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The wave equation for a system of particles is derived on the basis of Podolsky's generalized
electrodynamics. An extension of some work of Fock leads to a representation in terms of a
series of functionals. With this formalism the matrix element for the relativistic interaction of
two electrons is determined, and is seen to be a generalization of Mgller’s formula.

1. INTRODUCTION

N a series of papers Podolsky! has formulated the basis of a generalized electrodynamics involving

higher derivatives in the field equations, and Podolsky and Kikuchi® have developed the theory

to include quantum electrodynamics. Here we extend the formalism, basing the treatment on the

work of Fock,?® and apply the results to the determination of the relativistic interaction of two
electrons.

2. WAVE EQUATION FOR A SYSTEM OF PARTICLES
Derivation of Wave Equation for a System of Particles

According to Dirac, Fock, and Podolsky,* and GE II and GE III, the Dirac wave equation for
a system of particles and field, together with their interaction, is

. (Hpy+H;+H,)¥=1hd¥ /T, (2.1)
with
T=U(r; - - 1a; A(k), A*(k), 6(K), ¢*(k); A(k), A*(k), $(K), *(K); T), (2.2)
where
H,= Zn: (cas ps+msc?Bs); (2.3)

8=1

A= f[A*(k) -A(k) —¢* (k) o (k) +A(k) - A*(k) — o (k)™ (k) Jk*dk
- f [A*(k)-A(k) — 6*(k)$ (k) +A(k) - A* (k) — (k) $* (k) Jedks;  (2.4)

Hyy=Y e[¢(t, T)—ar-Alr,, T)]. 2.5)

8=1
When the single Eq. (2.1) with common time 7T is replaced by the set of equations with separate
times ¢, in accordance with DFP, and after several transformations and the use of auxiliary con-
ditions, it is shown in GE III that the equations to be solved are

(cas-P,/+myc?B:)0=T,Q, (2.6)

where
P,/ =p,— (e:/c)D(rs, ts) — (€:/2¢)V, U, (2.7)
T, =1h0/0t,— (es/2¢)0 U,/ 3t — (e,%/87a). (2.8)

* Now at Princeton University, Princeton, New Jersey.

1 B. Podolsky, Phys. Rev. 62, 68 (1942). This paper has been called GE 1.

2 B. l_’odlolsky and C. Kikuchi, Phys. Rev. 65, 228 (1944); 67, 184 (1945). These papers will be called GE II and GE 111,
respectively.

3V. Fock, Physik. Zeits. Sowjetunion 6, 425 (1934).

4 P. Dirac, V. Fock, and B. Podolsky, Physik. Zeits. Sowjetunion 2, 468 (1932). This paper will be called DFP.
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118 D. J. MONTGOMERY

The last two equations are GE III (4.2) and (4.3), with obvious minor changes in notation. The
definition of U, is given by GE III (4.1):

Ui=5. (eu/87%) f [(1/RY) sin (o0 ) — (1/F9) sin (7 — p2) 1dk,

where
os=chkt,—K- T, @,=ckl,—K-r,.

In order to obtain the wave equation for the system, DFP shows that the equations for the
individual particles are to be added, and the times are to be set equal to the common time 7. Now
it is readily shown that

0/dT=3/0t+3 ., 3/0ts;

and inasmuch as © is independent of ¢, the effect of adding the equations and setting the times equal
is to replace 8/d¢, in the individual equations by d/4T in the combined equation. The resultant
equation is further simplified by showing that V,U,=0 when the times are set equal, and making use
of GE 111 (4.3) and (4.12), namely:

(1/6)aU. /0ty =T u(e/4m | Ta—1.| ) [1—exp (= |ra—1.|/a) ].

The resulting wave equation for a system of particles in the generalized quantum electrodynamics
is thus?®

>s {as[cps— & D(1s, t) ]+ mc?Bs} Q= {1hd /0t — (1/8ma) Y, €,*
= u(een/87 | T — 1 )[1—exp (= |fo—1a| /@) T} Q. (2.9)
Representation of Wave Equation in Functional Formalism®
It will be convenient to transform the field variables to their Fourier amplitudes, by means of
GE 1II (3.3):
D(r,, t)= (1/21r)if{D(k) exp [4(k-r,—kct) ]+ D*(k) exp [ —i(k-r,—kct) ]} dk
+(1/21r)*f{D(k) exp [i(k-r,—kct) ]+ D*(k) exp [ —i(k-r,—kct)]}dk.

From the commutation rules in GE 111 (3.7),7 it follows that D (k) may be represented by

D (k) = (ch/2k)* éﬁj(l/k)kxe:‘b(ky 7) (2.10)
where 87=1, e; are a set of Cartesian unit ba’se vectors, and the b(k, j) are operators satisfying
- [o(k, /), b*(K', ") ]=6,76(k—k'); (2.11)
and D(k) by
D(k) = (ck/2k)} ,i:x Bi(1/ak)(ak X e;+e,)b(k, 7), (2.12)

where 82=1, e, are defined previously, and 5(k, j) are operators satisfying

[b(k, ), b*(&’, i) 1= —b;76(k—K'). (2.13)

5 This equation was derived earlier by C. Kikuchi in different manner, but has not been previously published.
¢ This is the formalism developed by Fock in the reference of footnote 3.
be:: Note theed typographical error in the second of the equations mentioned; the tilde over the %2 in the right-hand side has
n omitted.
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For, according to (2.10) and (2.11),
[Di(k), Dn*(K") 1= (ch/2k)}(ch/2k') 25 7 BBy (1/k)(1/F)) (KX €;) - €:(K' X ;) -en[b(K, 7), b*(K’, j')]
=(ch/2k%) ;7 BiBy(kXer-e;)(kXe, e;)d;6(k—k')
= (ch/2k%) (kX €;) - (kX en)s(k—Kk')
= (ch/2k%) (k-ke; en—k-ek-e,)5(k—k’)
=(ch/2k)(61m—kikn/k?)o(k—K'),
which is the same as GE 111 (3.7). Analogously, using (2.12) and (2.13), we obtain
[Di(k), Dp*(K')]= — (ch/2k) (81n— kikm/k)) (K —K'),

the second of Egs. GE 111 (3.7).
Upon definition of

G*(k, H)=(1/2m)¥(ch/2k)} 2, e.Bi(1/k)es -k X e;exp [4(k-1r,—kct)], (2.14)

q G*(k, j)=(1/2m)}(ch/2E)} T, e.B;(1/ak) (s ak X €4, €;) -exp [i(k-1,—kct) ], (2.15)
an

H= Zs [“a'cps-l-m.czﬁs]'f‘(l/s‘lrd) 2 esg+zs,.u (eseu/47rlrs_ru|)[1 —exp (— Ir‘_r“’/a)]’ (2.16)

the wave equation (2.9) becomes
3

HQ—1hdQ/0t= {Z fdk[G*(k, Dok, /) +Gk, 7)b*(k, 7)
j=1

+E(k, )bk, )+ Gk, Bk, )] }sz 2.17)

The time factors in the exponentials in the G’s may be eliminated through transformations of type

e=iwth(k, et
where

w=c 3 f di'[K'b* (&, j)b(K', j') —R'E* (K, 7)b(K', j)]. (2.18)

From the commutation rules for 6 and ;), it follows that
ewip(k, jewt=b(k, j)etickt, e"““"Z(k, ]‘)eiwt=5(k’ 7)eticke
e~wth*(k, j)eit =b*(k, 7)e—ickt, e—iw:i,*(k’ j)eiwt=5*(k, 7)e—icke,

There is also the relationship

e~ (ihd/dt)e™t = —ihd /At + huw. (2.19)
Upon definition of

Go*(k, 7)=G*(k, j)ei*¢, and so on,

the transformed wave equation becomes (where the transformed functional is designated by the
same symbol as the original functional)

(H—-iha/at)9+hc{2 f dk[kb*(k, /)b(k, j) —kb*(k, /)b(k, )]}Q

=1

= {5 [aKCGit 000, )+ Gotl, 75406, -+ G, DB, )+Gile, 5, ). (220



120 D. J. MONTGOMERY

Explicit Representation for Field Operators and Functional

A sufficiently general form for the functional is

Q= Z 7,8 ﬂn
where

Q= . Z . Z f ' fdkl - -dk,dl,- dls'll/ra(klr 11+ 'krr Tr; lly jl' * 'lsi j8)
IRrt A Aret A
'B(kl, 7:1)' . ‘B(kr, ir)z(lly Jl) o ‘Z(Ia: Je) (2-21)

Each sum is to be taken from 1 to 3 over the values of 7 and 7, and each integral over the entire
momentum spaces of k and 1.
The functional derivatives may be defined by

3Q[b(k, j)1/8b(K’, j') Elin:) (1/m) {QLb(Kk, j)+nd;;6(k'—k)]—[b(k, )1}, (2.22)

where k represents the variables of integration and j the indices of summation in the functional.
Definitions (2.21) and (2.22) permit the association

b(k, i) ~5/8b(k, i); b*(k, i) ~b(k,5); &L, j)~3/8b(1, j); B*(L, j)~—b(1, ), (2.23)
for it may readily be shown that

q (8/8b(k, 7))b(K’, )2 —b(Kk’', i')(5/6b(k, 1)) 2=5:6(k—k')Q
an

(=8/8b(1, B, 7)Q—b(, 7)(—8/8b(1, 7))@= —8;36(1—1)Q. (2.24)

These two equations are to be compared with the commutation rules (2.11) and (2.13).

Application to Wave Equation

The explicit representation developed in the preceding section may be applied to the wave equation
(2.20) in order to obtain an ordinary wave equation in k-space. For the immediate purpose of this
paper, we are interested in the case where the series of functionals is to be broken off after only the
first three terms. (The technique which is to be used is, however, generalized readily to an arbitrary

number of terms.) Then
Q= Qoo+ Q10+ Qos,

Qoo =v00,

where
9105_2 dkio(Kky, 41)b(Ky, 1),

Q=Y | dlwo(ly, jl)z(lly J1).

i1

The substitution of these expressions into the wave equation gives after some computation the
following.equations:

(H—1hd/0t) oo =2_; f d&[Go* (&, )k, )+Go* (&, Yalk, /)], (2.25)

(H+hck—ihd/0t)¥10(k, 7) =Go(k, j)¥oo, (2.26)
(H+hck—ihd/3)Yu(k, j) = —Go(k, j)¥or. (2.27)
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3. RELATIVISTIC INTERACTION OF TWO ELECTRONS

Suppose the system consists only of two electrons and their field. To obtain a first-order approxi-
imation (i.e., matrix elements proportional to the square of the electronic charge), it is possible to
treat the last two terms in the definition of H (2.16), and the entire right-hand side of (2.25), as
perturbations on an unperturbed Hamiltonian consisting of the first two terms of H. In order to
eliminate ¥ and y1o from the right-hand side of (2.25), the two succeeding equations are solved for
these two functions, with ¥, approximated by the wave function for the unperturbed system. The
substitution of these results into (2.25) provides an equation amenable to standard methods of
perturbation theory.

Wave Function for the Unperturbed System

The representative for two free electrons with momenta p,° and p.°, and signs of energy and direc-
tion of spin designated by s,° and s5%, is given in ry, Is, {1, {2 space by

(r1, £15 T,y C2| P10 510 P20, 52°) =exp (—iW%/h) ¢y 3.1)
@0’ =(1/27h)% exp [ —i(p:°- 11+P2- 12) /B Jus,2,(P1°, $1°; P20, 52°). (3.2)

Here « is antisymmetric, and has sixteen components corresponding to variables {1, {2, each of which
has four values. The representative (3.1) is a solution of the wave equation

(Fit+Fo)y=W%,

where

where
Fy=a;- cps+mqc?Bs, 3.3)
and
. Wo= W+ W,°, 3.4)
with
Fio0°=W1%00%, Fapo®= W20’ (3.5)

Elimination of {1 and o
Let us define )
Vio=f=f0 exp (—iWU/h), Yu=g=g® exp (—iWt/h). (3.6)

It is clear from (2.26) and (2.27) that f and g have the same time dependence as (3.1) when ¥, has
been approximated by this wave function. Hence f° and g° are independent of time, and (2.26) and
(2.27) lead to

(F1+ Fothck— W) fO=Go(k, 7) ¢o°, (3.7)

(F1+ Fo-hck — W0 g0 = —Go(K, 7) 0o, (3.8)

where the static interaction and the self-energy have been neglected, as they are proportional to the
square of the charge, and would give terms proportional to powers higher than second in the final
interaction matrix element.

The solutions for f° and g° are

f0=9‘p00: g0=6¢00y (3.9)
where

0=(1/2m)}(hc/2k)- { (Fi+hck— Wot)~'e8;(1/F) (a1 -k Xe;) exp (—ik-11)
+ (Fot-hek— Wo)tes;(1/k) (ez-kXe;) exp (—ik-12)}, (3.10)
6=(1/2m)k(hc/2k)}- {(Fi+hck— Wob)le8;(1/ak) (er-ak X e+ a1-€;) exp (—ik-1y)
+ (Fo+tick— Wo)texB;(1/ak) (az-ak X e+ ez-€;) exp (—tk-12)}.  (3.11)

Here we have made use of the fact that «; and a2 commute, and that ¢.° satisfies (3.5).
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The wave equation (2.25) becomes
(H—1hd/ot)Weo=Y f dk[Go*60—Go*0 Y. (3.12)
Now y differs from ¥ only by a perturbation contribution ; and the operator preceding ¢ is itself a

perturbation operator. Hence we may replace ¢ by ¥, and the equation is in standard form for
application of perturbation theory.

Calculation of Interaction Matrix Element

The perturbing energies are, for two particles of charge €, and e,

ereo[ 1 —exp (— |r1—12|/a)] /47|11 — 12| = U, (3.13)
(e2+es?)/8ma=TV, (3.14)
- f A& Y (Go*6—Go*B) = Ust Vo, (3.15)

where U; represents the part of the left-hand side of (3.15) containing terms in e;es, and Vs represents
the part containing terms in &2 and €2 Since we are interested in the interaction only, we shall
calculate only the matrix elements for U, and U, Further we assume conservation of energy:
Wi+W.= W'+ W2 . It is well known that the matrix element

(pl, S1; P2, 32!6162/47r[1'1—f2{ ]plo, 520; p2f, 520 = (1,/21r)351525(P1+P2)(l/hPlz)(u*, u®), (3.16)
where P,=p,—p,°, and

(W*, u) =3 uc,0,*(P1, $1; P2, S2)us,5,(P1°, 51°; P2’ S2°).

From the —eezexp (—|ry—r2|/a)/4x|11—13| term, the contribution to the interaction matrix
element is calculated to be the negative of (3.16), with P,? replaced by Py+#4%/a2. That is,

(Pl, S1; P2, 52{ — €1€2 €XP (— frl—rzl/ll)/‘lvr]l'l—rz] |p1°, $1%; pz", 520)

= - Z dl'lfdrztpo*{éj_ﬁ exp (— [rl—rgl/a)/41r[r1—r2| }(poo
$18,

= —erea(u, u“)(l/th)“ffdndrz exp (— [ri—r12|/a)-exp { —i[(p1—p1%) - (r1—r2+12)
+(P2—p2°) -12]/A} /|11 —12!.

Define P1=p,—~p°, P,=p,—p.’, R=r,—1,; the integral immediately above becomes

f f drdR exp { —i[Py- R+ (P1+Py) 1y]/k} (e ®/2/R)
= (27h)* (P1+P2)(47h/P1) (P1/h) /[ (1/a*) + (P1*/h*)].
Then the matrix element for U, is finally
= (1/27) c1e3(P1+P2) (1/h) (P12 +h%/a®) =} (u*, u®).
For the part of — f'dk 3_ G¢*6 which contains ejes, the contribution is
— (1/27)%1638(Py+Po) (AL Py — (W — W19)2/c* ]}~ (u*, (er- s — @1-Pyas-Py/Py2)ud);  (3.17)
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for the part of + Sdk X éo*(; which contains e;e;, the contribution turns out to be the negative of
(3.17) with P2 replaced by P2+ #?/a®. The proof follows.
From the appropriate definitions ((2.14), following (2.19), and (3.10)), we have

> Go*0=3 (1/2m)%(kc/2k?) - {e12ar-k X e; exp (—ik-11)(Fi+hck— W% 'ey-kXe; exp (—ik-1;)
+e?ar-kXe;exp (—ik-11) (Fathck— W,o0)"lay-kXe;exp (—ik-rs)
+eresas- kX €;(F1+hck— W\~ ar-kXe;exp [k (r2—r1))]
+ereser kX e;(Fothck— W) "las-kXe; exp [ik-(ra—r11)]}.

We are interested only in the terms in eje2; the matrix element for the first of these is, since F; is
Hermitian,

Z,'Z feleg((Fl-}-hck—W1°)“)¢0*a2-k><e,~a1-k><e,- exp [—ik-(r2~r1)]<po"

where the second sum is to be taken over the spin variables, and the integral over the ry, r, variables.
The angular brackets indicate, of course, the Hermitian conjugate. With the help of (3.5), the ex-
pression becomes

e z:f(W1+hck— W)L o* (a1 XK) - (@2 XK) exp [ik- (r2—11) Joo
= Elézf(Wl‘l‘th — W10)—1 exp [—’L(pl “Ti+pe- I'z)/h]

(u*, ((ll'dzkz—al'kdz'k) exp [’l«k (rr—rl)] exp [i(plo-rl—}—pg"-r:)/h]u“)

The complete expression for the term without tildes is

—(1/21r)3(hc/2k)elezfdkfdrldrg(Wl—}—hck— Wi ~1t-exp [ —2(P1—kk) -1,/k]
-exp [ —1(Pe+EkK) - ro/B ) (u*, (a1 a2 — a;-Kaz-K/R2)u).

Integration with respect to r; produces a §(P;—#%k) factor, and integration with respect to 7k
replaces the #k by P;. The final integration with respect to r; gives a §(P.+P;) factor. The result is

(1/27)erea(c/B)8(P1+Po) (Wi — W04 lps =) (2 pr—pa?] 9~
X (u*, (@1 @a— ;- Prag-Py/P13)uf).

For the second term containing e ez, the subscripts 1 and 2 are interchanged. Upon use of the
expression for conservation of energy, we find the sum of the two to be (3.17).

The calculations for + f'dk 3 Go*@ are of the same type.
The part containing the Dirac matrices can be simplified further; for by (3.2) and (3.3)

Fio0°=(1/27h)3 exp (ip2°-12/k) - [a1-cp1exp (5p1°- ri/k) +mic?B1 exp (1p1°-1r1/h) Ju®
= (1/27h)3 exp (ip2°-r2/h)-[exp (@p1°-11/h) ey cpu’®
+ar-cpr® exp (1p1°- 11/ h)u'+mic?By exp (1p1°- r1/R)u’]
= (1/27#)% exp [i(p1°- r14+p2°- 12) /A (F1+ a1 - cpr®)u®

=Wi%’,
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whence
(Fit ez cprO)u’=W,%"°;

and since, in the expression (3.3) for Fi,
- cpu’=ay- (h/1)0u°/dr; =0,

it follows that ei-p:°°=(1/c)(W:®—mc?B1)u’. Analogous relations hold for ai:-pi, @2:p2°, az-pa.

Now
(u*, — a1 Prag-P1u®) = (u*, [e1- (pr—Pp1%) @z (P2 —p2°) Ju®),

by definition of P; and application of the principle of conservation of momentum in accordance
with the §(P;+P,) factor in the matrix element. The expansion of the quantity in brackets gives

@1-Piez-P2— a1 Prlaz-pe— a1 praz-P2’+a;-prlasz-pel.

Then
c*(u*, e1-praz-pau®) = ([ez-poer-piu]*, u’)c?
= ([ag-po(W1—mic®B1)u]*, uc,
= ([(W2—mac?B2) (Wr—mic*Br)u 1%, u®),
= (u*, (Wa—mac?Bs) (W1 —mic?*Br)u’);
and

—c*(u*, @y prlaz-pou®) = — ([ pau ]*, @1 p1°u°)c?,
= — ([(Wa—mac*B)u]*, (W1 —mic*B1)u’),
= — (u*, (Wa—mac?B2) (W1 —mic?B1)u’).

Analogous expressions are computed in similar fashion for the other two terms in the expansion.
Upon combining the four terms, the 8's disappear, and the result is

(u*, (W= WO (We— W2)n).
By conservation of energy, Wi1— W= —(W.— W), whence
(u*, —a1-Pras-Piu®) = — (1/¢?) (u*, (W1— W1°)2u%).
Upon combining our various results, we get for the interaction matrix element the following :
(1/27)*(1/)8(P1+p2—P1"—p2) { [Pr—p1°| 2 — (W1 — W) 2/} !
A1+ @/m)Lpr—p: P = (Wi— W19/ 1} (¥, (1—er-ez)uf).  (3.18)

This result is a generalization of Mgller’s formula.® It will be noticed that it is relativistically in-
variant, and reduces to Mgller’s expression as a—0.
The author is grateful to Dr. Boris Podolsky for his continued encouragement and assistance.

8 C. Mgller, Zeits. f. Physik 70, 786 (1931).



