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The wave equation for a system of particles is derived on the basis of Podolsky's generalized
electrodynamics. An extension of some work of Fock leads to a representation in terms of a
series of functionals. %'ith this formalism the matrix element for the relativistic interaction of
two electrons is determined, and is seen to be a generalization of Mgller's formula.

f. INTRODUCTION

' 'N a series of papers Podolsky' has formulated the basis of a generalized electrodynamics involving
~ ~ higher derivatives in the 6eld equations, and Podolsky and Kikuchi' have developed the theory
to include quantum electrodynamics. Here we extend the formalism, basing the treatment on the
work of Fock, ' and apply the results to the determination of the relativistic interaction of two
electrons.

2. WAVE EQUATION FOR A SYSTEM OF PARTICLES

Derivation of Wave Equation for a System of Particles

According to Dirac, Fock, and Podolsky, 4 and GE II and GE III, the Dirac wave equation for

a system of particles and held, together with their interaction, is

with

where

(H~+Ht+H~, )+ =ih8%'/BT,

e=e(r, r„;A(k), A*(k), y(k), y*(k); A(k), A*(k), j(k), j*(k); T),

(2.1)

(2.2}

H~=Q (ca, y, +m, c'p, );
8~1

H&=~r [A'(k) A(k) —y'(k)y(k)+A(k) A'(k) —y(k)y'(k) jk'dk

— "[A*(k) A(k) —4*(k)4 (k)+A(k) A'(k) —&(k)4'(k) 3&'dk'

(2.3)

(2.5)H„=P.,[y(r„T)—,A(r. , T)].
8~1

When the single Eq. (2.1) with common time T is replaced by the set of equations with separate
times t, in accordance with DFP, and after several transformations and the use of auxiliary con-
ditions, it is shown in GE III that the equations to be solved are

(ce, P,'+m, c'P,)Q=T, '0,

P,' =y, —(e,/c) D (r„ t,) —(e,/2c) V. U. ,

T,'=ih8/Bt, —(c,/2c) 8 U, /Bt, (e,'/Ss u).—

(2 6)

(2.7)

(2.8)
~ Now at Princeton University, Princeton, New Jersey.' B. Podolsky, Phys. Rev. 62, 68 (1942). This paper has been called GE I.
E B.Podolsky and C. Kikuchi, Phys. Rev. 65, 228 (1944); 6'I, 1S4 I'1945). These papers will be called GE II and GE III,

respectively.' V. Fock, Physik. Zeits. Sowjetunion 6, 425 (1934).
P. Dirac, V. Fock, and 8. Podolsky, Physik. Zeits. Sowjetunion 2, 468 {1932).This paper will be called DFP.
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The last two equations are GE III (4.2) and (4.3), with obvious minor changes in notation. The
definition of U, is given by GE III (4.1):

U, —=Ps (ss/8ir'), ~[(1/k') sin (rp, —q„)—(1/ks) sin (j,—ts„)jdk,

In order to obtain the wave equation for the system, DFP shows that the equations for the
individual particles are to be added, and the times are to be set equal to the common time T. Now
it is readily shown that

8/8 T=8/Bt+ g, 8/Bt„.

and inasmuch as 0 is independent of t, the eR'ect of adding the equations and setting the times equal
is to replace 8/8t, in the individual equations by 8/BT in the combined equation. The resultant
equation is further simpli6ed by showing that V, U, =0 when the times are set equal, and making use
of GE III (4.3) and (4.12), namely:

(1/c)8U, /8&, =g„(s„/4s )r, —r„))[1—exp (—[r,—r„[/a) j.
The resulting wave equation for a system of particles in the generalized quantum electrodynamics
ls thus~

P, {e, .[cp, —s,D(r„ f) j+rri~ P, }0= {ih8/Bt (1/8tra) P—, s, '-

—g, , „(s,e„/8s ~r. —r ~)[1—exp (—~r, —r„(/ )aj}&. (2.9)

Representation of %'ave Equation in Functional Formalism'

It will be convenient to transform the field variables to their Fourier amplitudes, by means of
GE II (3.3):

D(r. , t) =(1/2s)&~ ID(k) exp [s(k r, —kct) j+D*(k) exp ['—s(k r, kct)5}dk—

+(1/2s)& {D(k)exp [s(k r, —kcf) j+D*(k) exp [—(kt. r, kct) j}dk. —

From the commutation rules in GE III (3.7),' it follows that D(k) may be represented by

(2.10)

(2 11)
and D(k) by

D (k) = (ck/2&) i Q P,(1/k)k XeJI (k,j ),
j'=1

where p, =1, e; are a set of Cartesian unit base vectors, and the b(k, j) are operators satisfying

D(k) =(ch/2k)f Q P,(1/ak)(akXe;+e;)b(k, j), (2 12)

where pfs = 1, e; are defined previously, and b(k, j) are operators satisfying

(2.13)

This equation w'as derived earlier by C. Kikuchi in different manner, but has not been previously published.' This is the formehsm developed by Fock in the reference of footnote 3.
~ Note the typographical error &n the second of the equations mentioned; the tilde over the k~ in the right-hand side has

been omitted.
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For, according to (2.10) and (2.1 1),

[Dt(k), B *(k')]= (ch/2k)&(ch/2k')& g;, ;. pp; (1/k) (1/k') (k Xe) ei(k' Xe; ) .e [b(k, j), b*(k', j')j
= (ch/2k ) Zt; t' ptpt (k Xet ei) (k Xe- e;)»; &(k —k')

= (ch/2k') (k Xet) (k Xe )h(k —k')

= (ch/2k') (k .kei e„k—eik e„)8 (k —k')

= (ch/2k) (bi„k—ik„/k') b (k k—'),

which is the same as GE I I I (3.7) . Analogously, using (2.12) and (2.13), we obtain

[D,(k), D.*(k')j= -(.h/2k)(bt. ktk—./kt)b( k)—,

the second of Eqs. GE I I I (3.7).
Upon definition of

G*(k, j)—= (1/2x)&(ch/2k)& Q, e, Pt(i /k)n, kXe; exp [i(k r, kct)—5,

G*(k, j)—= (1/2~)t(ch/2k)1 Pt e,P, (1/ak)(e, ak Xe;+a. ej) exp [i(k.r. kct)—j,
(2.14)

(2.15)

H=Q [c 'cp +Sf c P j+(1/8%'a) Q w +Q (c e /4%(r, —r ~)[1—exp (—~r, —r ~/a)j, (2 16)

the wave equation (2.9) becomes

J P I dk[G*(k j)b(k j)+G(k j)b*(k j)

+G*(k, j)b(k, j)+G(» j)b'(k. j)j 0.

The time factors in the exponentials in the 6 's may be eliminated through transformations of type

e iwtb(k j)eiwt—

u =c Q dk'[k'b*(k', j')b(k', j') —k'b*(k', j')b(k', j') j. (2.18)

From the commutation rules for b and b, it follows that

e-ixutb(k j)eight b(k j )e+ickt e-iwtb(k j )eight b(k j )e+ickt

e tmtb4(k j)eiw—t b4(k j )e ickt e
—Ao—tbsp(k j )ebut b4(k j )e ickt—

There is also the relationship

Upon definition of
e 't(ih8/Bt)-e'"t= —ih8/Bt+hzv.

Go*(k, j)=—G*(k,j)e""' and so on,

(2.19)

the transformed wave equation becomes (where the transformed functional is designated by the
same symbol as the original functional)

3

(H iha/at) 0+he —g "dk[kb' (k, j)b (k, j)—kb*(k, j)b (k, j)j

J~dk[Go (k j)b(k j)+G0(k j)b (k j)+GO (k j)b(k j)+GO(k, j)b*(k, j)j fI (2 2o)
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Explicit Representation for Fie14 Operators and Functtoas3

A suSciently general form for the functional is

Q=g„, 0„.
where

0„=—Z
sl' ' 'sr ~1' ' '4 J

di. .f„,(ki, i, k„, i„li, ji l„j,)
b(ki, ii) . 5(k„, i„)b(li,j,) . b(l„j,). (2.21)

Each sum is to be taken from 1 to 3 over the values of i and j, and each integral over the entire
momentum spaces of k and 1.

The functional derivatives may be de6ned by

»L5(k, j)3/b5(k', j') —=lim (1/v) IQL5(k, j)+vb b(k' —k) j—QL5(k, j)jI,
elm 0

(2.22)

where R represents the variables of integration and j the indices of summation in the functional.
Definitions (2.21) and (2.22) permit the association

b(k, i) 8/bb(k, i); b*(k, i) b(k, i); b(1, j) 8/bb(1, j); b*(1, j) —b(1, j),
for it may readily be shown that

(8/b6(k, i))b(k', i') Q —5(k', i') (b/b6(k, i))0 = 8;;.b(k —k') 0

( b/bb(1 j))b(1', j')0—b(1', j')(—bibb(1, j))Q= —b b(1 —1')Q.

These two equations are to be compared with the commutation rules (2.11) and (2.13).

(2.23)

(2.24)

Application to Wave Equation

The explicit representation developed in the preceding section may be applied to the wave equation
(2.20) in order to obtain an ordinary wave equation in k-space. For the immediate purpose of this
paper, ave are interested in the case where the series of functionals is to be broken o8' after only the
first three terms. (The technique which is to be used is, however, genera1ized readily to an arbitrary
number of terms. ) Then

0 = Qog+ Qip+ Qpi,

Qoo—=400,

Qio =—Q, '

dkipio(ki, ii)b(ki, ii),

001=Q ~dllpol(11 jl)b(11 jl) ~

~1

The substitution of these expressions into the wave equation gives after some computation the
following, equations:

(H —ih8/83)fpo ——p; ) dkLG0" (k, j)QM(k, j)+Go*(k, j)foi(k, j)j,

(II+bc& ih8!Bt)go(k, j) =G—o(k, j)ii'oo,

(II+&~k ib&/@)poi—(k, j)= —Go(k, j)fog.

(2.25)

(2.26)

(2.27)
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3. RELATIVISTIC INTERACTION OF TWO ELECTRONS

Suppose the system consists only of two electrons and their field. To obtain a first-order approxi-
imation (i.e., matrix elements proportional to the square of the electronic charge), it is possible to
treat the last two terms in the definition of II (2.16), and the entire right-hand side of (2.25), as
perturbations on an unperturbed Hamiltonian consisting of the first two terms of II. In order to
eliminate /pi and pip from the right-hand side of (2.25), the two succeeding equations are solved for
these two functions, with fpp approximated by the wave function for the unperturbed system. The
substitution of these results into (2.25) provides an equation amenable to standard methods of
perturba, tion theory.

Wave Function for the Unperturbed. System

The representative for two free electrons with momenta pj,' and p2, and signs of energy and direc-
tion of spin designated by si' and so, is given in ri, r„f„I ospace by

(ri ii rp Io~pi si', pp', so') =exp ( iW't—/h)qp'

q o'= (1/2orh)' exp t
—i(pio ri+po' rp)/hjurr, (pio, sio; yoo, soo).

(3.1)

(3 2)

Here ot is antisymmetric, and has sixteen components corresponding to variables I b 1 o, each of which
has four values. The representative (3.1) is a solution of the wave equation

where

and

(F,+Fo)P = Wof,

F,= e, cp, +m—.,c'tt,„
W'= Wi'+Woo,

Egg '= lV 'q ' I'2yo'= S'g'qo'

Eiiiiioiiation of Qio and Qoi

Pip= f=f' exp ( iW't/h—), /pi—=g—=g' exp (—iW't/h).

(3 3)

(3.4)

(3.5)

(3.6)

It is clear from (2.26) and (2.27) that f and g have the same time dependence as (3.1) when fpp llas
been approximated by this wave function. Hence f' and g' are independent of time, and (2.26) and
(2.27) lead to

(Fi+Fo+hck —W')f'=Gp(k j)pip'

(F,+F,+hck Wo)go= Go(-k, ~) s-oo,

(3.7)

(3.8)

where the static interaction and the self-energy have been neglected, as they are proportional to the
square of the charge, and would give terms proportional to powers higher than second in the final
interaction matrix element.

The solutions for f and g' are

fo —e~ p gp —g~ 0 (3.9)

8—= (1/2or)&(hc/2k)& I(Fi+hck —Wo') 'p, P,(1/k)(ni kXe;) exp (—ik ri)

+(Fp+hck Wp ) poP (—1/k)(no 'kXe;) exp (—ik ro) I, (3.10)

8—= (1/2s)&(hc/2k)& ~

I (Fi+hck —Wp') pPi&(1 Q/k)( n'i6 kXeg+ n'ie;) exp (—ik ri)

+(Fo+hck Wo') 'pop;(1/a—k)(no , ukXe;+no e;) exp (—zk ro) I. (3.11)

Here we have made use of the fact that ei and eo commute, and that spo satisfies (3.5).
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The wave equation (2.25) becomes

(H ih—8/Bt)$00 ——QJ
dlr[GO" 8 —Go*81/. (3.12)

Now f dilfers from goo only by a perturbation contribution; and the operator preceding iP is itself a
perturbation operator. Hence we may replace P by $00, and the equation is in standard form for
application of perturbation theory.

Calculation of Interaction Matrix Element

The perturbing energies are, for two particIes of charge ~I and e2,

~ ~ [1—exp (—~ r —r2
I /o) j/4~ I

ri —r2
I

—= U~

(e~-'+ ~s')/8s a —= Vg, (3.14)

—
J

I dlr Q (GO*8—Gp~8) =—U2+ V2, (3.15)

where Us represents the part of the left-hand side of (3.15) containing terms in eqeq, and V2 represents
the part containing terms in e~' and ~~-. Since we are interested in the interaction only, we shall
calculate only the matrix elements for U~ and U;. Further we assume conservation of energy:
W&+W2= Wq +W2. It is well known that the matrix element

(y~, s~, y2, s21 ca~2/4~{ r, r, ! ~y, o s 0. y, o s,o) (1/2s. )se, e,8(P,+P,)(1/hP, )(u* uo) (3 16

eP=—&
—&0 and

(u, u ) =Q ugqrq (yl, s1 I y2~ s2)urqrq(yl, sl ~ y2, $2~).
4&a

From the —e~e2exp (—{r~—r
~
sa/) /4s r}~ r2} te—rm, the contribution to the interaction matrix

element is calculated to be the negative of (3.16), with PP replaced by Pi'+h'/a'. That is,

(y~ s~ y2, s~l —~~~2 exp (—{r~—»I/o)/4~1r~ —r21 ly~' s~' y~' s2')

}'
'

drgJ drgqo*{eie2exp (—erg —rgi/a), '4wirg —rgi }go'

= —&i~2(u*, u')(1/2mh)' ~ ~~dr&dr..exp (—~

r& —ri~/a) exp {—[(y~ —y~') '(r~ —r2+r2)

+ (ys —y2') .rl]/h}/
~
« —rs ~

De«e I'j.=p~ —yIO, P2=—p2 —y&', R=—r& —r2, the integral immediately above becomes

J
drsdR exp { i[P, R—+(P,+PI) r2]/h} (e s'/R)

= (2~h) 9(P,+P,) (4~h/P, )(P,/h)/[(1/o')+(&&2/h') ).
Then the matrix element for U& is finally

—(1/2m)3fyfgh(Pg+P2)(i/h)(PP+h'/a')-'(u* u')

For the part of —J'dir P Gp*8 which contains eye~, the contribution is

—(1/2s')'~i~2&(Pi+P~) {hP'i' —(%—%')'/~'j}-'(u*, (ui u —u P I~.Pi/&i')u') '
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for the part of +J dk p Go 8 which contains olo2, the contribution turns out to be the negative of
(3.17) with F12 replaced by P12+ho/ao. The proof follows.

From the appropriate definitions ((2.14), following (2.19), and (3.10)), we have

Q Go*8=+ (1/22r)2(hc/2ko) {olonl kXe, exp (—ik r,)(F1+hck —Wlo) 'nl kXe;exp (—ik r, )

+o22n2 kXe, exp ( ik—rl)(F2+hck —W2o) 'al kXe;exp ( i—k r )

+«ooa'kXe;(Fi+hck Wl')—al kXe, «p [lk (r.—r,)]
+ 'Elooal ' kxe, (F,+hck W—,o)- a, kXe, exp [ik. (r, —r,)]}.

We are interested only in the terms in e&e2, the matrix element for the first of these is, since I & is
Herml tian,

olo2{(F1+kck—Wlo) ') ioo*n2 kXe;nl kXe, exp [—ik (ro —rl)]po'

where the second sum is to be taken over the spin variables, and the integral over the r~, r2 variables.
The angular brackets indicate, of course, the Hermitian conjugate. With the help of (3.5), the ex-
pression becomes

oloo Q Jt (Wl+hck —Wl') 'go*(ni Xk) (noXk) exp [ik (r2 —rl)]q oo

= 2122J (Wl+kck —Wl ) exp [—i(pl'rl+p2 'r2)/k]

(u, (nl n2k nl'kn2'k) exp [2k' (r2 rl)] exp [$(pl ' rl+p2 ' r")/k Iu )

The complete expression for the term without tildes is

—(1/22r)'(hc/2k)olo2J dkJ drldr2(W1+kck —Wl') ' exp [—i(P, —hk) r, !h]

exp [—i(P2+hk) r2/h](u*, (nl nl —nl kn'k/k')u').

Integration with respect to rl produces a b(P1 —hk) factor, and integration with respect to hk

replaces the kk by Pl. The final integration with respect to r2 gives a 8(P2+Pl) factor. The result is

(1/22r)'olo2(c, 'h) h(P, +P2)(W1 —Wl'+c I pi —pl'I ) ' (2
i y, —pl' I ') '

X(u* (al n. —nl Plno Pi/F12)uo).

For the second term containing e&~2, the subscripts j. and 2 are interchanged. Upon use of the
expression for conservation of energy, we find the sum of the two to be (3.17).

The calculations for +J'dk P Go*8 are of the same type.
The part containing the Dirac matrices can be simplified further; for by (3.2) and (3.3)

Fico'= (1/22rh)' exp (ipo'r2/k) [ai cpl exp (ipl'ri/h)+mlc'pl «p (2pl'rl/k)]u'

= (1/22rh)2 exp (iy r 2/h) 2[exp (iyl'rl/k)al cylu'

+nl'cpl exp (ipl ri/k)u +2221c pl exp (2pl rl, : k)u ]
= (1/22rk)2 exp [i(pl'rl+p2'r2)/h](F1+al cpl")u'

= 8'g'q p',
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(F + cp ')u'= W'u';

and since, in the expression (3.3) for F~,

eg cp,u'=—ei (io/o)8u'/olrg ——0,

it follows that a~ PPu'=(1/c)(W, ' —m~c'P~)u'. Analogous relations hold for e~.p~, eo po, eo po.
Now

(u*, —eg Pleo. Pgu') =(u*, [ag (pg —pg')eo (po —po')]u'),

by definition of P1 and application of the principle of conservation of momentum in accordance
with the 8(P&+Po) factor in the matrix element. The expansion of the quantity in brackets gives

+1 Pl+2'P2 01'Pl +2'P2: 01'Plo'2'P2 +61'Pl +2'P2

c (u, ey'paleo'pou ) = ([eo'poey'pgu], u )c

=([e, p, (W, —m, c'P,)u]', uo)r. ,

([(W2 moc P2) (Wl mlcoP&)u] y
u ) ~

= (u*, (Wo moc—'Po) ( Wg mac—'P, )u");

c (u, eg'pg eo'pou ) = —([eo'pou], ey py u )c,
= —([(Wo —moc'l4)u]", (WP —mac'P, )uo),

= —(u*, (W o moc'Po) (W&' m&c'P—~)u')

Analogous expressions are computed in similar fashion for the other two terms in the expansion.
Upon combining the four terms, the P's disappear, and the result is

(u*, ( W& —W&o) (Wo —Woo) u)

By conservation of energy, W~ —WP = —(Wo —Wo'), whence

(u*, —eg Pleo P,u') = —(1/c')(u*, (Wg —WP)ouo).

Upon combining our various results, @re get for the interaction matrix eIement the following:

(1/2e) '(I/&) &(p~+po —p~' —po') I I p~ —p~'I ' —(W~ —W~')'/c'I '

I1+(uo/ho)[IP& p~oIo (W& W~o)o/co]I —~(uo (1 es. eo)uo) (3 18)

This result is a generalization of Mpller's formula. ' It will be noticed that it is relativistically in-
variant, and reduces to Manlier's expression as a—+0.

The author is grateful to Dr. Boris Podolsky for his continued encouragement and assistance.

8 C. Mgller, Zeits. f. Physik 70, 786 (1931).


