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The Deterraination of Refractive Indices of Colloidal Particles by Means of a New
Mixture Rule or from Measurements of Light Scattering
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A new theoretical mixture rule is developed for determining the refractive index of colloidal
particles from differential refractometric measurements. The new rule gives better results for
colloidal solutions than the mixture rules of Newton, Lorenz-Lorentz, or wiener if the difference
between the refractive indices of the colloidal particles and of the medium is small. If the differ-
ence is large, but not in excess of 0.7, the refractive index of the particles can still be obtained
with an accuracy in the third or fourth decimal by using an empirical correction equation. If
colloidal solutions are very opaque, the refractive index of the particles can be calculated from
light scattering. Application of the respective equation requires that the refractive index of the
medium and the size of the particles are known. The gravimetric and volumetric measurements
involved in the determination of density of colloidal particles can be replaced in part or entirely
by measurements of light scattering and refractivity.

SERIES of mixture rules has been pro-
posed for determining the refractive index

of a dispersed substance, n„, indirectly, from
measurements of the refractive index of the total
dispersed system, n t, and of the refractive index
of the medium of dispersion, n . Except for a few
rules of minor significance, they are:

Newton, theoretical:

nt = pmnm + ppnp g

Lorenz-Lorentz, theoretical:

nt 1

nt +2

n ' —1 np' —1= Pm +Pp
n '+2 np'+2

Wiener, theoretical:

n t2 nm2

np+u

np' —n-'
=Pp

np'+e
(3)

Lichtenecker, empirical;

log n&= y log n + q p log n„,

Avogadro-Biot-Beer-Landolt-Christiansen-
Wintgen, empirical:

I. A NEW MIXTURE RULE FOR DETERMINING THE
REFRACTIVE INDEX OF COLLOIDAL

CRYSTALS OR MOLECULES

A. The Classical Mixture Rules

TABLE I. Refractive indices of S at room temperature.

Experimen-
tal values

(Mean)
(From
Inter-

national
Critical
Tables)

2.085

Values calculated for infinite dilution from mixture rules
(Assumed density: 2.000)

Ea (1) Eqs (2, 3) Eq (4) E~ (5) EQ (9)

1.88S 2.267 2.184 2.008 1.992

The term u in Eq. (3) is a function of the shape
of the particles. u=2n ', if the particles are
spherical. Equation (3) is then identical with
Eq. (2).

A large series of experiments by various au-
thors has shown that the "refractive increment"
(e&—m )/c—in which c is the weight concentra-
tion of the particles —is practically independent
of c in dilute colloidal solutions. A priori, the
empirical Eq. (5) appears therefore to be most
suited for colloidal systems. All equations are
tested in Table I in which n„ is calculated for
colloidal sulphur. '

In addition to being empirical, Eq. (5) has a
second disadvantage, which is shared also by the
other mixture rules: both nt and n must be
known. If they are determined in two separate
experiments, small temperature differences will

play a role, because they affect the values of
nt, n, and y.

nt = pmnm+ ppnp. Since sulphur is only slightly lyophilic, the medium of
dispersion should have little effect upon n„, i.e., it should be

and pp are the respective volume fractions. expected that np p np
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It appeared desirable, therefore, to develop a
new mixture rule which has a theoretical founda-
tion and which allows the direct use of diFferential
refractometric data.

B. The New Mixture Rule

24+' (a' —1q '
Z=

(

—
(

vv'I„
X4 Ea'+2)

(6)

where R is the Tyndall radiation, Io the intensity
of the incident primary beam, a=n„/n, v the
number of the light scattering particles per cm', v

the volume of these particles, and ) the wave-

~ Lord Rayleigh, Phil. Mag. 41, 107, 274, 447 (1871);44,
28 (1897);47, 375 (1899).

3G. Mie, Ann. d. Physik 25, 377 (1'908); P. Debye,
Thesis, Munich (1908).

4 M. v. Smoluchowski, Ann. d. Physik 25, 205 (1908).
~ A. Einstein, Ann. d. Physik 33, 1275 (1910).
6 C. V. Raman and K. R. Ramanathan, Phil. Mag. 45,

213 (1923);see also R. Gans, Zeits. f. Physik 17, 371 (1923).
~ P. Debye, J.App. Phys. 15, 338 (1944).

A mixture rule which meets the two require-
ments can be derived easily on the basis of the
two principal theories developed on light-scat-
tering. There is, on the one hand, the well-known
theory of Rayleigh' and Mie, ' in which light
scattering is considered as an effect due to
material units. As a consequence, n„enters into
the equations devel'oped, in addition to n . On the
other hand, there is the theory of Smoluchowski4
and Einstein' in which light scattering is con-
sidered as an effect due to fluctuations, fluctua-
tions in density in liquids and fluctuations in
concentration in liquid mixtures. More complete
equations for liquid mixtures and solutions have
been derived by Raman' who takes into account
in these systems both fluctuations in density and
in concentration. Light scattering due to fluctua-
tions in density is negligible compared to light
scattering due to fluctuations in concentration, if
the solutions are colloidal. This special case has
been considered recently by Debye. ' In the equa-
tion at which Debye arrives, the refractive index
of the particles obviously does riot pnter, but n&

enters in addition to n .
A mixture rule can therefore be obtained by

combining the equation of Rayleigh and the
equation of Debye. This can be achieved by a
simple transformation of the former equation.
The classical formulation of the Rayleigh equa-
tion 1s

length in the medium. The quantities E. and Io
which are inconvenient for the present purpose
can be replaced by considering rather the decrease
in intensity of the primary beam during its
passage through the light scattering system.
Since the light intensity can be deFIned as the
energy incident upon the unit surface area per
unit time, the absolute loss in intensity (Io I)—
has the dimension erg)(cm '&(sec. '=g)&cm '
Xsec. . Since the light radiation has the dimen-
sion, ergXsec. ', it follows that the Tyndall
radiation, which is proportional to the volume
illuminated, has also the dimension g)&cm '
&(sec. '. Consequently, the absolute loss in in-
tensity (Io I) =R —(whenever the decrease in
intensity of the primary beam is due exclusively
to coherent light scattering), and the fractional
decrease in intensity over unit distance:

Ip I 247ra—f'a' —1) '
vV'.

X' (a'+2) (6a)

After substituting the wave-length in vacuum,
Xo, for ) and after replacing the ratio, a, by
differences of the refractive indices involved, the
transformed equation:

24m' n~4(n„' n~') '—
r = qv, (6b)

(nv'+2n~') '

is obtained, which is suitable for the present
purpose. Debye's equation, on the other hand, is:

327ra 1
r = nm'(n~ —nm) '—.

3Xo4

Upon combining (6b) and (7) the mixture rule

n„'+2bn„'(n, —n„)
~~(s)

n„-b(n, n„)-.
is obtained where

=b/23 y.

Compared to Eq. (5), the measurement of n & is
replaced by a di8'erential measurement (n& —n )
under elimination of temperature errors. The
advantage of the diA'erential measurement may
be expected to be particularly pronounced in very
dilute solutions where (n, —n„) is very small.
Such solutions are not likely to give reliable
results unless differential measurements are
carried out.
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TABLE II. Magnitude of error in calculations of refractive
indices from Eq. (8).

7tp(8) mrs

0.00235-0.00775
0.00775-0.0245
0.0245 -0.082
0.082 —0.225
0.225 —0.750
0.750 -2.18

nt y) if n~ =1.333000

1.33535-1.34075
1.34075-1.3575
1.3575 -1.415
1.415 -1.588
1.588 -2.083
2.083 -3,51

Errors occur
in the

6th decimal
5th decimal
4th decimal
3rd decimal
2nd decimal
1st decimal

C. The Limits of Validity of the New
Mixture Rule

' E.g. , Niels Pihlblad, Thesis; Uppsala (1918).
I' W. Heller and H. B.Klevens, Phys. Rev. 6'7, 61 (1945).

The theory of Rayleigh-Mie has been verified
repeatedly, ' i.e. , particle sizes determined on the
basis of the equation developed by Mie, of which
the Rayleigh Eq. (6) is a special case, were found
to be in quantitative agreement with the actual
particle sizes. Similarly, the equation of Debye
has been verified. ' There can therefore be no
doubt that the new mixture rule is valid for
systems which satisfy the assumptions involved
in the two theories on light scattering: Eq. (6) is
based on the assumption that the difference
(n„rl, ) is ve—ry small; Eq. (7) is based on the
assumption that Huctuations in density are
negligible compared to Huctuations in concentra-
tion. Equation (8) should, therefore, be valid, if
(n„n) —is very small and if the dispersed
particles (crystals or molecules) are large enough
to scatter considerably more light than the mole-
cules of the medium. The former condition can be
fulfilled by choosing the right medium. The latter
condition is fulfilled in colloidal solutions. It is
not fulfilled in liquid mixtures nor in solutions of
small molecules or ions.

Both Eqs. (6) and (7) presuppose that the
dispersed systems are dilute and that the light
scattering particles are small as compared to the
wave-length used, that they are spherical and
isotropic. However, identical correction factors
would have to be introduced into either equation
in order to make them applicable to systems of
moderate concentration and to large or non-
spherical or intrinsically anisotropic particles.
Consequently, these partly unknown correction
factors are cancelled out in the combination of
Eqs. (6) and (7) to Eq. (8). No influence of the

D. Another Formulation of the New
Mixture Rule

Upon reviewing the present paper, Professor
Debye drew the author's attention to another
simple possibility of deriving the result expressed
by Eq. (8). The same result can be obtained by
calculating (Clausius-Mosotti) what the dielectric
constant is of a medium in which a sufficiently
small number of spheres of different dielectric
constant is dispersed.

According to Debye, the result expressed by
the new mixture rule can be formulated as
follows:

or

The quantity

and the quantity

n2 —n2m
)

nm 2

(Sa)

(Sb)

(n, —e )/n„
%=2

It is assumed, as in the case of Eqs. (6) and (7)
that the dielectric constant e =n'. Equations (Sa)
and (8b) check, of course, with Eq. (8).

E. Application of the New Mixture Rule Outside
of the (n„—n ) Range of Satisfactory Validity

It is sometimes not possible to select the
medium in which (n~ —n„) is sufficientiy small in

"W. Heller, Comptes rendus 205, 971 (1937),

size or shape of colloidal particles upon n~(@
should therefore be expected unless the refractive
index actually varies with the size and shape of
the particles, an experimentally unknown e8ect .

which might be found, however, in a spectral
region near an absorption band. "Neither should
the colloid concentration have any effect on n„(8)
as long as the concentration is small enough so as
not to affect the refractive indices themselves.
The probable error involved in calculations of
n~&s& and as due to the finite value of (n~ n~—) is
compiled in Table II. (The error is obtained by a
procedure discussed below. ) The error occurs in
the fifth or fourth decimal, if (n~&8& n—) has a
value not in excess of 0.025 and 0.082, respec-
tively.
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TABLE III. Refractive indices in hydrosols.

Dispersed substance

Si02
Sio2

Egg albumin
Gelatin

Hg-sulfosalicylic acid
AlOOH
Th02

S
S

Ti02
Ti02

y X10s

3.075
0.5815
3.10
3.10
2.323
1.047
1.609
3.805
0.395
0.373
7.577

1.33705
1.33353
1.33946
1.34110
1.34388
1.33789
1.34302
1.35917
1.33592
1.33657
1.41991

1.3325
1.3325
1.3325
1.3332
1.3330
1.3325
1.3325
1.33408
1.33329
1.3325
1.3325

ep{s)

1.4837
1.5144
1,5651
1.5988
1.8457
1.9035
2.0893
2.0985
2.1070
2.8599
3.0080

'Sp(0)

1.4805
1.5097
1.5571
1.5882
1.8014
1.8472
1.9834
1.9901
1.9956
2.3518
2.3878

1.4803
1.5099
1.5571
1.5881
1.8015
1.8471
1.9863
1.9934
2.0000
2.4236
2.4861

(np{s)—')sp{»)
X&0s

3.4
45
8.0

10.7
44.2
56.4

103.0
105.1
107.0
436.5
521.9

(&p(» —&p(»)
X&0'

0.2-0.2
0.0
0.1-0.1
0.1-2.9
303

—71.8
-98.3

TABLE IV. Refractive indices at various sol concentrations. I. Si02-sol.

v X&0'

0.5815
0.8626
1.0213
1,3155
1.6076
1.9460
2.5815
3.0751

1.33353
1.33394
1.33421
1.33469
1.33514
1.33561
1.33634
1.33705

1.3325
1.3325
1.3325
1.3325
1.3325
1.3325
1.3325
1.3325

+p{s)

1.5144
1.5037
1.5042
1.5032
1.5008
1.4962
1.4846
1.4837

+p(93

1.5097
1.4995
1.5000
1.4991
1.4968
1.4924
1.4813
1.4805

@1{»

1.5099
1.4990
1.5000
1.4990
1.4966
1.4923
1.'48a3
1.4803

(Ip(s) -~p(»)
X&0s

4.5

4.2
4.2
4.2
3.9
3,3
3.4

(Ip(» —Np(»)
X10s

—0.2
0.5
0.0
0.1
0.2
0.1
0.0
0.2

TABLE V. Refractive indices at various sol concentrations. II. S-sol.

g S/100 cc

0.79
1.59
2.72
3.81
4.23
4.76
5.44
6.34
7.61

1.33592
1.33871
1.34256
1.34612
1.34755
1.34933
1.35171
a.'35473
1.35917

1.33329
1.33338
1.33347
1.33364
1.33370
1.33375
1.33384
1.33394
1.33408

2.1070
2.1136
2.1108
2.0921
2.0918
2.0915
2.0949
2.0933
2.0985

1.9956
2.0001
1.9982
1.9856
1.9854
1.9852
1.9875
1.9865
1.9901

&p(»

2.0000
2.0038
2,0022
1.9890
1.9887
1.9882
1.9908
1.9899
1.9934

(ep(s) —~p(s))
X10s

107.0
109.8
108.6
103.1
103.1'
103.3
104.1
103.4
105.1

(~p{»—+p(»)
X10s

307—4.0

303—3.0
303—3.4
303

TABLE VI. Refractive indices in methyl-ethylketon-sols.

Dispersed
substance cp X10s 'Op(»

(~p(s) -~p{») (mp(» -+p(»)
X10s X10s

Acetylcellulose
Acetylcellulose
Nitrocellulose

1.047
7.277
2.746

1.37899
1.38711
1.37841

1.3778
1.3778
1.3741

1.4933
1.5080
1.5346

1.4914
1.5056
1.5309

1.4919
1.5057
1.5310

1.4
2.3
3.6

-0.5—0.1—0.1

order to make the probable error negligible. This
is particularly true in the case of colloids &which

are stable only in one medium, e.g. , in an aqueous
medium. A selection of the medium is excluded
also in those cases where the value of n~ shall be
used for obtaining information on the approxi-
mate degree of solvation (hydration) of the
particles in a particular medium. The probable

error wi11 then often not be negligible. For ex-

ample, if water is the medium, the error vrill most
often be in the fourth or third decimal if the
dispersed substance is a liquid or a solid re-

spectively.
A survey on the variation of the error with

(n„—n ) is given in Table III for aqueous col-

loidal systems, Experimental data on n~ and n„
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Q5-
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FIG. 1. (Wherever N appears in the figure n should be substituted. )

nu(8)
nu(9)

0.093 (B&&»—&p ) ' + I
(9)

as obtained by Freundlich and Rogowski" and by
Oden" are used. It is assumed that the n„-values
obtained by means of Eq. (5), n„&», are correct in

a 6rst approximation and that consequently the
diflerence (n„&» —n„&») can be taken as an ap-
proximate criterion on the error committed in
applying Eq. (8) in the case of large (us~ n)—
values.

An inspection of Table III shows that the log
of the fractional discrepancy (n„&» n„&p&)/n„&—» is

a linear function of the log of (n„&» n). This—
relationship is plotted in Fig. 1 which contains
data of the Tables IV and V. From Fig. 1 the
empirical function

centration. The increase is the same whether
Eq. (8) or the equation combination (9) or
Eq. (5) are used. It is therefore advisable to
calculate n„ for in6nite dilution. Differential
measurements of (nt, —n ) as directly used in

Eq. (8) are the only procedure which will allow
one to obtain the most accurate n„ for @~0.

G. The In6uence of the Absolute n -Values

Careful refractometric measurements on non-

aqueous colloidal solutions are scarce. A few data
of Freundlich and Rogowski are used in Table VI.
The comparison of these data with those of
Table III seems to indicate that the absolute
value of n has no inRuence upon the validity of
Eq. (8). No influence was to be expected.

(I0)nu =n2 2

n 2—
F. Inhuence of the Colloid, Concentration where

is obtained. The use of this correction equation II. DETERMINATION OF REFRACTIVE INDICES
reduces the d&screpancy considerably &f (z &p&

—z ) FROM ABSORPTION MEASUREMENTS

assumes argevalues. Forsmall (n„&» r& ) va—lues, Equation (6b) can be transfo~~
on the other hand, the use of the correction
equation is not advisable.

The inhuence of the colloid concentration is
tested in Tables IV and V, the latter referring to
a case where (n„&» n) is f—ar too large to give
reliable results by means of Eq. (8) alone. In
either of the two systems, the calculated n„
increases somewhat with decreasing colloid con-

"H. Freundlich and F. Rogowski, Kolloid Beih. 37', 215
(1933).

2 S. Oden, Zeits. f. physik. Chemic 80, 735 (1912).

Xp ( r ) Xo'P / r '& ' l&o'P t'

2 &6&rovpp) 2&&p (6&r'&) 2 '(6&r'&r&c)

(&&p: the ma, ss of a particle, p its density, c the
concentration, in g cm '). Since

I/Ip r I, —— —

the refractive index n„can be determined from
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measurements of the apparent (conservative)
absorption without. any refractometric measure-
ment being necessary, in the case of known n,
provided only that the particle weight (molecular
weight), the density and the concentration of the
particles are known. Since data on the two latter
quantities must be known also if any of the
preceding mixture rules are to be applied, the
practical difference of Eq. (10) compared to the
earlier ones is that the n~ or (n ~

—n ) measure-
ment is replaced by an absorption measurement.
This practical difference defines the cases where
the use of Eq. (10) is of particular practical
interest (very turbid systems or very opaque
particles) .

This alternate principle of n„determinations is
restricted, of course, to application under the
well-known conditions (particle size, particle
shape, colloid concentration, and value of
(no —n )) for which the Rayleigh equation is
valid. If all conditions are met except the condi-
tion of spherical shape and of isotropy, Eq. (10)
may still be applied, however, by introducing the
Cabannes factor. "This means that 7- must be
replaced by

1 —(7/6) 8
7

1+0.56

where the depolarization factor 8 =s„/s, (s, is the
intensity of the "Rayleigh component" which
vibrates perpendicular to the plane of observa-
tion and i„ is the intensity of the orthogonal
component).

APPENDIX —OPTICAL DETERMINATION
OF DENSITIES

The density of colloidal particles is generally
determined by pyknometric methods or by
methods of Aoating. In some instances, it may be
of advantage to substitute optical methods for
these methods. There are several possibilities
which are implied in equations given in preceding
sections of this paper.

The transformation of Eq. (5) leads to

m„n„—n& m„n„—n
py = pm =pt

~m &f,—nm ~t nt —nm

where m is the weight in g. The use of this equa-
tion differs from the use of the conventional
Eq. (12) (case of exclusive pyknometric determi-
na. tions of p„)

Pp=
7n~/p& sam/pm

(12)

by the substitution of two gravimetric-volumetr'ic
data, e.g. , of m and p by two refractometric
data (n, n„—) and n„Both. Eqs. (11) and (12)
should be valid on the assumption of additivity
and of negligible volume contraction.

More interesting appears the relation

3 n„(n„'—n„')
p„=—C

2 (n, —n„)(n„'+2n ')
(13)

24srs n„4(n ' n~')' —rn
),p' (n„'+2n ')' (14)

2 n, ' n' 16srscmy '—
) ps n„'+2n ' E

(14a)

Equations (13) and (14) have the disadvantage
of requiring that n„ is known. This will often be a
deterrent to using them in the place of Eq. (12).

This disadvantage can be avoided by using
rather a transformation of Eq. (7)

3Xp4

Py=
32s' n '(n n) 'n—

which is obtained by transformation of Eq. (8).
This equation makes it possible to determine
densities exclusively from refractometric data,
provided, of course, that the concentration is
known. The application of Eq. (13) is subject to
the restrictions imposed on the use of Eq. (8).

If the particle weight (molecular weight) and
the light scattering power of the dispersed sub-
stance is known, then part of the refractometric
data may be replaced by data on turbidity
(absorption). This is possible by transforming
Eq. (6b) to:

"J. Cabannes, Ann. de physique 15, 5 (1921); Ia which requires that the volume of the particles
dsguscon moleculasre de la lumsere (Paris, 1929). See also
P. Debye, reference 7. molecules is known.


