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of n, then

r =t/n

This is for all practical purposes equivalent to
Eq. (8) as long as ar is not very close to 1.
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The theory of volume effect in photoelectric emission is developed. Formulae are derived
for the rate of electron excitation and for the photoelectric yield. The calculated threshold
frequencies for volume effect are 5.91)&10"and 5.69)&10"for sodium and potassium respec-
tively. The estimated photoelectric yields for these metals are of the same order of magnitude
as those calculated for surface effect and are comparable with those observed experimentally.
The volume effect should not, therefore, be neglected except in the immediate neighborhood
of the threshold frequency. Approxmate estimation indicates that light absorption of sodium
and potassium in the visible and ultraviolet regions should be largely due to quantum excitation
of electrons. Accurate calculation of electron excitation and absorption requires detailed
knowledge of electron wave functions.

INTRODUCTIO N

HE theory of photoelectric emission from
metals is usually based on Sommerfeld's

model of free electrons for metals. Since a free
electron cannot absorb the whole energy of a
light quantum (the kind of absorption for photo-
electric emission), it has been suggested that
light absorption takes place only at the surface
of the metal where the electrons are subject to
the surface potential field. The phenomenon is
then a surface effect.

Wentzel' takes into account the damping of
the light wave and accredits it with enabling
the free electrons in the metal to absorb the
energies of the light quanta. In this picture light
absorption takes place inside the metal and is a
volume effect. It has, however, been shown by
Bethe' that the order of magnitude of emission
given by this picture is too small.

'G. Wentzel, Probleme der Modernen Physik (Sommer-
feld Festschrift), p. 79.' H. Bethe, Han+g+ der Physik 24/2, p. 472.

The free electron model is too crude. Actually
the electrons in a solid are in a periodic potential
field. They can therefore absorb energies of light
quanta independent of the damping of the light
wave. Tamm and Schubin' made a rough esti-
mation of the frequency, at which emission due
to such absorption should begin, showing that
it is much higher than the ordinary threshold
frequency. Thereupon volume effect is neglected
in the subsequent developments of the theory of
photoelectric emission. It is our purpose to
investigate this volume effect due to the periodic
potential field inside the metal.

DEVELOPMENT OF THE THEORY

The potential energy of an electron in the
crystal lattice of a solid is periodic

U=Q U (&)

The electron wave function is then of the form

pg ——e'" "ug(r),
' I. Tamm and S. Schubin, Zeits. f, Physik 68, 97 (1931).
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where uz(r) is a function having the same The probability of excitation of an electron
periodicity as the potential. Optical phenomena in state k is
with such electrons have been discussed in many
places. 4 Let the vector potential of the light wave P —

I
~~, ~+ "I

in the metal be g

27ri
exp (Ei, —Eg —hv)t —1

eh h

4~imt,- Ek —El, —hv

+
Ck, Ie'

ng&
A =At cos 2mvl t

I
—=—', [A-~e ''"-«'q"'"'

+A 2cin«c —2cict]

The damping can be neglected, since within the
thickness in which we are interested, the wave
is not appreciably damped. The perturbation
due to this light wave is (eh/2~imc)A V4. By
using the method of variation of constants we

get for an electron originally in the state k

per unit time. The total rate of excitation, i.e. ,

the total number of excited electrons per unit
time, is

0
I
av. , v+~., I

'dh. dh„d h. (4)8~',

dt's

ad
where 0 is the volume of the metal. The integra-
tion is over all occupied states. At 1=0'K the
limits of integration are given by the surface of
Fermi distribution. By changing coordinates, the
integral can be written

where

2~i
exp (Ev, Ev+hv) t—1—

h
+ Ck, k'

Eki —Ek+kv H=EI+2 g
—El, —hv=0

where I and v are coordinates in the surface of
(2) constant energy difference

+
Ci,, g = pv. A (e'c' "«' Vpvd r;

Cu, ~ = ' 4~A(e "'""' V4Ar.

in the k space, and m is the coordinate perpen-
dicular to this surface. Since ak, k+2 g has a strong
maximum at m =0 due to the factor

exp (2s.i/h) (Eq+~, —Ei, hv) t 1——

Ek+2 g
—Ek —hv

Cl'c, k+2m g '4, k+2m g ~

As the wave-length of the light wave is much
longer than that of the electron waves, we can we may put the slowly varying factor
neglect 2snrt/c com.pared with h and h', then

+ — t
Cx, g = Cv., v,

= St ' if', d r
8$

BDk
=8))t e '"' "''"up d7 =8)Ci, i, . (3)

B$

It has been pointed out by Kronig' that because
of the periodic nature of the functions u(r), this
integral is zero unless

k' —k = 2m.g.

This gives definite relations between the original
state and the excited states; the electron cannot
be excited from one state into any arbitrary
state.

4A. H. Wilson, The Theory of Metals, see references on
p. 127.

~ R. de L. Kronig, Proc. Roy. Soc. A124, 409 (1929),

Eh+2 g
—Ek,, —kv = V'H„pm.

Carrying out the integration we get

(6)

2( e
I C~, ~p2.c I.=o

I ~~, .+~-v I'dt's =
I

&2mc
I
VIII.=,

in the integration with respect to m, and neglect
the second term in ak k+2, . We then get

t~
~g

2
( ek

I 18~i'IC.. +"I-=o
J &4crmc

i' exp (2si/h) (E„+g., Ev. hv) t 1'— — —
X d'N.

Eh+2~ g Ek

The main contribution to this integral comes
from near m =0. We may therefore extend the
limits to —~ and + ~ and put
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Substituting this expression into (4) we get'

%=2k
/ /

(0',gf' P I

'
dudv

Q(e t'
/
&a, a+u~g/

8 ' (2m'&, J
i
V'II) (7)

The integration is over the portion of surface
II=0 bounded by the intersection of this surface
with the surface of Fermi distribution.

Not all excited electrons can be emitted. As
the tangential components of k are continuous
at the surface, on account of the continuity of
w ave function, the condition for an excited
electron to be emitted is

Z(k, +21rg, k„+2mg„, k, +21rg,)
k2—W+ [(k„+2mg„)'+ (k.+2mg. )'], (8)

Sm'm

tion from the classical electromagnetic theory
by using optical constants of the metal: n and k.
The quantum theory of reflection developed by
Schiff and Thomas~ shows that the classical
relations hold true for the tangential com-
ponents. For the normal components the relation
differs from the classical theory only in the
immediate neighborhood of the surface within a
thickness of the order of 10 ' cm. This is, im-

portant for the surface effect. For the volume
effect we are considering it of no importance.
Let the incident wave be plane polarized, and
let the subscripts i, r, and t refer to the incident,
reflected, and transmitted (refracted) waves re-

spectively.
(1) Electric vector of the incident wave

parallel to the plane of incidence (x axis normal
to the surface m the outward d1rect1on) .

where t/t/' is the potential energy of an electron
outside the metal. The volume of the metal 0 A, =(e;„—0', ;, cot 8;, 0)
being the product of the surface area and the
thickness l, the emission current per unit surface Xexp (x cos 8;+y sin 8;+ct),
a1ea 1s

t' e
g=2sk/

/ f g, [~
E2mc) 8~'

A,.=(C, , 8, cot 8;, 0)

2x'$ p
Xexp ( —x cos 8,+y sin 8;+ct),

where the integration is over that part of the
surface II=0, which is bounded by the inter-
sections of this surface with the surface of
Fermi distribution and the surface (8).

Effect of Surface ReQection

The above equation gives the emission current
in terms of the vector potential of the light wave
inside the metal. To obtain the emission in
terms of the incident light energy, we must find
the relation between this vector potential and
that of the incident wave. VA can 6nd this rela-

The relation between 8; and Of, is given by

(I—1k) Sln 81 = S111 8;.

Therefore

s1n 0'
sin Hg =

n —ik
cos 81 = [(I—'lk) —sill 8,']1.

n —tk

Now curl A =H and —(l/c)(BA/Bt) =Z. From
the conditions of continuity for the tangential
components II, and e~, we get

A1= (0', 1g,
—8,1. cot 8„0)

2T't P
Xexp [(e ik)(x—cos 8&+y sin 8,)+ct].

2sin 8,
S~g = 8& = 8,;%if~,

'(n —~k)'+ [(n —Q)' —sin' 8.]&/cos 8,

2[(e—ik)' —sin' 8,]l
Spy = —8~ cot Oi = —~s = 8;Kly.

(n Sk)2+[(tE —'1k) —S—111 8 ]'/coS 8,

'This is substantia11y the same as Eq. (22.17), p. 457, ~L. I. Schi6 and L. H. Thomas, Phys. Rev. O'F, 860
IIandbuck der Phys~A, 24j2. (1935).
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The transmitted wave in the metal is elliptically
polarized since S~ and Q, ~„are complex with
different arguments. For the special case of
normal incidence

2% zv
(—x cos 0„+y sin 0,+ct),A, =(0, 0, 8,.) exp

C

2' ZV

A~=(0, 0, Ct~,) exp
C

X[(n—ik)(x cos 8&+y sin 0,)+ct5

By the same procedure we get

2
O',

&

——0', &,
——6,,1+[(n —ik) ' —sin' 8,5 l/cos 0;

= R„Xi. (12)

For the case of normal incidence

Ei =2/(1+ e —ik). (13)

The incident light energy per unit area of the
surface per unit time is

(sr'/2c) cos O, i
8;i'. (14)

Substituting (10) or (12) into (9) and dividing
by (14), we get the photoelectric yield, i.e. , the
charge emitted per unit area per unit incident
energy

4cek ( e l ' t

xp' &Zmc) 8x'cos 0;, ~ ~

~Xii*Cg, A+2 g+X Cy, sp g~'
X 8Q&V)

)
vII]

4cek( e l' t fXg/'

xv' &Zmc) 8x' cos 8;

(15)

ICiiz =0; Eiiw = —2/(1+n —ik). (11)

(2) Electric vector of the incident wave per-
pendicular to the plane of incidence:

2x'2v
A, = (0, 0, 8;,) exp (x cos 8;+y sin 0;+et),

loss of energy. by collisions with other electrons,
/ in these equations is an effective thickness
within which excited electrons reach the surface
without much loss of energy. It depends, there-
fore, on the collision process between electrons
which is very difficult to calculate. Bethe'
estimates the effective thickness to be of the
order of 10 cm. Rudberg's experiments' on
inelastic scattering of electrons from solids
shows that electrons of 100- to 200-volts energy
can penetrate several atomic layers. Compton
and Rose, ' and Goldschmidt and Dember" by
experiments on photoelectric emission by light
irradiating the back side of a thin layer, conclude
that the electron mean free path in platinum is
1.08 to 2.67X10 ' cm. It seems then reasonable
to assume that / is of the order of 10—' cm.

To determine the photoelectric yield, we must
know the electron energy levels for the calcu-
lation of H and the electron wave functions for
the calculation of Cy, ~+2,. Such data have been
obtained for a 'number of metals by the cellular
method of Wagner and Seitz" and Slater. " But
the data have not been published in full. How-

ever, for the determination of low frequency
limits for light absorption and electron emission,
we need to know only electron energy levels.
Knowing the energy as a function of k, we shall
have the equations of the three surfaces: (5),
(8), and the surface of Fermi distribution with
hv and g as parameters. The area, over which
ea,ch of the integrals in the sums of (7) and (9)
is to be integrated, can then be determined. For
each integral (each value of g) there is a fre-

quency below which the area and consequently
the integral itself become zero. The frequency
below which all integrals in (7) become zero is
the long wave-length limit of light absorption;
the corresponding frequency for (9) is the
threshold frequency of emission. It has been
shown by |A'igner and Seitz," and Slater" that
except at energy discontinuities, the energy

for the two cases of electric vector parallel and
perpendicular to the plane of incidence, respec-
tively. Since the electrons excited deep inside
the metal cannot be emitted because of the

E. Rudberg, Phys. Rev. 50, 138 (1936).
K. T. Compton and L. %. Ross, Phys. Rev. 13, 295

(1919)."H. Goldschmidt and H. Dember, Zeits. f. tech.
Physik '7, 137 (1926)."E.Wigner and F. Seitz, Phys. Rev. . 43, 804 (1933)."J.C. Slater, Phys, Rev. 45, 794 (1934)."E.Wigner and F. Seitz, Phys. Rev. 46, 515 (Fig. 3),
(1934).

'4 See reference 12 (Fig. 3).
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t -0.

k.—
d

FrG. 1 (a) Geometric representation of Eqs. (17) and (18). (b) Portion of the (I, v)-plane
over which the integral of Eq. (9) is to be taken.

levels of sodium are given very closely by the
expression for free electrons

El. (k'/8v'm) ——k'. (16)

We shall use this approximation for the deter-
mination of threshold frequencies for sodium
and potassium.

THRESHOLD FREQUENCY

Using the approximation (16) we find tha
Eq. (5) of the (u, v) surface becomes

(k'/8m'm) (vg'+g k) = kv, (17)

which is the equation of a plane in k-space. The
surface of Fermi distribution becomes a, sphere

This relation gives the low frequency and high

frequency limits of absorption of light for the
given g. The lowest of the low frequency limits
for all possible values of g is the absorption limit
of the metal.

For electron emission the condition (8) must
be satisfied, which by the approximation (16)
becomes

h'
(k +2m.g.)'&~W'=E„+E

Sm'm
h2

(k„'+k„'), (21)
8m'm

where E„is the work function of the metal. This
can be written

k~ 1ky +kg =k~ (18) k. &~ (k„'+k„')l —2m.g.= kp.

The area over which we have to integrate for
(7) is the portion of (17) bounded by its inter-
section with (18). This is a circle with radius

(Fig. 1a)

/ (2vm/k')kv —prg') ' '*

r= k.' —t'
g

= (k ' —R')'*. (19)

The area m.r' is zero unless jRt ~&k or

Let point A (Fig. 1a) be the origin of coordinates
in the (u, v)-plane and let the axis v be parallel
to the (k„k,)-plane. Then we have

k, = jN+xp,

where xp is the k,-coordinate of point A. From
(17) we ha.ve

xp =Rgz/g.

j is cosine of the angle between axes I and k

27rm
mg' —gk ~& hv &&mg'+gk .

h

j= [cos' (OA, k„)+cos' (OA, k,)]l
(20) = L(g /g)'+ (g*/g)']'
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R)l~ ~( R

FIC. 2. Values Of a..
(a) jkp+ —*(k '—kp')& (0

(b) qkp+ —'(k 2—kp2)»0 and qkp —@(k„,2—kp2)~go

(c) jkp ——*(k '—kp')& &0.

gx
(A) jko+—(k ' —ko') * &0

g

The area J' J'duds over which the integrals in then three possible cases

(9) are to be integrated is the part of (u, v)-plane

(Eq (17)) bounded by the circle o.r' (see (19))
and the line

dldv =m.r if o. & —t.

I' I'
du(& = r'I cos ' n —n(1 —a') 'I

I J~dudv=0, if n& +1;

if —1 &n &+1; (22)

ko —~o ko —Rg./gA=
jr j(k ' —R')'

Ke see that u is a function of g and v, R being a
function of v. For each value of g we can deter-
mine the limiting frequency v, below which
n) +1 and J' J'dudv = 0. The lowest of these for
all possible values of g is then the threshold
frequency.

To determine v, we shall solve the equration

or (ko —Rg./g)'= j'(k ' —R').

The two roots are

R = (kog*/g) ~j(k.' —ko') '.

Ke note that g must be positive since g, &0
means decrease in the outward momentum,
which certainly cannot give emission. There are

u = (ko —xo)/j

shown by the shaded area in Fig. 1b. It is easily
shown

gs
(8) jko+—(k ' —koo)'*) 0

g

gx
jko ——(k ' —koo)l&0,

gs
(C) jko ——(k ' —ko') **)0.

g

It can be easily shown that the curves of n

versus R for the three cases are as shown in

Fig. 2. To have o.&+1, R must observe the
following conditions

For case A: no limitations on 8,
gx

For case 8: R)—ko —j(k ' —koo)'*,

g

For case C:

gg gx—k, —j(k o —koo):&R&—ko+ j(k.' —ko'):—.

g
'

g

Furthermore, if kp2& k ' we have two possible

D: kp& —k„,
E: kp&k .

We deduce from Fig. 2a and Fig. 2c:

For case D: 0. always smaller than +1„there-

fore no limitations on R.

For case E: n always larger than +1, there-

foIe no emIsslon.
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TABLE I. Low frequency limit of light absorption and the threshold frequency.

Na Emission
surface

1, 0, 0 Threshold
frequency

SI, S2, Sg

1, 1, 0 Threshold
frequency

SIp g2) 83

12.6X 1014

+1,0, 0

5.91X101'

+1, +1, 0

+1, +1, 0

9.0X 10'4

+1, 0, +1+l, —1, 0

1, 1, '1 Threshold
frequency

'83 ) P$2) '83

7.34X 10"

+1, +1, 0 +1, 0, +1 0, +1, +1
Absorption limit
Ã$p Sly $3

3.14X 1014

&1, 0, &1 0, &1, +1

K Emission
surface

1, 0, 0 Threshold
frequency 9.57 X 10'4 6.82 X 1014

81) SQg S3

1, 1, 0 Threshold
frequency

SJ,p %2) S3

+1, 0, 0

6.21 X 10"

+1, +1,0

+1, +1,0 +1, —1, 0 +1, 0, +1 +1,0, —1

1, 1, 1 Threshold
frequency

S1 Ã2 '83

5.69X10«

+1, +1, 0 +1, 0, +1 0, +1, +1
Absorption limit

%1p S2~ Sa +1, ~1, 0

4.96X 1(P4

+1,0, +1 0, &1, +1

Case E gives a limit for g„ for it shows that a
necessary condition for emission is ko ok

(k '+k„')&—k
(k '+k„')'*—2mg &k, g ) 2'

This condition can also be directly deduced from
(21). It gives the lower limit for g, and confirms
our previous statement that g must be positive.
In addition to the limitations on R obtained for
these diferent cases, we must also have

~
R

~
&k,

otherwise r in (22) will be imaginary. It can be
shown by combining the limitations on R that
to have 0, &+1 we must have

gs
iI jko+—(k ' —koo)*&0,

g

L g'+g*ko-((g'-g*')(k-'-ko'))'j
27rm

g~
if. jko+—(k„'—koo) l & 0.

g

These relations give us the limiting frequency v, .
The threshold frequency is the lowest of v, for
all possible values of g. It can be shown that if

g and g were continuous variables, then the
minimum hv, is

(k'/8s'I) k,' =8„,
which is the ordinary expression for threshold
frequency. The emission due to surface effect
begins at this frequency. As g and g, can take
only discrete values, the minimum v, will be
higher than this value. This con6rms the general
impression that emission due to volume effect
begins at a higher threshold. In general v,
increases with g, but the lowest v, does not
necessarily correspond to the lowest value of g.
Tamm and Schubin derived by simple reasoning
an expression for vt(~~ ), 0, g and assumed this to
be the threshold frequency for volume effect.
Actually, as shown later, for body-centered
cubic lattices g does not have the value

L(1/a), 0, 0]. But even if g has such a value, the
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absorption is 3.14X 10"for sodium and 4.96X 10"
for potassium. Although experiments do not
show strong absorption for these metals in the
visible and ultraviolet regions, but, as pointed
out by Kronig, " the "conductivity" (nkv),
characterizing the absorption, computed from
experimental data is 10 times larger than the
value calculated theoretically without taking
into account the photoelectric absorption. So,
although light is weakly absorbed in these
regions, it should be almost entirely due to such
absorption.

of Ives and Briggs" for n and k, the factor E„
is calculated and shown in Fig. 3. The value of
J'fduds depends upon what lattice plane is the
emission surface; X„ is calculated for three dif-
ferent planes, i.e. , (1, 0, 0), (1, 1, 0), and (1, 1, 1).

The rate of consumption of energy per unit
volume by the excitation of electrons is

P.= (N/0) hv.

The number of excited electrons per unit time

TABLE III.

APPROXIMATE ESTIMATION OF THE
PHOTOELECTRIC YIELD

Without data on electron wave function, the
photoelectric yield cannot be calculated. We
shall attempt to estimate approximately its order
of magnitude. Using (16) we get from (5)

"s

82 g
—EP

Cp, 2~g

F2 g
—BP

Cp, 2~g

~2~g —~P
Cp, 2 g

3.21

0.64
0.2402

2.27
0.2718

4.84
0.2045

3.33

0.60
0.2214

2.10
0.2565

4.55
0.1822

3.62

0,50
0.1720

1.79
0.2317

3.95
0.1568

3.88

0.43
0.1407

1.54
0.2142

. 3.47
0.1513

h2
VH= 7 (erg'+g k) —hv

27rm

h2 k2

~(g k)= g
27rm 2' m

Substituting this into (15) and writing

(I C", +2 ~l')A for the average value, we get for
normal incidence

4ceh' e )' 1 2~m
g=1.395X10 '

mv' g™)8~' h'

2 ~ 1f'
X dudv

1+th —zk g g 8

coulomb
X«I C", '+2-v I')A,

calorie

coulomb—&1(IC', +-.I')"
calorie

(24)

Sodium
1014 4.96 6.0 7.P 9.P 11.0 13.0 15.0

Ry 10 '4 0 0.666 0.889 1.583 1.597 1.081 0.881

Potassium
v 1014 3.14 5.2 6.0 7.0 8.0 9.0 11,0 11.82
Rv 10 14 0 0 083 0 274 0.417 0.624 0 842 1 80 2-61

'll R. de L. Kronig, Nature 133, 211 (1934).

all factors being in e.s.u. The integrals ffdudv

can be calculated from Eq. (22). From the data

TABLE II.

N is given by (7)

2h ( e )22xm 1
P.= h,

8~ E2mc) h' g J

x(l Ck &+2..I'&A
I
& I' (»)

The rate of loss of energy per unit volume by the
light wave is

27r2
"k"

I
~I'.

c2
(26)

The ratio is

P, c' 2h' |' e l '2~m 1 f f $ 1

P, 2x'Sw', 2mc) h' g J J nkv'

X(le'+2.vl'&A~=K(l C~ a+~.vl'&A' (27)

The integrals J'f'dndv can be calculated by
using (19).As pointed out above, the energy loss
of the light wave is almost entirely due to
photoelectric absorption, so the ratio P,/P'
should be nearly equal to one. Table II gives cal-
culated values of R„. We see that to make
P,/P' 1 the factor (ICqq+~:I )A„should be
~]014

Although the factor (ICJg /+2. gl')A„ is not the
same in (27) and (24), as it is not averaged over
the same area in the two cases, its magnitude

"H. E. Ives and H. B. Briggs, J. Opt. Soc. Am. 26, 238
(1936); 2'7, 181 (1937).
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will not be very different. We have stated
that l should be 10 ' cm, so the product
l(~ CI, L+q,„~2)A„10~. From curves X„ in Fig. 3,
we see that -the photoelectric yield will be
between 10 ' to 10 ' coulomb/calorie. The ex-
perimental values of absolute photoelectric yield
for these metals are not very reliable because of
the difficulty of obtaining perfectly clean surfaces
for these very active metals. In Fig. 3 the curves
of HilP' (computed from data of Mann and
DuBridge") for sodium, and Suhrmann and

'
Theissing" for potassium are reproduced. It is
seen that our estimated photoelectric yield is
comparable with the experimental values in
order of magnitude. It may perhaps be too small
for sodium and too large for potassium. Anyway,
for both metals the photoelectric yield calculated
from surface effect is the same in order of mag-
nitude as our estimated values. "As to the shape
of spectral distribution curves, it cannot be
predicted in our case without detailed knowledge
of electron wave functions, since ( ~

Cz, &+2«
~

')Ay is
a function of frequency and the curves E„do
not, therefore, represent the shapes of the dis-
tribution curves. Furthermore, the metal is
usually not a single crystal, and the surface is
not a single plane; therefore the spectral dis-
tribution curve should be a combination of those
for different planes.

Seitz gives for lithium the values of

~4'0
C0, 2xg=

J $2«dT
Bx

for several values of g. In Hartree's units
the results are" those shown in Table I II.
We see that the larger the radius of atomic
spheres r„or rather the larger the part of the
atomic volume in which P is constant, the smaller
becomes C0, 2,. The radius of atomic spheres for
sodium is 3.9 (Hartree's unit), and the region
around the nucleus, within which the wave
function is not constant, is about the same as
for lithium. "Therefore C0, 2, should be O. i to
0.2 in Hartree's units. The same is probably
true also for potassium which has still larger

A. G. HiB, Phys. Rev. 53, 184 (Fig. 8), (1938),"R. E. B. Makinson, Proc. Roy. Soc. A162, 367 (1937};
R. J. Maurer, Phys. Rev. 5'7, 653 (1940).

~2 F. Seitz, Phys. Rev. .47, 404 (1935), Table III.
"Cf. reference 13, Fig. 1, and reference 22, Fig. 3.

radius of atomic spheres, r, =4.93. We have
estimated

(~ Cg, p+2.g~')Ay
' 10"absolute units

=0.0073 Hartree's units

((~ G, &,+a, I')A, ) ~ 0.085 Hartree's units.

Although Co, ~«and ((~ C~, ~+, , ~')A„)& are not the
same, we may judge from this that our estimated
value is quite reasonable. It is satisfying that
our equation of absorption (25) with a reasonable
value for (~ C~, ~+2«~')A. should agree with the
absorption given by experimental values of rj
and k L(P,/Pg) —1).

CONCLUSION

Although emission due to volume effect does
begin at a higher frequency, at least for sodium
and potassium it comes in over most of the
region for which spectral distribution has been
investigated experimentally, long before the
maximum in the distribution curve is reached. ,

The estimated order of magnitude of photo-
electric yield is the same as that calculated from
surface effect and is comparable with that ob-
served experimentally. Therefore the volume
effect cannot justifiably be neglected in the
theory of photoelectric emission except for the
immediate neighborhood of the threshold fre-
quency. It is then worth the labor to calculate
accurately the spectral distribution curve by use
of the electron wave functions. It would also be
interesting to calculate accurately the energy
loss due to photoelectric absorption to compare
with the light absorption computed from ex-
perimental values of n and k.

Recently Cashman and Bassoe'4 working with
barium, which has more stable surface than the
alkali metals, have observed an abrupt second
rise in the spectral distribution curve which they
attribute to the onset of the volume effect.
Unfortunately, the free electron approximation
for energy cannot be applied to this metal with
justification, and we cannot calculate the
threshold frequency by the same method used
here for sodium and potassium. We have to wait
for the solution of electron energy levels for this
metal.

"J.Cashman and E. Bassoe, Phys. Rev. 55, 63 (1939)..


