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The Elastic, Piezoelectric, and Dielectric Constants of Potassium Dihydrogen
Phosphate and A~monium Dihydrogen Phosphate
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Measurements have been made of all the elastic, piezoelectric, and dielectric constants of
KDP and ADP crystals through temperature ranges down to the Curie temperatures. The
piezoelectric properties agree well with Mueller's phenomenological theory of piezoelectricity
provided the fundamental piezoelectric constant is taken as the ratio of the piezoelectric stress
to that part of the polarization due to the hydrogen bonds. It is found that the dielectric
properties of KDP agree well with the theory presented by Slater based on the interaction of
the hydrogen bonds with the PO4 ions. ADP undergoes a transition at —125'C which results
in fracturing the crystal. This transition cannot be connected with the H&PO4 hydrogen bond
system which controls the dielectric and piezoelectric properties, for these lie on smooth curves
that do not change slope as the transition temperature is approached. It is suggested that two
separate and independent hydrogen bond systems are involved in ADP. The transition tem-

perature and specihc heat anomaly appear to be connected with hydrogen bonds between the
nitrogens and the oxygens of the PO4 ions, while the dielectric and piezoelectric properties are
controlled by the H2PO& hydrogen bonds.

I. INTRODUCTION

' 'T was 6rst shown by Busch' that potassium
~ ~ dihydrogen phosphate KHIP04 and several
isomorphous salts, potassium dihydrogen arse-
nate KHIAs04, ammonium dihydrogen phos-
phate NH4HOP04, and ammonium dihydrogen
arsenate NH4H2As04 exhibited phase changes at
low temperatures. These crystals all exhibit
phase changes at temperatures ranging from 91'
absolute to 220' absolute temperature. It was
established for potassium dihydrogen phosphate
(which will be designated by the letters KDP)
and potassium dihydrogen arsenate (KDA) by
measuring the dielectric constants and the
associated charge potential loops that these
phase changes were of the ferroelectric type.
Similar measurements of ammonium dihydrogen
phosphate (ADP) and ammonium dihydrogen
arsenate (ADA) failed to show ferroelectric
properties on account of the sudden fracture of
these crystals at temperatures above the ferro-
electric Curie temperatures.

Measurements have been reported on the
elastic properties of KDP, ' and the piezoelectric

' borg Busch, "Neue Seignette Elektrika, "Helv. Phys.
Acta 11, No. 3 (1938).

~%'. I.udy, "Der EinRuss der Temperature auf das Dy-
namisch Elastische Verhalten von Seignetteelektrika, "
Helv. Phys. Acta 20, No. 8 {1942).

constant of KDP, ' over a temperature range, and
some of the piezoelectric and elastic constants
for all four crystals at room temperature, ' but no

complete measurements have been published of
the properties of these crystals over temperature
ranges down to the Curie temperatures. Such
measurements, for small field strengths, are pre-
sented in the paper for two of these crystals KDP
and A.DP. The measurements for the dielectric
constant of KDP are found to agree well with
Slater's theory' based on the temperature vari-
ation of the position of the dipoles formed by
the interaction of the hydrogens with P04 ions.
However, the transformation occurring in ADP
does not appear to be the ferroelectric type as
envisaged by Slater for KDP. The measured

piezoelectric relations agree with Mueller's' phe-
nomenological theory of ferroelectricity if the
fundamental piezoelectric constant is taken as
the ratio of the piezoelectric stress to that part
of the polarization due to hydrogen bonds.

'W. Ludy, "Piezoelectrizitat von Kalium Phosphate, "
Zeits. f. Physik 113, 302 (1939).' H. JaRe, "Piezoelectric studies of primary phosphates
and arsenates, " Abstract D.3, Bull. Am. Phys. Soc.
(January 19, 1945).

s J. C. Slater, "Theory of the transition in KHqPO4, "
J. Chem. Phys. 9, 16-33 (1941).' H. Mueller, "Properties of Rochelle salt, " Phys. Rev.
5'7, 829-839 (1940).
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FIG. 2. Etch 6gures developed oo ADP.

Fro. 1. Growth habit for ADP and KDP.

H. EXPRESSIONS FOR THE ELASTIC, DIELECTRIC,
AND PIEZOELECTRIC EQUATIONS IrOR

ADP AND KDP CRYSTALS

All of the crystals of the isomorphous group,
ADP, KDP, ADA, and KDA, crystallize in the
tetragonal scalenohedral class with the habit
shown by Fig. i. The c or Z axis lies along the
long direction of the crystal. This is an axis of
fourfold alternating symmetry. The X and F
axes lie normal to the prism faces. These are
axes of twofold symmetry. Since the properties
of crystals cut normal to these two surfaces are
identical except for sign, it is a matter of con-
vention which axis is called X and which Y,
The two diagonal axes, labelled Pj and Pg can
be distinguished by piezoelectric tests, and P~
has been taken as that axis along which a
positive stress (tension) produces a positiv~
charge at the positive (i.e. , the upper) end of the
Z axis. Kith the Z axis vertical and the P~ axis
toward the observer's right hand, the X axis has
been taken as the axis which runs from front to
back of the crystal and the F axis from left to
right (see Fig. 1). Etching studies by Dr. E. J.
Armstrong show that an etch 6gure can be
developed on the top surface as shown by Fig. 2

and the direction of the P2 axis is in the line of
the two spots.

For a crystal having this symmetry Voigt' has
shown that there mill be six elastic compliances
s~~, s~2, s~3, s33, s44, and s66, two piezoeIectric con-
stants d~4=d25 and d36, and two dielectric con-
stants X,=E„and X,. Voigt's method of
writing the elastic and piezoelectric relations is

X*=$11Xe+$12Fy+$13Zg s

gy =$uXg+$uFy+$yaZII

Zg =$13Xg+$13Fy+$38Zz I

—y, =S44~ F,—dg48, ;

—s.=s44~Z. —d~4B„;

xy —s66 Xy dN~z s

P.= ~g~B.—dg4Y, ;

Py = Kl + d14Z*,

P.= zg~Z, —dg6X„;

0 =P +8 /4rr,

(r„=P„+8„/4rr;

rr, =P,+P./4rr',

where x„., x„are the six strain components,
X, -,X~ the six stress components, B„~,E,
the three 6eld strengths along the three axes,
P, . . . , P, the three polarizations along the
three axes, and 0, , 0, the surface charges
normal to the three axes. s&~ to s66 are the -six

7 Voigt, Lehrblch der Arista'/ I'kysik (B. G. Teubner,
Leipzig, 1910).
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elastic compliances, 4~4, d36 the tv' piezoelectric
constants, al", a3~ the tvvo dielectric suscepti-
bihties of the crystal free to move (i.e., with the
stresses equal to zero). The compliances $44$,

see~ are shown with a superscript E to indicate
that they should be measured with the applied
6eld constant or zero. By eliminating the
polarizations, the last six equations can be

written
a.=KgE./4» —d g4 Y.,
o „=KPE„/4» dg4Z—„
o, =KI~E,/4» daeX—„,

where Xl~, E3~ are the "free" dielectric constants
which can be measured with the crystals uncon-
strained.

Voigt's relations can also be written by expressing the stresses in terms of the strains. These are
obtained by solving the 6rst six equations simultaneously, giving

X*=cnx +c19yv+cles, ; —Y =c44 y, —e14E; e =Kl E /4»+e&4y, ;

clgz +clly +cIIs Z c44 s e14E & Kl E /4»+e14s* (3)
—Z, = cimz. +cosy„+caas„—X„=eggs„—e38E„».=KscE,/4»+eggs„;

Cll C12 C13
Qll +33

Cll y
' '

~ C33 $ ~ C12 C22 C13

C13 C13 C33

6" the determinant obtained by suppressing the first row and first column of 6, etc. ,

c44 = l/$44; c66 = l /$66
'

el4 =dH/$44 =d14c44; e86 =d86/$66 = dasc66

Kge —Kg~ 4»(dg—4eN); —K$e K$~ 4»——(dseei—);
El~, X3~ are the clamped dielectric constants of the crystal which are measured when the crystal
is free from strain.

Voigt's relations express the stress, strain, and charge densities in terms of the applied field. It
has been shown' that for a ferroelectric type crystal, the Voigt type parameters go through very wide
changes when the crystal goes from a non-ferroelectric state to a ferroelectric state. However, if
instead of the 6eld strength, the polarization P or the charge density 0 is used to relate the elastic
terms to the piezoelectric terms it has been shown' ' for Rochelle salt that the elastic and piezo-
electric constants are normal while the clamped dielectric constant shows a continuous variation
with temperature. It is found advantageous to use a similar formulation for the constants of ADP
and KDP.

For measuring purposes the formulation in terms of the surface charges is more advantageous
since all the constants are directly determined by frequency and impedance measurements. Thus
expressed the elastic constants correspond to the electrically open cireuited condition while the
Voigt constants correspond to the electrically short circuit condition. To obtain a piezoelectric
constant that is independent of temperature requires relating the stress to that part of the pohrization
which depends on the temperature as will be shown later. The polarization constants are easily
eaIculated from the charge constants by simple algebraic relations as will be discussed.

The two forms of the equations involving charge constants can be derived from Eqs. (1) and (3)
by replacing E by e. The form corresponding to Eq. (i) is

4xa.
&x ~11xz+~12~1f+~l&s t Pz ~44 I s gl4&a ~ ~x +g14 ~z &

4xr„—
yv =$1%X++$11Fy+$13Zs i 8* $44 Ze gil0'y ,'Egr +g14Zz i

Xl~
4xo,

si =$1IXg+$1$Ye+$$8Zg,' —xe = $8e Xe g$60g i Eg +gIIXy,'
X3~

%'. P. Mason, "A dynamic measurement of the elastic, electric, and piezoelectric constants of Rochelle salt, " Phys.
Rev. 55, f'B-789 (i939).
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$44 = $44 d14g14', $00 = $60 d86g80 ', g14 =4%814/El, g$0 =48r8$0/Ea

4~o.
f14—y. ;cI g C44 ps f14&g iXg cllXg+C1'1/II+ C1$Zg s

The superscript o over the elastic compliances s44 and s« indicates that they are to be measured
with the surface charge equal to zero. This is the value of the elastic constant measured mechanically
or piezoelectrically in an air gap holder with a wide air gap. Similarly the form corresponding to
Eq. (3) can be written,

—VII =C18Xg+ CSQ II+C18Zg ', Zg —C44 Zg f14ITp q

4xr„
+0 f14Zg y

4vro,
+s C138pg+ C1$$0+CSSZs i Xp C66 zII f86&s ~ ~s

C
f$08CII i

3

c44 c44
——+e14f14, css CSS +e8——0f$0, f 4 4me14/E——1 =g14C44", f86=4pre$0/ES =gSSCSS ~

Other relations of interest that follow from Eqs. (4) and (5) a,re

4n 4m 4m 4~
g14 f14 44 y g86 ~JSS 00 i g14f14', = g36f80—

1 1 3 3
(6)

With all these interrelationships, all the di6'erent forms of expressing the piezoelectric relationships
can be evaluated from one set of measurements.

If we wish to test whether the piezoelectric stress is proportional to the part of the polarization
which varies with temperature and stress we can make use of the 6th and 9th equations of Eqs. (5),
for example

4xo.,
XII =CSS zp fSSIrsy +s fSIPpII

3

We can write that the total polarization is equal to a part Pso which is independent of the temperature
and strain and a part P, which varies with temperature and strain. Then the charge density o, is
equal to

. B 8@Cap
Ir. = +Pap+I'.—' = (1+4 appr)

1—4+I'.' = +I'.',
4m 4m 4x

where E30 is the temperature and strain independent part of the dielectric constant. Introducing
this value into Eq. (7), the equations for the piezoelectric elfect become

Z~ap
XSI=CSS XII f30 +Pg (9)

4m

4~ ~Z.Eap q 4~
Z, =

~

' +Z.'
I

—fSgc„or Z, = P,' — xy.*
ESck 4~ (ESc Eap) ES Eap

Introducing this value back in Eq. (9) the

4mp. '
—„&36*x '

&3c—~30

two piezoelectric equations become

fSSSEZSEac )—X'„=
~

cpp + [ppg f86 +s 3

4 pr(ESc —Eapi

where f800 is a constant relating the piezoelectric stress X„to the temperature variable portion of the
polarization P, . Since we cannot suppress one portion of the polarization, these equations are not
useful for measuring purposes, but if we have evaluated the charge constants, the proportionality
of the piezoelectric stress to the polarization component P, can be tested by determining the ratio

f (12)
p, ' X c—Xsg
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III. MEASUREMENTS OF THE ELASTIC CON-
STANTS OF ADP AND KDP OVER A RUDE

TEMPERATURE RANGE

In order to measure the elastic constants of
these crystals, seven oriented cuts of each type
of crystal are used. When the crystals are plated
and their resonant frequencies are measured, the
short circuited elastic compliances s;;~ are ob-
tained as discussed in Appendix I. On the other
hand, if the plating is removed and the crystals
measured in an air gap holder with a large air

gap, the open circuited constants s;, are ob-
tained. Near the Curie point, there is a large
difference between these constants, as can be
seen from Fig. 3 which shows a measurement of
the frequency constant of a KDP crystal cut
normal to the Z axis, with its length at 45' from
the X and Y axes. This crystal vibrates longi-
tudinally. As can be seen the frequency constant
of the plated crystal varies from 150 kilocycle-
centimeters to 65 kilocycle-centimeters in the
neighborhood of the Curie temperature (—151'C
or +122'K). The frequency constant of the
unplated crystal is a straight-line function of the
temperature until the Curie temperature is
reached. At that temperature a sudden discon-

tinuity of the resonant frequency occurs larger
than that occurring in Rochelle salt. This is
caused by what Mueller' has called a "morphic"
effect caused by a slight transformation of the
crystal lattice.

Similar curves for a 45' Z-cut ADP crystal
are shown by Fig. 4. At the temperature of
—125'C (148'K) the crystal suddenly shatters

'H. Mueller, "Properties of Rochelle salt IV," Phys.
Rev. 58, 80$—811 (1940).

FIG. 4. Frequency constants of plated and bare 45' Z-
cut ADP crystals.

into very small fragments. Even though the
temperature was taken very slowly through this
region it was not possible to prevent this shat-
tering. Since the dielectric constant and the
elastic compliance of the plated crysta1 do not
increase sharply to a maximum, we conclude
that the phase change is not one which involves
the dipoles contributing to the dielectric and
piezoelectric effect. It is a phase change of the
first kind while that for KDP is a transition
occurring over a range of temperatures.

Since it is simpler to measure the properties
of a plated crystal, this has been done for the
various cuts of ADP crystals and KDP crystals.
In order to supplement such data near the Curie
point of KDP, some measurements were made
of the elastic constants of the unplated crysta1s
cut normal to the Z axis.

Five of the crystals of each set were longi-
tudinal crystals with their lengths 6 to 8 times
their width and 12.5 times their thickness.
Crystals of these dimensions have been found
experimentally to be free of other modes of
motion and to have a very small width correction
to the frequency of the longitudinal mode. Hence
the elastic constants are the values of Young's
modulus appropriate for the plated crystal. The
other two crystals of each set are X-cut and
Z-cut crystals with one dimension long com-
pared to the width and thickness. It is shown
in the Appendix that such crystals produce shear
modes of motion coupled to Rexure modes. By
properly dimensioning the crystals, the effect of
the Bexure can be eliminated and pure shear
modes result. This allows one to measure the c44
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TAM.E I. Resonant frequencies of ADP.

Temper-
ature in

CgfCCS
cent.

70
60
50

20
10
0

—10
-20
-30
—40
-50—60

—70—80
-90

-100—110
-120

X cut, L ~22.5'
from Z axis

I.~20.015 mm
W~ 2.98$ mm
T~ 0.9 mm

plated

resonant freq.

88,900
88,980
89,020

89,100
89,150
89,190

89,210
89,300
89,380

89,450
89,510
89,590

89,670
89,720
89,800

89,880
89,940
90,010

90,100
90,190
90,230

Xcut, L~454
from Z axis

L ~20.00 mm
W~ 2.96 mmT~ 097 mm

plated

resonant freq.

94,400
94,590
94,780

94,930
95,110
95,200

95,300
95,490
95,640

95,810
96,000
96,200

96,380
96,555
96,700

96,900
97,100
97,290

97,460
97,620
97,780

X cut, L ~67.5O

from Z axis
L 10.00 mm

W 2.97 mm
T = 0.97 mm

plated

resonant freq.

116,000
116,320
116,910

11/,420
117,600
118,090

118,160
118,360
118,900

119,290
119,750
119,910

120,340
120,890
121,120

121,320
121,840
122,250

122,350
122,750
123,150

Z cut, L 122.5o
from X axis
L ~19.69 mm

W~ 2.94 mm
T ~20.96 mm

plated

resonant freq.

98,248
98,794
99,256

99,784
100,200
100,626

101,047
10),421
101,630

101,908
102,208
102,667

102,817
103,112
103,366

103,591
103,800
103,936

104,040
104,078
104,063

103,946
103,771
103,4/S

Z cut, L ~45'
from X axis
L ~19.74 mm

W' 2.95 mgnT~ 0.96 mm
plated

resonant freq.

79,720
80,110
80,560

80,880
81,300
81,640

81,980
82,26Q
82,420

82,570
82,820
83,110

83,280
83,470
83,620

83,740
83,850
83,890

83,900
83,860
83,730

83,520
83,340
83,040

Z cut, I. 450
from X axis
I.~19.74 mm

W'~ 2.95 mm
T~ 0.96 mm

unplated

resonant freq.

82,200
82,680
83,220

83,720
84,250
84,73Q

85,210
85,700
8S,910

86,140
86,590
87,050

87,420
87,840
88,190

88,520
88,890
89,22Q

89,510
89,910
90,220

90,590
90,950
91,300

and @66 shear elastic constants directly. An
alternate method used previously with Rochelle
salt' was to use a thickness vibrating crystal
dimensioned to eliminate extraneous modes of
motion. However the dimensioning necessary for
the face shear mode is less complicated and
moreover the @44 and c66 constants are evaluated
directly without allowing for the orientation
necessary to drive the high frequency shear
modes. By measuring high harmonics of the face
shear mode, a frequency corresponding to a
crystal very long compared with its width is
obtained, and this provides a measurement free
of width corrections for the shear modes.

Two of the length vibrating crystals are cut
normal to the Z axis of the crystal with their
lengths 22.5' and 45' from the X axis, respec-
tively. The value of $~P' (the inverse of Young's
modulus) along the length of the crystal is given

n 0.2

0

.IC p r
Z 0 I

Z LZ AXIS ~/.I
EJ4

0.4
-80 -60 -40 -20 0 gb 40 80 80 Ibb

O'EMPERATURE IN OEGREES CEHTIGRAOE

Fir. S. Thermal expansion measurements for ADP.

in the equation'

$11 $11(sin 'p+cos 'p)

+(2$y2+$M ) sin 'p cos 'p. (13)

Hence the two values of the frequency for these



ELASTIC, P I EZOELECTR I C, AN D D I ELECTRI C CONSTANTS 179

Tash. E II, Elastic compliances of ADP crystal cuts.

Temper
ature
in c

X cut, I.~22.5o
from Zpxis

st%

X cut, L~45O
from Zgxis

SN

X cut, I.~67.54
from axisSR%

Z cut, I.~22.54
from X~is

SR%

3.70X10-»
3.67
3.63

Z cut, l. 454
from axisS%II

5.59X10»
5.50
5.49

Z cut, I. 4$o
from X axis

SN

5.26
5.20
.'l. 12

70
60
50

40
30
25

4.40X10-»
4.39
4.38

4.37
4.36
4.355

3 895X10 "
3.875
3.86

3.855
3.840
3.828

2.575 X10-»
2.550
2.535

2.52
2.503
2.496

3.57
3.545
3.52

3.50
3.47
3.44

5.40
5.42
5.35

5.29
5.27
5.25

5.06
5.00
4 93

4.88
4.83
4.79

20
10
0

—10
-20
—30

-40
—50—60

4,35
4.34
4.33

4.315
4.31
4.305

4.295
4.29
4.28

3.815
3.795
3.775

3.765
3.75
3.73

3.72
3.715
3.70

2.486
2.472
2.45

2.43
2.415
2.404

2.39
2.37
2.36

3.425
3.41
3.40

3.36
3.34
3.335

3.33
3.32
3.305

5.23
5.20
5.16

5.13
5.09
5.07

5.06
5.05
5.04

4.76
4.70
4.65

4.60
4.55
4.53

4.51
4.47
4.42

—100—110—120

4.275
4.26
4.25

4.24
4.23
4.22

3.685
3.67
3.655

3.64
3.625
3.61

2.35
2.33
2.32

2.31
2.29
2.28

3.295
3.29
3.295

3.30
3.31
3.34

5.045
5.05
5.06

5.07
5.12
5.14

4.41
4.40
4.37

4.34
4.33
4.32

two crystals determine the s~~ and (2sie+see )
constants. The next three crystals had their
major surfaces normal to the X axis and their
lengths at approximately 22.5', 45', and 67.5'

4.5&10 I2

from the Y axis. The values of their Young's
moduli are given by the equation"

see —su cos Q+ (2s)3+$44 ) sin Q cos 'f
+see cos ep, (14)

4.0

& 3.0

Al

V

- 2.0
W 0

O l

o. l.o
o
O ~ ie

o 0.5'"

0

0.5

S33

S)2
0

~ I

where f is the angle of the length measured from
the Y axis.

A11 of the crystals were lightly gold plated by
the evaporation process and were held at their
nodal point by a spring clamp. Five such crystals
were put in one chamber" for which the tem-
perature and humidity could be accurately con-
trolled. For temperatures higher than room
temperature, a heater in the central chamber was
used to increase the temperature of the air.
This air was circulated through the measuring
chamber by means of a blower system and the

"l,0

- l.5 '

"l20 -80 40 0 40 SO

TEMPERATURE IN DEGREES CENTIGRAM

FIG. 6. Elastic compliances for ADP.

I 20

» This is proved for Rochelle salt in reference (8), Ap-
pendix I. The same proof holds for ADP if m'e let sqi ~sq3,
$22 —s12 ~

"This chamber was designed and built by T. G. Kinsley
and all the measurements over a mde temperature range
have been taken by Kinsley and Mrs. J. Barr.
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FK'. 7. Shear compliances for ADP crystals.

temperature could be controlled by a thermostat
on the heater system or on the blower system.
For temperatures below the normal room tem-
perature, dry ice or liquid nitrogen were placed
in containers in the central chamber. The tem-
perature in the measuring chamber was con-
trolled by a thermostat on the blower system,
and was measured by a mechanical thermometer
or a thermocouple inserted near the crystal
plates. Kith this arrangement temperatures
from —165'C to +250'C can be maintained in
the chamber. The humidity is kept low by the
use of calcium chloride.

Table I shows the experimental data obtained
for six vibrating ADP crystals. From these data,
and the frequency equation

it is possible to calculate the value of the elastic
compliance s22' (inverse of Young's modulus) at
the temperatures given. To determine the true
values however, it is necessary to know the
temperature expansion along the two axes X= F
and Z since this affects the values of / and p. The
value of p has been found to be j..804 by pyc-
nometer methods. " The percentage expansions
measured" from 25'C, for the two axes, are
shown by Fig. 5. The expansion along the Z axis
is considerably smaller and reaches a zero slope
at temperatures of about 60' to 80'C. Table II
gives values of elastic compliances for the six
ADP crystal cuts over the temperature range
measured. From these values and Eqs. (13) and
(14), the value of s~~, s33, (2s~2+seP) and

~ This measurement was made by %'. L. Bond.
'3The expansion measurements have been made by

Miss E. A. Baar.

-0 3-60 "40 -20 0 20 40 60 80 100
TEMPERATURE IN DEGREES CENTIGRADE

Fro. 8. Thermal expansion measurements for KDP.
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FIG. 9. Shear elastic constants of KDP.

(2s~2+s44 ) can be calculated. The values of s~~

and s33 are shown by Fig. 6.
To obtain the values of the two shear con-

stants s44~ and s«~, two crystals were cut normal
to the X and Z axes, respectively. These were
dimensioned so that the shear resonance was
obtained free from the other modes of motion
(mostly flexural modes). For the O' X cut,
having the dimensions I (along Z) =29.39 mm;
W (along F) =5.76 rnm; T=1.025 mm, there
was a 6rst resonance of 203,475 cycles, a third
harmonic of 572,020 cycles, and a 6fth harmonic
of 953,500. These give an assymptotic frequency
constant of j.09.8 kilocycle centimeters, which
results in a shear elastic compliance of s44~ = 11.50
X10—".Since the piezoelectric coupling is very
small along the X axis, this is also within experi-
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FIG. 11.Dielectric constants of ADP and KDP cut normal
to the X axis.

mental error the value of the s44 constant. By
measuring the 6fth harmonic over a temperature
range, the variation of the s44 constant was ob-
tained as a function of temperature and is shown
plotted by Fig. 7. In a similar manner a O' Z-cut
crystal having the dimensions I.=19.82 mm
along X, 8"=2.96 mm along Pand T=1.11 mm
was found to have the 6rst, fifth, and seventh
harmonics of 321,260 cycles, 1,575,298 cycles,
and 2,179,250 cycles, giving a frequency constant
of 92.0 kilocycle centimeters for the shear mode.
Over a temperature range, the corresponding
values of s«~ are shown plotted in Fig. 7. By
removing the plating another resonance curve
was obtained and the corresponding elastic
constant s« is shown plotted by the full line of
Fig. 7. It will be noted that the charge or "open
circuited" elastic compliance is a linear function
of the temperature while the potential or "short
circuited" elastic compliance shows the effect of
the variability of the electromechanical coupling
with temperature. By using these values of the
shear elastic compliances and the previously de-
termined values of (2sis+s44s) and (2s»+s, P),

FIG. 12. Inverse of dielectric susceptibility for ADP and
KDP cut normal to the Z axis.

the values of s~2 and s~3 can be evaluated and
are shown plotted in Fig. 6. It will be noted that
all of the open circuited elastic constants show a
very regular variation with temperature. The
direction in which the least temperature vari-
ation is to be expected for a longitudinal mode
is along the Z axis. However, since no piezo-
electric constant exists for driving such a vibra-
tion, this cannot be put to practical use.

A similar set of measurements has been made
for all of the constants of potassium dihydrogen
phosphate. In order not to burden the paper with
too much detailed data, only the results are
given. The changes in length of' the two axes
with temperature are shown by Fig. 8. The shear
elastic constants of KDP, down to the Curie
temperature, are shown by Fig. 9. On account
of the large variation in the c66~ elastic constant
this is plotted rather than its reciprocal see~. As
in ADP the coupling for an X-cut crystal is so
small that no appreciable diR'erence occurs
between c44~ and c44. The remaining elastic
constants of KDP are shown by Fig. 10. These
are somewhat less than previous values of
Ludy, ' who found values of 1.9)(10—"for s~~ and
2.2X10 " for s» at room temperature. Other
measurements of shear elastic constants s44~ and
seP have recently been published by JafFe. ' For
KDP he finds seP=15.5X10 " cm'/dyne at
room temperature which is slightly less than the
value of 16.4&(10—"found here. His values for
ADP of s44=11.6&10 " and s66~=16.6X10 "
check well with the values found here for room
temperature.
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IV. DXELECTMC AND PIEZOELECTRIC
CONSTANTS OF ADP AND KDP

The dielectric constants of ADP and KDP
have been measured by measuring the capaci-
tances of the free crystals in a capacitance bridge
at 1000 cydes. The results agree well with the
original measurements of Busch. ' The results for
the two crystals normal to the X axis are shown

by Fig. 11. On account of the high dielectric
constants near the Curie point for KDP cut
normal to the Z axis, the reciprocal susceptibility

y3~ ——4~/(Z3~ —1) (16)

is plotted in Fig. 12. According to the theory
discussed in the next section, this inverse sus-

ceptibility should be proportional to the dif-

ference in temperature between the actual tem-
perature and the Curie temperature. This pro-
portionality exists for about 100' a,bove the
Curie temperature, —151'C, but above this a
bending ofF occurs which would be accounted for
if we assume a temperature independent dielec-
tric constant of value 4.5. This gives a "free"
dielectric constant of

Xg~ ——4.5+3122/(T+ 151)

at any temperature above the Curie temperature
of —151'C, and indicates that the dielectric
constant is made up of a part which varies only
slightly with temperature, and another part, due
presumably to the hydrogen bonds, which varies
inversely as the temperature di6'erence. A
similar equation fitting ADP is

EI~ 7.0+2670/(T+ 28——7),

indicating that the Curie temperature due to
the hydrogen bonds is in the neighborhood of
absolute zero. The clamped inverse suscepti-

where s~~g' is the inverse of the short circuited
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bilities are calculated from the piezoelectric con-
stants and Eq. (3).

The piezoelectric constant of KDP was
measured by W. L. Bond of these Laboratories
in 1937. His method was a static one of suddenly
removing a weight on a lever placed on both a
quartz crystal and a KDP crystal and adjusting
the position of the fulcrum until the voltage
generated by one crystal balanced that from the
other. From the piezoelectric equations given in

section II, the constant of KDP can be compared
with that of quartz, which is known quite pre-
cisely. Bond's results are given in Fig. 13.
Because of the fact that KDP has a volume
leakage much greater than that of quartz, this
is not an accurate method and Bond's results
are somewhat lower than those presented here.
which were measured by dynamic methods.

It is.shown in the appendix that the separation
of the resonant and anti-resonant frequencies of
a longitudinally vibrating crystal is related to
the electromechanical coupling in a crystal
which depends on the ratio

k =d(4~/E~ss) I,

where d is the piezoelectric constant for the
longitudinal mode, E~ the "free" dielectric
constant appropriate to the crystal, and s~ the
inverse of Young's modulus for the crystal. For
a 45' Z cut this becomes

d36
k =—(4s /Kpsns') I

2

d36 /su+su. sM 'l
Z,

~
+ ~, (20)

2 k 2 4)
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while that of a bare crystal is controlled by

fb = (1/21)(1/I»«')I. (22)

Hence, taking the ratio and introducing the
results of Eq. (3)

value of Young's modulus. The frequency of a
plated crystal is controlled by

fn = (1/21) (1/~s&u')', (21)
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2 4

daeg36= 1—,. (23)
4S11~'

But since gss -4srdss/Es—~, we have

d36g36 d36

4srsiP' 4 &Es~siP'j

Hence, the piezoelectric coupling k can be evalu-
ated from the data of the last two crystals of
Table I and is shown plotted in Fig. 14 for ADP.
Similarly the data of Fig. 3 gave the coupling for
KDP, which is also shown on Fig. 14. It will be
noted that the coupling rises to 92 percent at the

FlG. 15. Values of piezoelectric constant fss for
KDP and ADP.

Ratio of piezoelectric stress to surface charge sa.—- Ratio of piezedectric stress to polarization P.
-——- Ratio of piezoelectric stress to dipole polarization I'g.

ilss =dss/&ss; gss =4srdss/+s

fss gss&ss 1

TABLE IV. Piezoelectric constants of KDP.

(25)

Curie temperature and remains high in the fer-
roelectric region for small applied 6elds.

Since the "free" dielectric constant may be
obtained from Fig. I2, and the short circuited
compliance modulus is given in the last column
of Table II for ADP, all the necessary data are
given for determining the piezoelectric constant
d36. This is shown tabulated in Table III. From
the relations

TABLE III. Piezoelectric constants of ADP. Temper-
ature
m C daeX10a eaeX10 ' gaeX10a faeX10 e II:aa~ face'X10 e

Temper-
ature
in oQ gae X10e

129.5
132.5
136.0

eaeX10 ' gaeX10

7.62 117
7.82 116
8.14 116

7.47
7.55
7.67

12.9 16.3
13.0 16.3
13.3 16.2

faeX10 4 Za~ fae*X10 4

100
80
60

40
20
0

63.2
69.6
76.2

3.8 38.8 2.35 20.3 3.02
4.26 39.4 2.44 22.8 3.09
4.73 39.6 2.SO 23.75 3.09

50.4 2.91 36.8 2.16 17.0 2.93
54.0 3.17 37.2 2.22 18.0 2.96
59.0 3.5 38.6 2.32 18.9 3.05

40
20

142.0
148
155

8.61 117.S
9.04 118.5
9.54 120

7.87
8.09
8.37

13.6 16.2
14.0 16.2
14.4 16.3

—20 85.9—40 98.6—60 119.0

5.39
6.24
7.55

40.4 2.58 26.0 3.13
41.0 2.66 29.4 3.12
41.5 2.73 34.9 3.12—20 161

-40 170—60 180

10.0 119
10.65 121
11.32 122

8.44
8.75
8.94

14.9 16.0
15.4 16.1
16.0 15.9

—80 153.0—100 202—120 334

9.75
12.8
20.8

42.0 2.79 43.9 3.10
42.2 2.81 57.6 3.02
43.0 2.93 S9.8 3.06

-80 198
-100 207—110 242

—120 261
-122 270

12.4
12.9
14.9

125
126
130

25.4 132
15 6 132

10.2
10.3

18.6 16.3
19.0 16.3

9.35 16.7 16.1
9.6 27.3 26.1

10.0 18.2 16.3
—130 480—140 875

—145 1465—150 4400

29.0 43.2 2.97 123.0 3.07
47.3 43.4 2.98 200.0 3.03

70.0 43.6 3.02 291.0 3.06
130.0 44.0 3.07 542.0 3.03
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ThBLE V.

Frequency 102,250 102,270
Equivalent shunt resistance in ohms 1,200,000 680,000

102,280 102,290 102,300 102,310 102,320 102,330
570,000 500,000 550,000 700,000 900,000 1,180,000

fss* =fsAs'/(Es' Ess)— (12)

The last column in each table shows a calculation
of fss and the values for ADP and KDP are
plotted by the dotted lines of Fig. IS. For ADP
and KDP this supposition appears to be borne
out.

Measurements were also made for di4 for both
ADP and KDP at room temperature. On account
of the very small coupling for these modes, the
separations of resonant and anti-resonant fre-
quencies of 45 X-cut crystals do not become a

all the forms of the piezoelectric constants are
determined and are listed in Table III. The
clamped dielectric constants E3 can be cal-
culated from this data by means of the formula

Ese =Es~ 4sress—riess. (26)

This is given in the next to the last column and
is shown plotted as the inverse susceptibility in

Fig. 12. The corresponding data for KDP are
given in Table IU. The inverse susceptibilities
of the clamped dielectric constant are plotted
by the full lines of Fig. 12. For KDP the values
lie on a curve determined by the equation

Ese=4.5+3100/(T+154.5), (27)

indicating that the Curie temperature for the
clamped crystal is about 3.5'C lower than for the
free crystal. For ADP the equivalent formula is

Ese ='l.0+2560/(T+342). (28)

The value of the indicated Curie temperature of
—342'C is below absolute zero and indicates that
ADP would not be ferroelectric at any tempera-
ture.

We note from Tables III and IV that the
piezoelectric constant fss, which relates the piezo-
electric stress to the charge 0„ is not a constant
independent of temperature. This is shown by
the curves of Fig. 15 which show a plot of the
constants for ADP and KDP. To test out the
supposition that the stress is proportional to
that part of the polarization that is temperature
variable, use is made of Eq. (12)

8
&=I 1 1+~

I
=0.006ss.

E
(30)

From the resonant frequency and the length, sss'

R)

Av
C)

Il
I)

FrG. 16. Equivalent electrical circuit of a crystal.

very reliable method for measuring the con-
stants. This follows from the fact that the
maximum and minimum points for the current
through the crystal become more widely sepa-
rated than they should be if the crystal had no
mechanical resistance. In order to determine this
constant, a KDP crystal was placed in an im-
pedance bridge and the equivalent shunt re-
sistance was measured as a function of frequency
near resonance. The result is shown by Table V
for a KDP crystal having the dimension I.= 19.56
mm; %=6.10 mm; T=0.90 mm. The shunt
capacity of the crystal was measured and was
found to be 54 ppf agreeing with the dielectric
constant of 46 shown in Fig. 11. By considering
the equivalent' circuit of the crystal given in
Fig. 16, it can be shown that the equivalent
shunt resistance of the crystal is given by the
formula

r )s/f& f )s
~e=~s 1+I (»)

(27rfsACo) Ef fsi
where Rj, is the shunt resistance at resonance,
i.e. , the Ri of Fig. 16, Co the shunt capacity of
the crystal, r the ratio of Cs to Cs, and fs the
resonant frequency of the crystal. From the
above measurements Rs = 500,000 ohms; fs
=102,290 cycles; CO=54&10—"farad. At 40
cycles from resonance the ratio of R,/8&=2. 4.
This gives enough data to solve for r, which we
find to be 26,400. From the appendix, we 6nd
that the electromechanical coupling factor is
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is found to be 2.56X10 "cm'/dyne. Hence

dg4=2Xk(Eps22'/4s)I=4. 2X10 '(KDP). (31)
)On

8

TEMPERATURE IN DEGREES CENTICRAOE
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A similar measurement for a 45'-, X-cut ADP
crystal gives

du = 5.0 X 10 '(ADP). (32)

Hence, although the dielectric constants normal
to the Idirection are very large, the piezoelectric
constants for this direction are very small.

One other effect common to ADP and KDP
not previously pointed out is that they have a
volume conductance much larger than that for
Rochelle salt. For crystals grown from Baker' s
C.P. grade salt, volume resistivities were meas-
ured by H. B. Briggs and J. B. Johnson with the
results shown by Fig. 17. By comparing the con-
ductivities between central electrodes compared
to conductivities measured between guard rings
on the edges, it was established that the surface
leakage was negligible compared to the volume
leakage provided the crystals were placed in a
dry atmosphere. Certain impurities introduced
into the crystal lattice have a marked eR'ect in
increasing this conductivity as will be discussed
in a paper by Holden and Murphy.

V. COMPARISON OF EXPERIMENTAL RESULTS
VGTH THEORY

The crystal structure of KDP has been
worked out by West" and is shown by Fig. 18,
taken from a paper by Slater, ' which presents a
theory for explaining the ferroelectric properties
of KDP. The phosphate groups, P04, consist of
a phosphorus tetrahedrally surrounded by four
oxygens, and are shown by the tetragons. Each
phosphate group is surrounded tetrahedrally by
four other phosphate groups. The positions of
the potassiums in the crystal are shown by the
circles. The positions of the hydrogen ions are
not shown by x-ray analysis, but according to
Slater's model one is located somewhere on the
connecting line between each pair of phosphate
groups as shown in the figure. The position of
these hydrogen ions varies with temperature but
most of the time two and only two ions will be
near each phosphate group.

Each HIP04 group forms not only an ion but

"J.West, Zeits. f. Krist. 0'4, 306 {1930).
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Fr|-. 17. Specific voIume resistivities of ADP and KDP.

a dipole, and the dielectric behavior shows that
the orientation of these dipoles along the +c
(or Z) axis or —c axis must have a lower energy
than at right angles to it. Hence at very low
temperatures, all the dipoles must lie along the
Z axis. All the dipoles in one region or "domain"
are lined up along the positive Z axis while
neighboring domains may have the direction of
the dipoles reversed, and thus each domain
becomes spontaneously polarized. As the tem-
perature rises the hydrogen ions will acquire a
kinetic energy and some of the dipoles will be
forced into directions normal to the Z axis. When
this condition occurs, the crystal loses its spon-
taneous polarization. By calculating the nurpber
of arrangements of hydrogen when there are

Xp, X dipoles pointing along +Z, per-
pendicular to Z and along —Z, Slater arrived at
an expression for the entropy of the crystal.
Combining this with the energy terms, curves
for the "free" energy of the crystal are obtained
as shown in Fig. 19, where X is a coordinate
which measures the net dipole moment of a
single domain along the Z axis. It gives directly
the dipole moment as a fraction of the maximum
or saturation value in the absence of an external
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held. The curves of Fig. 19 show that there is
one temperature T=H, the Curie temperature,
where the free energy is a straight-line function
of X; above this temperature the value of 0 for
X has the least free energy, and this corresponds
to the condition that the most probable states of
the crystal are those arrangements of hydrogens
giving a zero net dipole moment and the crystal
is unpolarized. Below this temperature, the
values of X=&1 have the least free energy and
the crystal becomes spontaneously polarized in
one of the Z directions. When a field is applied in
one direction along the Z axis, the equilibrium
position shifts from X=O as shown by the
dotted lines of Fig. j.9, and a polarization results.
Slater 6nds the polarization above the Curie
point to be given by the equation

8,
P, =XIIX=-', (33)

Bn2 '1—S

where N is the number of molecules per cc, p, the
dipole moment of the molecule, k Boltzmann's
constant, E.the applied Geld, T the temperature,
and 8 the Curie temperature. Since the dipole
moment has been determined from the measure-
ments of Busch' to be p, = I.25)& TO " the sus-
ceptibility can be calculated to be

temperature. From Eq. (17) the free suscepti-
bility

Xs~—1 249
~3"= =0.279+

4~ T —g

where tt = —151'C for the free crystal. The factor
249 is 1.46 times that calculated, which has
been explained by Slater as being due to the
extra 6eld produced at the dipoles by the
polarizability of the oxygens or other elements.
The value of 4.5 for the dielectric constant for
these elements alone is not out of line with that
obtained for similar crystals.

Slater explains the temperature broadening of
the transition (which theoretically should occur
at a single temperature) as resulting from
stresses set up in the various domains due to the
fact that one is polarized and hence sheared in
one direction while an adjacent one is polarized
in the opposite direction. Hence since difFerent
domains are stressed by difFerent amounts, they
will have difFepent Curie temperatures, and a
continuous transition takes place over a de6nite
temperature range. The maximum theoretical
broadening can be calculated from the elastic and
piezoelectric data obtained for this paper. One

ag ——170/(T —8) . (34) y= g0

Jn addition to the susceptibility due to the
hydrogen bonds, there is also a susceptibility
independent of temperature arising from the
polarizability of the other parts of the lattice,
principaHy the oxygens in the phosphate groups.
Slater's theory should apply to a single domain
below the Curie point and should be applicable
to the free dielectric constant above the Curie

MYTKD UNCS SHNlf Q'FECY
4+ SLCCTR,C FIN~

Fia. 19. Slater's free energy curves f'or KDP.
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can show that the temperature shift should be

hT =2(AE/N)/kle2 =2AE/NklN2, (36)

where hZ is the increment of free energy per cc
and N the number of molecules per cubic cen-
timeter. The change in free energy per cc due to
a spontaneous polarization I', ' is according to
Mueller's theory

AE = ,'c66'(x„-')' fgcr„'—P.'
+kx~'(P')'+-'&(P')' (3&)

where the last term is a non-linear term which
for Rochelle salt is small compared to the linear
terms. Since the spontaneous polarization (P,')
has been measured by Busch to be 4.3)&10 '
Coulomb per cc=1.29)&10' c.g.s. units per cc,
and g36 has been determined to be 44X10 ', a
spontaneous shearing strain (x„') should occur
for any one domain equal to

x„'=gsiP,'=5.65X10 '. (38)

The change in free energy then due to the linear
terms in going from a clamped to a free crystal
below the curie temperature is

AE =pcs' (x„')'—fgg(x„')P,
= —1.13&(10' erg per cc.

Hence the temperature range of the transforma-
tion should be about

aT =2.29'C,

which is somewhat less than the specific heat
data'5 and the indicated change of 3.5'C between
the clamped and free dielectric constants.

For ADP it appears that two separate systems
of hydrogen bonds are involved. Stephenson and
Zettlemoyer's" measurements on "The Heat
Capacity of Ammonium Dihydrogen Phosphate
from 15' to 300 K. The Anomaly at the Curie
Temperature" indicate that the transition oc-
curing at 148'K (—125'C) is in the nature of a
rearrangement of' hydrogen bonds. This is con-
firmed by the fact that a substitution of deu-
terium for hydrogen raises the transition tem-
perature. On the other hand, the bond system
controlling the transition temperature cannot

~~ C. C. Stephenson and J. G. Booley, "The heat
capacity of potassium dihydrogen phosphate from 15 to
300'K. The anomaly at the Curie temperature, " J. Arn.
Chem. Soc. 66, 1397 «'j.944}.

"Stephenson and Zettlemoyer, J. Am. Chem. Soc. 66,
f4D5-1408 (1944).

be the same as the H2PO4 bond system con-
trolling the dielectric and piezoelectric constants
for the data of Figs. 12 and 15 show that
there is no deviation from smooth curves as the
transition temperature of —125'C is approached.
Hence we conclude that the bond system causing
the transition temperature is probably due to the
four hydrogens in the ammonium ion. These are
probably shared with the oxygens in the nearest
PO4 groups, raising the most probable number of
hydrogen bonds for each PO4 group. The sudden
shattering of the crystal at —125'C is probably
due to a first-order change in crystal structure
connected with the ammonium hydrogen bond
system. This is indicated by the fact that shatter-
ing occurs for ammonium dihydrogen phosphate
and ammonium dihydrogen arsenate, but does
not occur for potassium dihydrogen phosphate or
potassium dihydrogen arsenate. Examples for
which the hydrogens of ammonia form bonds
affecting the crystal structure are furnished by
the crystals ammonium hydrogen Auoride, am-
monium azide, and ammonium fIuoride. "

This ammonium hydrogen bond system may
explain why the piezoelectric constant fse* is five
times as large in ADP as in KDP, for with the
close coupling between all the PO4 ions that occur
through the ammonium hydrogen bonds one
would expect a larger change in the lattice posi-
tions would be caused by a change in the HRPO4
dipoles than would occur in the KH2PO4 case,
where the PO4 ions are coupled to the K ions by
central electrostatic forces.

By extrapolating the piezoelectric and dielec-
tric constant data to low temperatures, it appears
that the piezoelectric Curie temperature should
come below absolute zero so that no ferroelectric
properties would be expected. This may well be
connected with the size of the unit cell which is
7.53A along the a or X axis and 7.542A along
the c or Z axis. For KDP, as shown by Fig. 18,
the values are 7.43A along X and 6.97A along Z
which is associated with the lower energy of the
hydrogen bonding system along Z than along X.
For. ADP, the two are very nearly equal and
ferroelectric properties, if any, might be expected
to occur along X rather than Z.

'~ See L. Pauling, Nature of the Chemkak Bond (Cor-
nell University Press, New York, 1944), pp. 299 and
3DD.



W. P. MASON

So far, no atomic theories have been developed
which allow one to calculate the piezoelectric
properties of such crystals as KDP and ADP.
Several phenomenological theories have been
developed, the most recent of which is the inter-
action theory of Mueller. " The formulation of
the theory for small applied fields is similar to
that given in Eqs. (4) and (5), except that the
polarization I is used in place of the total charge

0=8+8/4x. (39)

For Rochelle salt the conclusion is reached that
the open circuited elastic constants show a
constant variation with temperature, the piezo-
electric constant f~4* (for the ferroelectric axis)
is independent of temperature, while the only
anomaly occurs in the clamped dielectric con-
stant. The same conclusions appear justified for
ADP and KDP except that to get an inde-
pendence of temperature for the piezoelectric
constant fqg*, we have to take only that part of
the polarization which is associated with the
dipoles, i,e. , the temperature variable part of
the dielectric constant. This indicates that it is
the shift of the positions of the hydrogen ions
which causes the change in the lattice structure
and hence the piezoelectric e6ect. The tempera-
ture independence of f86* is shown by Fig. 15.
The dielectric constant then provides the only
anomaly.

Since no high field measurements have been
made, an evaluation of the non-linear terms of
Mueller's theory cannot be made.

¹QAdded ie Proof: Recent unpublished measure-
ments by %. A. Yager of this laboratory show that the

dielectric constant of ADP remains substantially un-
changed from the clamped value up to a frequency of
2.5X10" cyclesjsec. (1.2 cm). This result is markedly
diferent from that for ice, which shows marked dispersion
at low frequencies, although the mechanism of polarization
has been supposed to be similar in both cases (cf. %'. Kauz-
mann, Rev. Mod. Phys. 14, 12 (1942)). The extremely
short relaxation time of ADP is dificult to understand.
The mechanism of polarization by motion along hydrogen
bonds from one equilibrium position to another seems to
be ruled out.

APPENDIX

A-1 Longitu4ifia1 Vibrations

In Section IV of the paper use is made of the
diAerence in the resonance frequencies of a
plated crystal and a bare crystal to evaluate the
piezoelectric coupling factor k of a crystal. An
alternate method is to use the frequency separa-
tion between resonance and anti-resonance. It is
the purpose of this appendix to evaluate these
separations as a function of the fundamental
constants of an ADP or KDP crystal.

For a plated crystal, the piezoelectric relations
of Eqs. (1) are the most useful form. Since only
shear piezoelectric constants exist, it is necessary
to cut crystals normal to the X or Z axis with
their lengths at an angle from the other two
axes, in order to generate longitudinal vibrations.
Longitudinal vibrations are more advantageous
for measuring piezoelectric constants for it is
possible to get single modes of motion free from
other couplings by using this type of vibration.

To obtain the piezoelectric relations for a
45' Z-cut crystal, for example, it can be shown

by tensor transformation, that the equations for
a crystal cut normal to Z with its length at an
angle e with the X axis will be

—x.'=X.'[su(sin'8+cos'8)+(2s~2+s'es) sin'8cos'8j

&ee~+F„' (2su —sqe ) sin'8cos'8+s~m(sin'8+cos'8)+ sin 48 +Z, 's~m

2

s6~ +2s- —2sn dM (1)+X„' sin 48 +8,—sin 28,
2 '2

Ee d3e
0,= E,——[(X,' —F„') sin 28+X„'cos28],

where the primes refer to the stresses and strains expressed with respects to the rotated axes.

~8 Reference 6 and H. Mueller, "Properties of Rochelle salt III," Phys. Rev. 58, 565-573 (1940).
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%hen B=45', these equations reduce to

su+sit se8
~

sli+ sit s58

2 4 2 4

F36
+Z.'sos+ —Z., (2)

2

E3~ d36
0,= Z.— (X,'—F„').—

4g 2

A pure longitudinal vibration is Obtained when
the length of the crystal is much greater than
the width and thickness dimensions. The stress
boundary conditions to be sati86ed for a freely
vibrating crystal are that a11 stresses vanish over
the surface of the crystal. Since the thickness and
width are taken very small and all of the stresses
are zero on the surfaces, it follows that no stress
can differ appreciably from zero except the stress
along the length, X,'. Hence for such a crystal
Eqs. (2) reduce to

sional stress acting on the faces of the element.
By Newton's law of motion (4) we have

BX ' d'g—l„lydia', =l„lgdx'p
8x' dP

(p(
p

d&2

For a completely plated crystal such as we are
considering, the potential gradient B, will be
independent of the x' direction, since any charge
distribution wilt be equalized with the speed of
light which is much higher than the speed of
sound in a crystal. Then Eq. (3) when dilferen-
tiated with respect to x' becomes

BX.' 1 Bx.' 1 O'P

BX' $11 BX $11 8X

by the equation of the longitudinal stress X,'.
Introducing this equation into (6), the equation
of motion for a plated crystal becomes

XB~ d368,——X,',
4x 2

(3) g2$ (p$
$11 Pa~'~

(8)

~11+&12 ~66
su = +

2 4

For simple harmonic motion the variation of P

with time can be written in the usual form

The equations of motion can be derived from
these equations and Newton's law of motion. so that the simple harmonic motion Eq. (8)

becomes

P.=Ma=(p dxdyds)
dP

(4) (P$ $2$ ~2—aPpsu '$=
—,

——)=0,
dx dx 5

(10)

where M is the mass of an elementary volume
dxdyds, a the acceleration, and g is the displace-
ment of the element in the X' direction.

Let us next consider a small cross section of
the crystal with a dimension dx' along the
crystal length. The total force on the section is a
resultant of the difference in stresses on the two
faces or equal to

where v the velocity of a plated crystal is given

by the formula

v = 1/psu

A solution of Eq, (10) with two arbitrary
boundary conditions is

BX,'
V~LX~i' —Xn' 1= —I Ig

dx' P„(5)
Bx

(dX cd
/=A cos +'J3 sin

V
(12)

where X ' the stress is considered as a compres- To determine the constants A and 8, use is
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made of Eqs. (3). DiHerentiating (12)

d$, (» . &ax' MX= —xg =—A sin —8 cos
V V V

d36=sg|s'X,'+—Z,. (13)
2

stituting in (13), we have

cdl calÃi—x,'=—E. tan —sin
2 2v v

+cos

d36=s»~'X.'+—Z,
2

When x'= 0 and x'= l the bar length, for a free
crystal the stress cos

co(x' —l/2)

X,' =0 when x' =0 and x' =I.

Under these conditions

(14)
daeva

2$» a)lcos-
2v

40——8=—E, The electrical impedance measured at the
v 2 terminals of a plated crystal is then determined

(al Ml GOl by substituting the value of x,' in the last of
(15) Eqs. (3) and integrating the charge r over the

V V V 2
whole surface. The current into the crystal is

Solving these equations for A and 8 and sub- then

~l gE
i =jco, » +S=jcol„E, — — 1—

J 0 4s 4sgp'

cos

cos-
2v

X3~ d36'=j(uZJ+ — 1-
4x 4sggg'

a)l'tan-
2v

a)l

2v

coltan-
%3 d36 2V

=ja)B,lp +
4x 4sgg~' co)

2v

where Eeoc EP sdgj/—-siP' i—s called the longi-
tudinaHy clamped dielectric constant, i.e., the
dielectric constant that would be measured if we
suppress the longitudinal strain along the x' axis
but not the other strains. The admittance of the
crystal then is

The other branch contains the impedance

col

—jlt 4$»~ 2v
c.g.s. units

Mltan-
2v

a]ltan-
2vjell l X3~~ d36'

+2 l g l ] 4x 4$Ig~' (ol

2v

~ (18)
(ul—jl&4$» —X9X &0»
2v

eel
wl ld362 tan-

2v

ohms. (20)

This consists of two terms which represent
parallel branches in the equivalent circuit. One
of these is the capacitance

I« lg~ ic
Co= c.g.s. units= farads. (19)

4s'l~ 4sl~(9X10")

This branch wi11 have a zero impedance or wi11

resonate when the tangent is in6nite or when

2+f~l w V
or fs =——— . (21)

2v 2 2l 2l(psus') ~



ELASTIC, P I EZOELE CTRI C, A N D D I ELECTR I C CONSTANTS j9i

by the definition of the coupling.
If the coupling is small, the impedance of

Eq. (20) can be represented near the resonant
frequency by a series capacitance and inductance
having the values

l„l 8 dae'
Cg= —— farads;

~s + 4su~ X9X10"
p»~'«~X9X ~0"

I.I -—4 — henries.
@Aeee

Taking the ratio of Co to Cj, we have

Ce ere (Ee~~slls''t lr' (1—4l
f

Cl 8I erdgee j 8E ke

(24)

When k is large, this representation is not
accurate. Fig. 20 shows a calculation of the ratio
of the resonant frequency and anti-resonant
frequency to the resonant frequency of an
unplated crystal expressed as a function of the
coupling k. Hence if the ratio of anti-resonant to
resonant frequency is known, the coupling can
be evaluated. Similarly if the ratio of the reso-

Hence for the fully plated crystal it is the zero
field elastic constant that determines the reson-
nant frequency.

The anti-resonant frequency (the frequency of
highest impedance) is determined by setting
Eq. (18) equal to zero and solving for the
resultant frequency. This is given by the equation

elf lel (4$11 'Ee
tan —= ——

i (. (22)
2s 2s & 46rdeee

Now since

Xe =Xe —s'dee /$1

this can be written

~& -4$,1$'Z6$ ( 4~d~' )tan —= ——
i
1—

2v 2'v 4s'lfee 0 4$11 Ee )
lel (1—k')

(23)
2vE k' )

Hence the elastic constants operative are the
charge or "open circuited" elastic constants. By
tensor transformations, the equations for a 45' Z-
cut crystal become

s11+s12 see I sll 1sly see—x.'=X*' + + ~e'
2 4

«e. gee8,= +—(X ' —F„').
X3~ 2

gse
+Z, '$16+—0„(27)2"

For a longitudinal crystal, isolated electrica1ly,

y/ g I (28)

Then the equation of motion becomes

($11+$12 $6$ )+ I P =$11' Sl, (29)
Bx" E 2 4 j dte dP

and the resonant frequency is determined by the
"open circuited" elastic constant s~~' . By Eqs.
(3) this is related to the short circuited elastic
constant

nant frequency of a plated crystal to the resonant
frequency of an unplated crystal is known, the
coupling can be evaluated. Care must be taken,
however, that the weight of the plating is not
sufficient of itself to lo+er the frequency of the
plated crystal. This precaution has been followed
in the data given in this paper.

To determine the frequency of an unplated
crystal measured mechanically, or electrically
in an air gap holder with a large air gap, use can
be made of the equations expressed as in Eq. (4)
of the body of the paper. For an unplated crystal
with all driving plates a long distance away, the
electrical boundary conditions are that the
surface charges are equal to zero. The e8ect of
any polarization produced by a motion of the
crystal is annulled by a depolarizing field

(26)

sll+ $18 $$$ sll+ $16 $$8 deegee+ = +
2 4 2

($11+$16 see )+
2 4)

4~dae'

($11+$16 $68
4X$i +

4 )

4+d3e' ~

4XI~sgg~'
=slls'(1 —ke). (30)
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Fir. 20. Ratios of resonant and anti-resonant frequen-
cies to the natural mechanical resonant frequency plotted
as a function of the coupling coeKcient k.

Hence the piezoelectric equations become

Xz Cll xg+ ~12 y$y ~11 ~11 61$ /~$3& (34)

~y 412 xx+~11 y$,

Xy = C66 X~ 836K,

E3~
8,+e36X„.

4x

C12 —C12 —C13 / C33,
2/

Newton's equations of motion for a two-
dimension crystal become

d2b BX, BX2 Bx, By„
Hence the ratios of the open circuited to the p = — — -=c11* +c12*
short circuited frequencies is given by df Bx By

fo/f. = &/(& &')'—

as shown plotted in Fig. 20.

A-2 Face Shear Vibrations

(31) Bxy BEg+~66 S36

d2b BF BF„Bx„Bx,
P C66 +C12

dP Bx By Bg By

(35)

In measuring the shear elastic constants of
ADP and KDP, a crystal was used cut normal
to the Z or X axes, with its length large compared
to its width and very large compared to its
thickness. The elastic shear constant was
measured by dimensioning the crystal so that
no coupling occurred to adjacent bexure modes
or by measuring high harmonics of the shear
mode. %e wish to show that this measurement
determines the c66~ or c44~ elastic constants.

This is a more general contour mode than the
longitudinal one considered and involves satis-
fying boundary conditions along four edges. We
consider a Z-cut crystal and assume that the
thickness is so small that the stresses determined
by the Z direction can be set equal to zero. Hence

Z, =X„Zy——Y.; Z, (32)

can all be set equal to zero. The remaining
stresses

X„X~, F„

are all finite throughout the crystal but vanish
at the edges. The vanishing of the stresses of
Eq. (32) simplifies the equations of motion for
it results in only three independent strains x,
x„, y„. This is readily seen from Eq. (3) of the
body of the paper by setting Z.= F,=Z =E

By@ BEg
+&11 Ae

By Bx

where &1 and b are the displacements along X
and Y at any point. Since the plating is an
equipotential surface BE,/Bx=BZ, /By=0. Also
by the definition of the strains

Btl Bb B$1 Bb
x.=; y„=; x„= + . (36)

Bx By By Bx

Hence for simple harmonic motion, Eqs. (35)
become

B'b B'b
Cu +C12

Bg BSBy

B'6 B'b
+c66 + +a1'pb =0,

By BSBy

B2b
C66 + +C12

BSBy Bx BxBy

B2b
+&11* +66'pb =0-

We wish to show that when the crystal is very
long in the X direction compared to its width in
the F direction, the shearing resonant frequency
will be controlled by the c66~ elastic constant.
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To show this let 850

]i——A sin hy; $g
——0.

This satisfies Eq. (37) provided that

lg =g»(p/eggs) & = c»/v,

(38)

(39)

SOO

550

HE,ORETICAL CURVE

where v is the velocity of propagation of a shear
wave. The X and F„stresses vanish identically
over the crystal. To make X~ vanish when
y=&i /2 we have

, t'~6 ~bl—Xg ——cgg'I +
E By Bxi

uy= Agi(pCgge)& cos ——eggE„
V

& 500

z
450

z

z
400

O

Oz
350

z
LJ

Hence

=0 when y= al /2.

e36~g

g»(pcgge)g cos ~l /2v

(4o)

250

200

eggE, sin g»y/v6=
g»(pcgge)& cos g»l /2v

I50
0 O.'I 02 03 04

RATIO OF WIDTH TO LENGTH

cos &»y/vX„=e36F, —1; X,= Y„=O.
cos g»l~/2v

FIG. 21. Frequency spectrum of a Z-cut ADP
crystal vibrating in shear.

eggE. cos (uy/v

cgg cos (»lpga/2v

tan g»l„/2v l we 6nd
F„=eggE,l„lg —1 at x = a—. (42)

i»l /2v 2 p l /2 p l gv/2

Q= II dx o,dyJ—l/2 g —ltd/2This is the type of force that will tend to drive
an even order flexure in the bar. As the length /

increases with respect to the width l„, it can be
shown that the amplitude of the flexure motion
approaches zero for a constant driving force, so
that for a crystal long compared to its width,
the solution given above is approached. Hence a
harmonic of a shear mode for a long narrow
crystal approaches this condition very closely.
Such modes can therefore be used to evaluate
the shear elastic constants c66~ and c44~.

The impedance of a long narrow shear vibrat-
ing crystal can be derived from the last of Eqs.

Egc egg' tan i»l„/2v= E.ll + =—. (44)
4x eggs (el~/2v ji»

In a similar manner to that discussed for the
longitudinal crystal, we can show that the
resonance occurs when

1 (c668't&
fs=

2l p) (45)

and that the impedance of the crystal is repre-
sented by the equivalent circuit of Fig. 16, with

Hence all the boundary conditions are satisfied (34) by integrating the charge over the surface

except for X„at x =+i/2. Here the shear stress o t e cr stal. Since

puts in a force in the y direction which when
integrated over the surface becomes XII (43)
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the constants

Eg~l l
Co= farads;

4s l((9X 10")

8 ll peag'& 1
Cg ————

I i X farads;
s lg (cg6s) 9X10"
pal, y9X 10»

Ll henries.
Sl~se'

Hence the ratio of capacities becomes

(46)

(47)

where k the coef6cient of coupling for a shear
mode is

4&ese' 4~d3e'

Es Cee E3 See

and

E;3~=E;foal~
—4~dyg~. (48)

When a crystal is not long compared to its
width, the unbalanced forces in the X direction
will couple the shear mode to even order Bexure
modes. This is shown experimentally by Fig. 21,
which shows the frequency spectrum of a Z-cut
ADP crystal a a function of the ratio of width
to length. The main modes can be identi6ed as
even order Aexures coupled to the shear mode.
At certain ratios of width to length the shear and
Rexure modes coincide and a coupled frequency
curve is observed. Midway between couplings, a
good agreement is obtained with the frequency
ca1culated from (45). The smaller the ratio of
width to length, the better the agreement ob-
tained, as shown by the dotted line which shows
the calculated value.


