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Information relating to the spin dependence of the
neutron-deuteron interaction can be obtained from slow
neutron scattering experiments in ortho- and paradeu-
terium. Theoretical formulae have been derived for the
cross sections of the various transitions among the molecu-
lar rotational levels, which involve the scattering am-
plitudes e»2 and a1q~ for the te'o spin states of the neutron-
deuteron system. In particular, numerical results are given
for the 6rst few transitions originating from the ground
levels of the ortho- and para-systems with neutron energies
not exceeding 0,05 ev. The inHuence of the thermal motion
of the molecule is described, and explicit formulae are given
for the important transitions occurring at small neutron
energies, on the assumption that the Dg is in gaseous form
at low temperature. The ratio of the ortho- and para-cross
sections, under these conditions, is examined in its de-

pendence upon the ratio of the scattering amplitudes. If
the scattering amplitudes are of the same sign, the cross-
section ratio is never greater than 1.31 and attains this
magnitude only for small values of a»& relative to c&1&. If,
however, the amplitudes are of opposite sign, this ratio
can be as large as 1.75 and always exceeds 1.11. This
experiment measures only the magnitudes of the amplitude
combinations (2c»s+e1~g) and (a»s —a1gs), but not their
signs, and thus leaves a fourfold ambiguity in interpreta-
tion. The possibility is discussed of determining the sign
of (2c»&+a»&) by scattering experiments in HD. It is
pointed out that the sign of (a»2-a&~2) cannot be 6xed by
any experiment in which the deuteron spin is unoriented
in space. An alternative experimental method, involving
the depolarization of neutrons, is mentioned.

XPERIMENTS on slow neutron scattering in ortho- and parahydrogen' have provided decisive
information concerning the spin of the neutron' and the spin dependence of the neutron-proton

interaction. With improvements in technique, these experiments will yield data on the rangt: of the
neutron-proton interaction, and facilitate accurate measurements of the slow neutron cross sections
for scattering and capture by protons. ' It is evident that analogous investigations with ortho- and
paradeuterium can be of value in supplying further information relating to the spin dependence
and exchange character of the forces between elementary particles. It is the purpose of this noto. to
analyze the scattering of slow neutrons by ortho- and paradeuterium in order that the values of the
fundamental nuclear quantities may be readily extracted from the results of such an experiment.
The basic ideas underlying the problem are essentially identical with those relating to ortho- and
parahydrogen, and we shall therefore be content to indicate the necessary modifications in mathe-
matical detail, together with some improvements in the treatment. '

The scattering of a slow neutron by a nucleus of mass number A and spin 5 can be described by
an effective interaction operator to be employed in conjunction with the Born approximation:

2xh'2+1 5+1 5 e S
M A 25+1 25+1 25+1

Here, 3f is the mass of the neutron; ~e and 8 are the spin operators of the neutron and nucleus,
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respectively; 5(r —R) represents a delta-function of the distance between the position of the neutron,

r, and the position of the nucleus, R; and aa+~ are the amplitudes of the scattered waves for the
two total spin states of' the system. The amplitudes are related to the corresponding cross sections
for each spin state by

o 8~) =4+a'8~). (2)

The total scattering cross section for a free nucleus is an appropriately weighted average of the
cross sections for the two states of spin:

2S+1 2S+1

For the deuteron, the effective interaction operator becomes

mk'
U = — [2ap2+avg+ (agre —ag(2) a 8]8(r—R),

M

and the scattering cross section for a free deuteron is

& = 3&3@+3&i]2

The eA'ective interaction between a neutron and the two deuterons in the D2 molecule is con-

veniently expressed as

xk~
[2aais+aiin+2(a3)u —cia)e S][b(r„—r,)+b(r„—r2)]

where now

sg-sg
(cs(2 —sue)e [8(r„—rg) —5(r„—rn)], (6)

M 2

represents the total spin of the molecule. The states of a deuterium molecule are divided into ortho-
levels, those possessing even total spin and rotational angular momenta (S=O, 2; J=O, 2, ),
and para-levels, those with odd quantum numbers (S=1;J=1, 3, . . .). The symmetrical part of
the neutron-molecule interaction produces transitions in which the total molecular spin does not
change, that is, ortho —+ortho- and para —&para-transitions. The antisymmetrical part of the inter-
action induces transitions accompanied by a spin change of unity; ortho —+para- and para~ortho-
transitions.

We wish to calculate the differential cross section for a scattering process in which a neutron with

momentum yo collides with a D& molecule with momentum —y' in the internal state speci6ed by
the vibrational, rotational, and spin quantum numbers v, J, S, thereby producing a neutron with
momentum y which has been scattered through the angle 0 into the solid angle dQ, leaving the
molecule in the state characterized by —p, v', J', 5'. The differential cross section, as computed by
the Born approximation, is

16P 1 f MV
0'g, e', s'; g, g s(O~)dQ= ve;i da,

25P' 2(2S+1)(2J+1) na mJ tns we ~tnt nisi ( 2~/AD )
which differs formally from the corresponding Hz molecule cross section (ST (21)) only by the
replacement of the numerical factor 4/9, the square of the reduced mass of the neutron —H~ molecule

system, by 16/25, the square of the reduced mass of the neutron —Dl molecule system. These
reduced mass factors arise in calculating the number of 6nal neutron states per unit range of the
total energy, and in the value of the neutron Aux relative to the molecule. The diAerential cross
section for those transitions in which the molecular spin is unchanged can be immediately obtained
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from the corresponding Hs cross section (ST (28)) by suitable changes in the scattering amplitudes
and the numerical replacement just discussed. The resu1t is

16 P
0 J s; J s(O)d0 =——L(2@3/2+ap2)'+-', (a3/2 Ql/9)'S(S+ 1)]

25 p'
2

cos — — rg*", ./, in& (r)Q. , J, '.J(r)d7 dO .{9)
2 /+1 mJ, wJ 0 2k

The analog of (ST (30)), the cross section for transitions in which the molecular spin changes, is

16 p 8 —S(S+1)
Q &z', e', ,s'; z, ~, 8(O)d~1 = (+3/& 's&/&)

s~s ' "' '"
2~@'

2J+1 tsJ, &J

1' 2

sin r@ s', J', mg'(1)@v J, mg(r)d7 dQ. (10)
2k

In these formulae, the magnitude of the neutron momentum after collision is obtained from energy
conservation (cf. ST (17)):

5 5
P ++1,v= P ++J', e'y

SM 83I

and y' is related to yo, the initial neutron momentum in a coordinate system in which the molecule
is initially at rest, by

P'= sPO

Further calculations will be restricted to molecules in the lowest vibrational state, @=0, and the
rotational wave functions employed will be those of a rigid rotator with internuclear separation r, :

(8(r-r.))&

+, z, ~~(r) = Pg "~(r)

Here, EJ"Jis a spherical harmonic of the angular coordinates associated with the vector r, normalized
in accordance with

"IP,-~(r) I'd~ =1

The cross-section formulae for both types of spin transitions (S'= S, S'WS) involve summations of
the type

exp (Qt r)y*oz, mJ (r),+, s, mg(r)dr
2 7+1 18J, fsJI

with
k = (p' —p)//2h (16)

2

exp (ik r)Pq "'*(r)P~"J(r)dec -P, (15)
2 J+1 mJ, mJI

for the symmetry properties of the rotational functions will automatically select the real or imaginary
part of exp (8t r). To evaluate this sum, we regard the square of the absolute value of the integral
as a double integral and perform the summations with respect to mJ and mJ, employing the
spherical harmonic addition theorem:

22+1
Q P~"'"(r)PJ '(r') = Pq(cos 8),
mg 4~

(17)

where Pq{cos 8) is a Legendre polynomial of the cosine of the angle between the vectors r and r'.
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dao dc@

g = (2I'+1) exp [ik (r —r') jPq(cos 8)Pq. (cos 8)—
al 4m 4x

Novg it is evident that the scattering cross section cannot depend upon the absolute direction of the
initial neutron momentum, but involves only the angle 0 between p' and p. Hence the above

integral is unaffected on replacing exp far (r —r') j by its average over all directions of the vector lr,

namely sin k (
r —r'(//k

) r —r'(. With the aid of the expansion'

sin k
~
r —r'

~

sin (2kt', sin 28) = Q (2I +1)ji,'(kr, )PL, (cos 8),
k

I
r r' —

I 2kr, »n k8

ii(~) =
I
—

I I~+i(~)
&2~)

the quantity P can be cast into the form

Z=(»'+1) r..(2L+1)C-'~. (k..),
sin 8de

P/, (cos 8)Pg(cos 8)Ppi(cos 8)
~Jo 2

CI.JJ~ =

16 p
s~, s, g, s(O~)d 0=——[(2as/g+ui/~)'+, (as/& —aim)'S(S+1) ]

25 p'

Hence, the various differential cross sections can be expressed as

(19)

(2o)

(21)

(22)

~e.(2J'+1) Qi, (2L+1)C/, gg g/. ' —(P'+P' —2P'P cos O~)& dfl, (23)
2/i

16 P 8 —S(S+1)
Z &z' 8' z s(e)nfl (om/I si/2)

s'ws
' '

25 P' 4

(2I'+1) Zr, (2L+1)C/. zz Il.' —(P"+P' —2P'P cos 0)& d 0
2k

The constants CI,JJ are zero unless I. has one of the values

L = I+I', I+I' 2, i
I—I—' [. (24)

Some important and useful properties can be obtained from the defining Eq. (22), rewritten as

gc (2L+1)Cr.gg Pl, (s) =Ps(s)P~ (s)

On placing s = 1, and recalling that Pg(1) = 1, we obtain the sum formula

(IL2+1)Cz,zg'=1.

If Eq. (25) is multiplied by s, and use is made of the relation

X+1 L
sPz (s) = Pmi(s)+ Pi,—i(s),

2L,+1 2L+1

a recurrence relation is obtained for the CL,JJ as a function of I.
I +1 I 1+1

5+1, J, J' I—1, J, J' L, J+1,J' L, J—1, J' ~

(25)

(26)

(27)

(28)

' J. A, Stratton, E/ectromagneIic Theory (McGraw-Hi11 Book Company, Inc. , Near York, 1941), p. 413.
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Thus, starting with the orthogonality integral

2J 1
(29)

where b~~. is the customary Kronecker symbol, one obtains, successively

1
CiJJ = [J&Z.@+1+J'&Z', Zyi],

(2J+1)(2J'+1)
J(J+1) 3 1 J(J'+1) J'(J+1)

(2J—1)(2J+1)(2J+3) 2 (2 J+1)(2J'+1) 2J—1 2J' —1

(30)

and so on. The recurrence relation combined with the sum formula and the symmetry of CJ.~~,
enables one to obtain the required values with 1ittle eGort. Alternatively, the values of C&z~ can
be computed directly from the explicit formula 7

(J+L J') t(J—'+L J) t(J—+J' L) ~ (—Jy J'+L&
(J'+J'+I,+1)! )

(J+L J'&,—(J'+L J), —
)~'~~ 2 )~'

(J+J' —L'l
I! (»)

To evaluate the total scattering cross section for a given transition, we integrate Eq. (23) with
respect to the scattering angle 0 and obtain:

where

16 1 (2h)2
&2'8: JS & (2/22/2+/21/2) + (oB/2 /21/2) S(S+1) (2J +1)

~ 2 ~
~ JZ's

25 !f'r, )
16 8 —S(S+1) (2& l '

&Z'8' JS &(122/2 /21/2) (2J'+1)
( i A~~,

S~8 &p".)
t

(rs/2A) +P)
Agg. ——2 pL (2L+1)CLgg j2L(x)xdx."(~./») 12'-el

(32)

(33)

A relation between the Bessel function integrals for successive values of I can be established with
the aid of the recurrence formulae

jL-1(*)
d I +1 d I. 1—j L i(x) = jL(x)+-j—L(x), jL(x) = jL 1(x)+-—-
dx x dx x

(34)

1 d
XJ L XJ L 1[g-9 L 1+9 L)js-

2L// dg
(35)

On multiplying the first equation by x'jL(x), the second equation by x2jz 1(x), and comparing the
resultant expressions, we find that

Hence

and, in general,

pg
gj'Ldx xgL idx =———x'(j'/. 1(x)+j'L(x)).J.

fS
I xj'idx= I xj22dg —Lx'(go(x)+ j'1(x))

2%+1 1
xj2Ldx = !I xj22dx —)x2 j22(x)+ Q Z'x(x)+ —j'L(*) .

J2 JS g 1K(K+1) L

(36)

(37)

' E. T. Whittaker and G. N. Watson, Modern Analysis (The MacMillan Company, New York, f944), p. 33j.
g Reference 6, p. 406.



150 M. HAMERMESH AND J. SCHKINGER

Thus, all such Bessel function integrals are reduced to that for L =0:
7' srn'

xj'odx =
0 Jo x

, t' 1 —cost
dÃ=% dt = -', Cee2x.

~0

The function Cimx is related to the more customary cosine integral

I "cost
Cix = —

~
— dt,

t

Cia = log x+ C—Cix,

where C 0.5172 is the Eulerian constant. Finally, then, the quantity A» can be expressed as

(40)

(41)

A j j LCAl2x QL (2Lt+ 1)Cjjjf (I)xj( II~Is

where use has been made of the sum formula (26), and

fj„(x)=0, I.=O

=x'(go+ j'g), I.= 1,

( i ' 2E+1 1
=x'( j'0+ Q gx+—g*. ~, L».

x g E(X+1) I. i

(42)

The cross section for any transition originating from an ortho-level must be averaged over the
two ortho-spin states, S=0, 2 with the statistical weights ~6 and ~5, respectively. Therefore, the
6na1 cross-section formulae for ortho~ortho- and ortho —+para-transitions are:

16 5 (2A )2
ortho~ortho: a j. j———s' (2as~m+apy)'+ —(as&~ —aum)'

~

—

~
(2 J'+1)A jj,

25 4 (p'r, i
12 (25)'

ortho~para: a j' j— %(a3i2 —au2)'I
~

(2J'+1)A jj .
25 kP'r„i

(44)

To obtain the cross sections for transitions originating in a para-level, we need merely place 5=1,
whence

16 (2h )'
para~para: n j. j —sL(2a~~g+a~~m)-'+-, '(any —a&~2)']~

~
(2 J'+1)A jj,

25 & '«.i
24 (2h )'

para~ortho: u j j=—s'(as~. —aii, )'I ( (2 J'+1)A jj'
25 Ep'r. i

The energy levels of the deuterium molecule, considered as a rigid rotator, are

h2
Ej—— J(J+1),

2Mr, '

(45)

and, in particular,
Bg ——k'/Mr, '. (47)

The initial neutron momentum p', expressed in terms of the neutron energy in the rest system of
the molecule before collision, is

whence
p'= k(2ME)'

P'r, 4 (2E) &

5((~, i

(48)
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Fio. 1. Cross sections for transitions originating from Fio. 2. Cross sections for transitions originating from
the orthodeuterium ground state, omitting amplitude the paradeuterium ground state, omitting amplitude
factors (cf. Eq. (52}}. factors (cf. Eq. (52}}.

The neutron momentum p after a rotationa1 transition J-+J is determined by (cf. Eq. (11))
4 h'

p' =pp'+ ——[J(J+1)—J'(J'+1)j,
5 r,'

or

(51)

Hence the neutron energy is electively measured in units of the energy of the first rotational level,

Eg =0.0074 ev. '
Explicit expressions for the cross sections describing the Erst few transitions originating from

the ground levels of the ortho- and para-systems are:

~p-p = [(2~p/p+nvp)'+(5/4) (np/p
—nvp)'3Fp-p(E),

64
Fp p(E) = i& CiN2$,

25 p
plop —(np/p nl/2) Fl~p(E) y

&44 & . . . pig+(P-(sos))~l
F& p(E) = pr—[CiN2X —X'(j'p(X)+j'~(X))j

25 p
&p-p = [(2&p/p+&vp)'+ (5/4) (&p/p

—&vp)'jFp-p(E)

F, o(E) = [C—iN2x x'(j'o(—x)+-,'j' (x)+$j' (x))j, („(, ,)),),k f4+(P-( 4/&)) l

5 p
&p~1 (+p/2 +1/2) Fp~1(E) t

Fp g(E) =—pr—[CiN2x —x'(j'p(x) +j'g(x))]) ((„+(,/,),
k t(P+(SP))~+$l

25 p
(52)

p'y g
= [(2np/p+cg/p) + k(/pp/p /pl/p) jF1 1(E)

192
Fx-i(E) = ~ [Ci»k —P( p&(f)—+i'i(k)+ ~xi'p(h))]

25 p
~p-i = (/pp/p

—ni/p)'Fp-s(E),
96 1 f 15 1 1 ) i M+(P-(&p/5)) pj

Fp-~(E)=—x—CiN» —xP~ j'p(x)+—j'i(x)+-j'p(x)+-j'p(x)
~

5 p i M-(8 -(&p/5))pf

'A. Farkas, Orthokydrogen, Perakydrogee, aed Heavy Hydrogen (Cambridge University Press, New York, f935).
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~o-~ = [(2'/o++vo)'+ k(+o/o —uvo)'j~~«i(E) i

448 1 t' 3 29 1 1 ) -oÃ+(o -s)o]
Fg x(E)= x—Cooo2x —x'~ go(x)+-jg(x)+—jo(x)+-g'o(x)+-g, (x) (

25 42 3 7 ) y[o-&p-s)o]

The functions Fq. q(E) for these seven transitions are plotted in Figs. 1 and 2 over the neutron
energy range: Z=O —0.05 ev.

The minimum neutron energy required for an excitation process is E=(5/4) E~=O. 0093ev, cor-
responding to the 0~I transition. If the neutron energy does not exceed this threshold, and the
deuterium temperature is suSciently low, insuring that the J=O and 1 rotational levels alone are
occupied, the only transitions that can occur are 0-+0, 1—+f, 1-+0. Approximate expressions for the
energy dependence of these cross sections, accurate to within a few percent for 8&Z~, are

64 ( 16 E't 24 (Eg'l & ( Ei
~o o(E) ~1 x(E) = x

I
1

( &o x(E) = xl I I
0'1833+0'3276

25 i 75 Eg) 25 EE) E Ei)
Under the conditions thus contemplated —neutron and molecular velocities of comparable mag-
nitudes —the thermal agitation of the molecules must be considered before a comparison with
experiment is possible.

The effective scattering cross section for a neutron of velocity v, n(s), is related to the true cross
section, p(lp), by

err(v) = '

(v —u(~(~ v —u~)N(u)(du) =,~wo(u/)N(v+w)(dw), (54)
J

where N(u) is the velocity distribution function of the target molecules, which is subject to the
normalization condition

N(u)(du) =1.

In order that the efkct of thermal agitation be analyzable with precision, we shall suppose the
deuterium to be in the gaseous phase at the temperature T, whence

(2M&&
N(u) =

) ~
exp (—2Moo'/kT) (56)

&AT)

2 (2M)& 00 435am
o'(s) =—

( ( exp ( 23&'/kT)—,

' exp (—2Mu/'/kT) sinh u/'g(u/)du/
v' &mkT) Jo kT

(57)

The e&'ective cross sections for the three transitions under consideration, as described by Eq. (53)
can be written as:

with

64
o-o(E) = [(2 + )'+(5/4) ( — )'jGo-o(E).

25

64
&1+-1(E) o [(2+3/5++1/2) + o (so/2 +1/2) j&~1(E)1

25

24
oo 1(E)=v(ao/2 G1/o) GO 1(E),

25

(58)

Go-o(E) =Gx x(E) = 1 exp( —x') ( 1 &

16E 1 t/ 5 &exp( —x') ( 3 3 l
I 1+ +] 1+—+ )C(x), (59)

75E (x)o & 2x')
&R)o (E»/' 3 kT&

G, ,(E) =0.1833] —( +0.3276]«) (E) & 8 E)
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Here,
2%v' 4E

X2=
k'1 kT

fl g

@(00)= ' exp ( t')d—t
(tr)& Jo

(60)

An approximate expression for Go 0(Z), which is accurate within one percent for x & 1, or 8& okT, is

kT 16 8 ( 3 kT 3 (kT'Ioi
Go-0(@=1+ ——

I
1+- +—

IE 75&2& 4 & 64' &) J
(62)

As a numerical illustration of these results, we shall assume that B=kT=0.233El, corresponding
to a temperature T=20'K. Under these conditions,

Go O=Gy y=1.036, Go g=0.5971,

&0~0= 8.33[(2~3/2++1/2) +(5/4)(/33/2 (31/2) ]r
8 33L(2/33(2+&1/2) + 2 (/23/2 /31/2) ]

&0~1 1 80(/13/2 (31/2) ~

corpora = rrt 1+Iro~a= 8 33(283(2+131/2) +5 9/(ao/2 —Itt/2)',

rro I o=rro o = 8 33(2a3/2+81/2)'+10. 42(ao/2 —/21/2)'.

The cross section for neutron scattering by free deuterons

4x
rro

———[(2123/2+GI/2) 2+ 2(ao/2 —/31/2) ]9

(63)

(64)

(65)

(66)

is related to the ortho- and para-cross sections by

00 0 40300rthp 0 2350para

which provides a useful check on the measurements.

It is apparent that the ortho-cross section
ahvays exceeds the para-cross section. A con-
sideration of the ratio of the cross sections in its
dependence upon the ratio of the unknown
scattering amplitudes is of importance in in-
dicating the degree of precision with which the
experiment must be performed in order to yield
useful information. The ratio

rrortho 1+1 25p ( 133/2 Itl(2 t

p=
i

(68)
Irpara 1+0 ~1 p (2(33/2+81/2)

1S plottecl as a fu11ct1011 of G3/2/SI/2 In Fig. 3. If
the scattering amplitudes possess the same sign,
the cross-section ratio never exceeds 1.31 and
attains this order of magnitude only for very
sma/1 values of ay~ reIative to a~~~. If, however, the
amplitudes are of opposite sign, the cross-section
ratio is always greater than 1.11, but never
exceeds 1.75. The latter vaIue corresponds to

I2 1.4

lQo

IO- IP
I I I I I I I

-5

FtG. 3. Ratio of ortho- to para-scattering cross section as
a function of a~le/aqlll (cf. Eq. (68)).

ao/2/at/2 ————,'. It is clear that if the experiment
is to provide signi6cant data, one must be
prepared to measure the ortho- and para-cross
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sections with an accuracy of a few percent. " It
should also be noted that a given ortho-par@-
scattering ratio may correspond to either of
two amplitude ratios, and the experiment can
in no way distinguish between them. The am-
plitudes are further undetermined to the extent
of a common sign factor. This fourfold ambiguity
obviously stems from the fact that the ortho-
and para-cross sections fix only the magnitudes
of the amplitude factors 2a3/2+61/2 and ap/2 —a1/2,
but not their signs. The same situation arises,
of course, in ortho-para-H2 experiments, but
with hydrogen our theoretical knowledge of the
sign and order of magnitude of the triplet
amplitude permits a unique determination.

In order to reduce this ambiguity in the
interpretation of the ortho-para-measurements,
it is necessary to measure the deuterium scat-
tering amplitudes relative to the known values
of some other nucleus. Since hydrogen is the
only substance with well-known scattering
properties, this suggests a consideration of
scattering by the HD molecule. We give,
without derivation, the total cross section for
neutron scattering by HD molecules in the J=o
rotational level, in the limit of zero neutron
energy:

9m
&H D [(3/31+/33+ 2/33/2+ Q 1/2)

16
+3(a1—aP)'+2(ap/2 —131/2)'j, (69)

9 81 9x=—p'a+ —o'D+—(3/31+a 3)(2a3/2+81/2).
4 64 8

In this formula, a& and ao are the hydrogen scat-
tering amplitudes for the triplet and singlet spin

From the experimental viewpoint, it would be de-
sirable to use liquid, rather than gaseous, deuterium. If the
scattering cross sections are to be unafFected by the inter-
molecular forces in the liquid phase, the neutron energy
must exceed, say, 0.01 ev. An inspection of the data con-
tained in Figs. 1 and 2, which are now directly applicable
to the experimental results, indicates that efFects com-
parable with those discussed in the text are obtained if the
neutron energy is insufhcient to excite the 1~2 transition,
that is, E&0.018 ev.

states; 0H and 00 are the total cross sections for
scattering by a free proton and deuteron, re-
spectively. It is clear that an absolute measure-
ment of the HD cross section, combined with
the information supplied by ortho-parahydrogen
and deuterium experiments, namely the nu-
merical magnitudes of all the quantities ap-
pearing in Eq. (69), together with the theoreti-
cally known sign of a~, in principle determines
the sign of the amplitude combination 2+3/2+/31/2.

Unfortunately, the infIuence of the interference
term on OHD is slight, since the hydrogen am-
plitude factor 3a~+ao is small, as evidenced by
the very low parahydrogen elastic cross section.
If one inserts the theoretically known hydrogen
amplitudes and a free deuteron cross section
co=4&(10 "cm', the contribution of the inter-
ference term to OHD is found to be less than 7

percent, and attains this magnitude only if
a3~~—aj~~. Thus, in oreler that this experiment
be successful, the large cross sections rH and PHD

must be measured with high precision, and the
corrections for the 6nite neutron energy and
molecular motion must be accurately incor-
porated into the theory.

It may be remarked that the sign of the am-
plitude combination a3~~ —a~~~ can never be
determined by any experiment in which the
deuteron spin remains arbitrarily oriented in

space.
In the event that the scattering amplitudes

a3/2 and a&~& are not such as to produce an ob-
servable difference between the ortho- and
para-D2 cross sections, information may still be
obtained by studies on the depolarization of
polarized neutrons diffusing through substances
containing deuterium. The cumulative e8ect of
a large number of slightly depolarizing collisions
can produce easily measurable efFects in much
the same way that diffusion experiments allow
the determination of small capture cross sections.
A paper dealing with this subject is being pre-
pared for publication.


