
acceleration energy diverges, if we exclude an
initial divergence of the kinetic energy. There is
also the possibility of an infinite radiation of
energy with a collapse of the system which
liberates an infinite amount of potential energy,
without an indefinite acceleration of the par-
ticles. The boundary condition III does not
impose any restriction at all to the behavior of
the systems in stationary motion, because in
such motions there is no acceleration momentum,
since q, =0.

The boundary condition lII is of a more re-
strictive kind than the condition introduced by
Dirac, because it restricts the behavior both for
t= ~ and t = —~. However, in the particular
case considered by Dirac it is satisfied auto-
matically for t = —~. It is necessary to restrict
the behavior at both time boundaries in order to
have a vanishing Aux of energy at the space
boundary of the field: it is easily seen that the
Poynting vector of the field created by the
particles vanishes at infinity if the accelerations
of the particles vanish for t=~ ~. Therefore,
Eq. (55) becomes

and shows that there is conservation of the
energy of the system particles plus field. So we
see that the time boundary conditions for the

motion of the particles are necessary in order to
insure the conservation of energy, in motions vouch
are not stationary. In stationary motions the con-
servation of energy is automatically insured by
the nature of the interior actions, so that it is
not necessary to introduce time boundary
conditions.

The time boundary condition II I is compatible
only with two kinds of behavior of the particles
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fort=+ ~:(a) uniform rectilinear motionsof the (80) can always be satisfied by assuming that
particles infinitely separated, or (b) a collapsed

O'A"
con6guration of a part of the system with the 8A;„a
other partides infinitely separated with uniform Bx"Bx„
rectilinear motions.

~A b'av =0
BX~BX1s

(81)
BA~„..=0

Bx"

i, raa =0
Bx"PART V. THE ACTION PRINCIPLE

9. The equations of motion of the 6eld and 22. We can get an action principle for the
the particles can be derived from an action system of the particles, from (74), by neglecting

SI=0, (74)
the last integral in the right-hand side of (75):

fs+QO e; t
+" dx, , „

Q m.c
~

ds. Q —. para~ ds,.
a &-a i

+QO e, f
+Qo dx;, „I.= —Q m, c ~l ds; —Q—

(8-')

+QO

e;e; » dx,& dx;, „
i jpi C 4 a dss dsy

Xb({x;r—x,&} {x;, x;, ,—})ds,ds,

Xdh'dh'dh'dh'. (75)

+GO

e,e; ~ } dx,& dx;, „' "5({x,'—x,'}
jwi c J J ds, ds&.

xj, r})ds dsr (83)

The action principle (82) coincides with the
action principle of Tetrode" and Fokker' when

Ii&'„q denotes the total radiation field

raw =+ war+pi F i, ra@.

In the action principle (74) we variate the coor-
dinates of the particles x,& and the potentials
AI'„a of the total radiation field, the Euler equa-
tions are

(i=1, 2, . n),

and with Dirac's action prmciple when

rj;=1 (i=1, 2, n).

APPENDIX I

Circular Orbits of Taro Particles

(84)

(85)

~A"-a =0.
Bx"

(80)

In the action principle (74) we consider the
A&;, ,~ as functionals of the coordinates of the
particles, taken as functions of the respective s,
defined by Eq. (9). It is worthwhile to observe
that even if we variate separately the A1';, „a we

get only the Eqs. (78). However, Eqs. (78) and

d'x,& e; It' ) dx;, „
m, c

ds;2 cE z. w'
' ) ds,

O'A'„a
=0,

BX~Bxls,

provided we introduce the supplementary con-
dltlons

dx,~ dx;, „
ds; dss

Let us consider two charged particles de-
scribing concentrical circular orbits in a plane,
in such a way that the line joining both particles
passes at each moment through the center of the
circular orbits. It is easily seen that the electric
field of each particle, at the position occupied by
the other, is directed along the radius of the
orbit and the magnetic field is perpendicular to
the orbits' plane, Therefore, each particle will

be attracted to the center of the orbits by a
constant radial force, in case both have opposite
signs and are, at each moment, at diferent sides
in relation to the center. We must see whether
it is possible to determine the radii Rj and R2 of
the two orbits and the circular frequency + of
the two circular motions in such a way that the
equations of stationary motion of the two parti-
cles be satisfied. Since the forces acting on both
particles are radial, we must consider only two
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equations:

COR—;(u'=e, E;,.g+ R~—r.. .
C

of A„t and A,~ in the wave zone

p+00

(86) A"„g=—
)

J"(k) exp [ ik—(ct R— u—x'~) ]

1 ——R
C

I'.;,,& and II;,,& are, respectively, the moduli of
E;,,~ and H;, ,t,. For each value of ru we have a
system of two equations for the radii R~ and R2.
It is evident from the circular symmetry of the
forces that there must be circular orbits, though
the equations are not simple enough to allow a
direct solution.

If we take two particles describing circular
orbits and assume that the retarded field of
each one acts on the other, though not on itself,
the circular symmetry of the forces disappears,
because there are now tangential forces due to
the action of the radiated fields of each particle
on the other. These tangentials forces, which
spoil the radial symmetry, produce a damping
of the motions and a shrinkage of the radii.
Assuming that the interaction between the
particles is due to their attached fields, we get
rid of the tangential forces, because the tan-
gential forces due to the advanced fields cancel
those due to the retarded fields.

„+~
Erec=-

R~
J"(k)k exp [ ik(ct—R u—~"—)]

Xdkdx"dx"dx" (91)
e+no

E,d„=— J"(k)k exp [ ik(ct+—R+u~")jR
Xdkdx "dx"dx". (92)

It is well known that the time integral of the
square of a quantity M represented by the
Fourier integral

P+00

ilf= ' e ""'OR(k)dk

is given by the formula

P+Qo 2x' f'
M'dt = OR(k)O—R(—k)dk. (94)

Xdkdx"dx"dx", (89)
p+re

A" g„=— J"(k) exp [ ik(c—t+R+u x"]zJ„
Xdkdh "dk"dx". (90)

Therefore, we have, in the wave zone

APPENDIX II

Let us represent J by a Fourier integral

Taking in account this formula and the Fourier
integrals of E„~ and E,d in the wave zone, we
see that

J=
) J(k)e "'dk- E „tdt= E'sagt. (95)

Taking in account formulae (57), we get the Formulae (59) are special cases of this general
Fourier integrals of the transversal components relation.


