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The kinematical aspect of relativistic cosmology is examined on the basis of three postulated
requirements: The constancy of the velocity of light, spatial isotropy, and homogeneity. Three
distinct types of cosmological models are obtained, characterized by different motions of
nebulae. The metric of any universe is conformal to Minkowski space and Maxwell's equations
are the same for all possible universes. In Part II, it is shown that the cosmological models
are metrically, though not topologically, equivalent to those of H. P. Robertson. Next, special
models are examined and their line elements brought into the conformal-Minkowskian form.
The problem of the displacement of the lines of nebular spectra is discussed; formulas are
obtained and applied to some special cosmological models. Finally, idealized experiments are
described which indicate the physical content of the cosmological coordinates.

l. General Theory

INTRODUCTION

Y kinematical cosmology is usually under-
stood that part of relativistic cosmology

which deals with the metric form of our universe,
characterized by a four-dimensional space-time
manifold, and with the motion of free particles
and light rays in this universe. In this sense the
present paper deals with kinematical cosmology
and ignores its dynamical aspect, i.e. , the connec-
tion between the Riemannian curvature tensor
on the one hand and the energy-momentum
tensor on the other.

The possible mathematical . models of the
universe are usually deduced from a few simple
and convincing principles. In such models the
nebulae are represented by freely moving par-
ticles of a Quid and we imagine such a particle at
every point in space. Each of these particles
moves along a geodesic line. Such a particle,
representing a nebula, will be called a funda
mental particle and an observer moving with it a
fundamental observer 'The most i.mportant con-
cept by which cosmological models will be
described and characterized is that of funda-

:mental particles and their motion. Next, light
-rays or geodesic null lines must be considered;
they are the messengers of world events between

, fundamental particles. Finally, the universe is
characterized by a Riemannian metric. The

' These terms seem to be originally due to E. A. Milne,
Relativity, Gravitation, and World-Structure (Clarendon
Press, Oxford, 1935).

metric form and the motion of fundamental
particles fully determine the kinematical be-
havior of the universe. It might seem that the
motion of fundamental particles can be deduced
immediately from the Riemannian metric as the
particles move along geodesics. But this is not
so. A geodesic line is, at each world-point, deter-
mined by its direction there, whereas the world-
line of a fundamental particle is completely
determined by the choice of a world-point. The
world-line of a fundamental particle is a geo-
desic; but the converse statement is not neces-
sarily true.

The questions which this paper tries to answer
are: What are the possible metric forms de-
scribing a universe P What are the possible
motions of fundamental Imrticles? The guiding
principle, commonly accepted and leading to a
solution of these problems, is the principLe of

, homogeneity, sometimes called the uniformity or
the cosmological principle. It states that every
fundamental observer sees and describes the
world in the same way.

Traditionally, the problem of relativistic
cosmology' is attacked by choosing a coordinate
system in which all fundamental particles are at
rest. The fact that such a coordinate system
exists is by no means obvious and is closely

'An excellent account of "Relativistic Cosmology, "
including a bibliography complete up to 1932, is to be
found in H. P. Robertson's article, Rev. Mod. Phys. 5,
62—90 (1933); also R. C. Tolman, Relativity Thermo-
dynamics and Cosmology (Clarendon Press, Oxford, 1934).
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related to the principle of homogeneity. Thus the
line elements discussed in cosmology are usually
of the form

ds2 —dr2 R2(r)d02 (0.1)

' A. Einstein, "Kosmologische Betrachtungen zur Allge-
meinen Relativitatstheorie, " Sitz. Preuss. Akad. Wiss.
142-152 (1917).

Here R(r) is an arbitrary function of time and
do' is the metric of a three-dimensional space of
constant curvature k=1, —1, or 0. Thus the
universe is characterized by an arbitrary function
R(r) and by the choice of one among three
possible spaces. The problem of the motion of
fundamental particles disappears from such a
presentation because these particles are always
at rest. It is the space structure, i.e. the curvature
kR 2(r) of the 3-space r =constant, which
characterizes the cosmological model. It should
be noted that, in the coordinate system of (0.1),
the speed of light in any fixed direction is a
function of time and depends on both k and
R(r).

Obviously, a discussion in which the four-
dimensional universe is characterized chiefly by
the curvature of a three-dimensional space is
contrary to the spirit of relativity theory in
which the world is represented by a four-dimen-
sional space-time continuum. Historically, this
approach goes back to Einstein's first cosmo-
logical paper, ' to the Einstein universe of which
all others seem to be natural generalizations.
This point of view, based on dynamic considera-
tions and on the generalization of the gravita-
tional equations, was long ago abandoned by its
originator.

We believe that a deeper insight into cos-
mological problems is gained by a new approach.
Relativistic cosmology, at least in its kinematical
aspect, should form a link between the restricted
and general theories of relativity. In restricted
relativity the world is represented by a Min-
kowski continuum. This is one of many cos-
mological backgrounds which satisfy the prin-
ciple of homogeneity. We shall see that an
approach to cosmology is possible in which the
structure of a three-dimensional space does not
enter the picture. We believe that this new.

approach puts into the foreground the more
essential concepts of kinematical cosmology, i.e.,

the type of motion of fundamental particles,
rather than the space structure.

The ideas which have been sketched above
will become clearer if we now summarize some
of our results. 4

Every cosmological background is a Rieman-
nian manifold with a metric of the form

ds'= y(t, r) (dt' dx' —dy' —dz')—,

r'=x'+y'+s' (o 2)

We shall see that p is not an arbitrary function
of t and r; but for the conclusions which we shall
now draw the particular form of y does not enter
the argument. A coordinate system in which the
Riemannian metric has the form (0.2) will be
called a cosmological coordinate system, or, briefly,
a c.c.s.

Thus every cosmological background is con-
formal to a Minkowski background. Physically,
the light geometry is that of a flat Minkowski
continuum. The line element (0.2) appears as a
natural generalization of the Minkowski space in
restricted relativity. .

We may, however, interpret (0.2) in a diiferent
way and say that every cosmological background
differs from a Minkowski background only by a
gauging function determining the behavior of
clocks and measuring rods. This statement
requires some amplification. Starting from (0.2),
and without transforming the coordinate system,
we introduce new clocks and measuring rods by
means of the gauge transformation, ~

ds'=Xds;

We then have y' =y 'y = 1, and the vector field,
characterizing the gauging (i.e. , the metrical
connection), changes from x;=0 to

ds" =dt' —dx' —dy' —ds'

x,' = ——,'8(log y)/Bx',
(0.3)

i.e., by a Minkowski metric and an integrable

4 L. Infeld, "A New Approach to Relativistic Cos-
mology, " Nature 150, 114 (1945).' H. Weyl, Space, Time, Matter (Methuen S Company,
Ltd. , London, 1922), Chapter II, Section 16.

x = 8(log X)/Bx'= . ', B(log y—)/-Bx'.

We can, therefore, characterize a cosmological
space by
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gauging field xi . This is a new geometric picture
and, though (0.3) can always be replaced by
(0.2), this new interpretation is very suggestive
as it abandons all discussion of curved, expanding
universes and shifts the responsibility for cos-
mological phenomena to the gauging field, the
gradient of a scalar field, which determines the
behavior of clocks and measuring rods.

It should be added that this interpretation,
though based on Weyl's famous work, has
nothing in common with Weyl's unified field

theory. No connection is assumed between the
vector yi and the vector potential of an electro-
magnetic field.

The next conclusion which may be drawn from
(0.2) and (0.3) is that Maxwell's equations are
the same for flat space as for any cosmological
space. 6 This immediately follows from (0.3) and
from the fact that Maxwell's equations are gauge
invariant. But for the sake of clarity this simple
conclusion will be deduced from (0.2). We write
Maxwell's equations for empty space in the
usual form

(—g)IF~7 = (—g) 2~g~kgi&F~( —p&(] /~2)rti&~1 F~(
(0.5)

~ik~ alp
where

0 0 01

0 —1 0 0

0 0 —1

,0 0 —1,

I'herefore Maxwell's equations, which are dif-
ferential equations for P';;, have the following
form both for a Minkowski and a cosmological
background:

BF;;/Bx'+ BF,k/Bx'+8Fg;/Bx' =0,

q"'g&'8 Fg(/Bx&=0' (0.6)

Another problem which suggests itself here is
that of Dirac's relativistic equations for an

BF;,/Bx" +8F;g/ax" +DEFI ~/Bx'='0,
(0.4)

a((—g) 1F"")/ax =0.
We have

electron. Indeed, much work was done in solving
Dirac's equations for cosmological spaces. From
our point of view, the problem, properly formu-
lated, is the following: Are Dirac's equations,
like Maxwell's equations, insensitive to the
choice of the y function or not? The answer to
this question is not as simple as in the case of
Maxwell's equations and requires a special
investigation which will be given elsewhere.

The most obvious conclusions resulting from
the fact that the cosmological background can
be represented by (0.2) or (0.3) have been formu-
lated above. It has been seen how the problem
'of space structure disappears if the c.c.s. is used
and it will be shown how the problem of the
motion of fundamental particles appears instead.
In a c.c.s. the fundamental particles are, in
general, not at rest. Three types of motion are
possible, namely, the oscillating motion, the
converging-diverging motion, and the simple case
of rest. To each permissible form of the function

y there belongs a,t least (and, in general, exactly)
one kind of motion. This motion, and not the
space structure, characterizes the universe. It is
the study of the permissible functions p and the
associated motions which forms the chief content
of this paper.

1. DERIVATION OF THE LINE-ELEMENTS

The derivation of the metrical forms which
describe the universe as a whole will be based on
three distinct postulates. All three assumptions
have immediate physical significance. The last
two are well justified by recent astronomical ob-
servations. It is not claimed that the first pos-
tulate is completely independent of the other
two; however, as it has a simple physical content,
we prefer to introduce it as a separate require-
ment.

Postulate I on light-geometry. —There exists a
coordinate system such that the geometry of
light rays is the same as in flat Minkowski
space; i.e. , light rays travel along straight lines
with constant velocity c=1, say.

Mathematically, this implies that the four-
space must be conformal to Minkowski space,
i.e. , the line element may be written in the form

'This conclusion seems to be unknown. Compare E.
Schrodinger, "Maxwell's and Dirac's Equations in the
Expanding Universe, " Proc. Roy. Irish Acad. 46A, 25—47
(1940).

ds' =y(dt' dx' dv' dz')— — —

= 'Yg ''dx dx2, (1 11)
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where y is a function of t, x, y, z. In (1.11) the
usual summation convention applies to double
indices, ' x' (i =0, 1, 2, 3) —= (t,, x, y, z).

Postulate II on isotropy. —The universe, char-
acterized by the line element (1.1), is spatially
iso tropic.

Mathematically, the cosmological line element
must be invariant in form under a 3-parameter
continuous group of rotations which leaves every
point en the t axis fixed. An immediate conse-
quence is that p is a function of t and x'+y'+s'
only:

y=y(t, r), r'=x'+y'+z' (1.2)

Latin indices will consistently range over 0, 1, 2, 3,
while Greek indices will range over 1, 2, 3.' A comprehensive account of astronomical observations
of cosmological interest is to be found in E. P. Hubble,
The Observati ona/ A pproach to Cosmology (Clarendon
Press, Oxford, 1937).

The assumption of isotropy is well justified by
nebular counts, ' which indicate that the dis-
tribution of nebulae, as observed from the earth,
exhibit& spherical symmetry when averaged on a
sufficiently wide scale.

If suitable assumptions are made as to the
absolute average magnitude and the luminosity
of nebulae, and the density distribution of inter-
nebular matter, as yet unobservable, recent
astronomical research' indicates that, on a scale
large compared to the mean distance between
nebular clusters, matter is uniformly distributed
throughout the universe. Thus, neglecting local
irregularities, the homogeneity of the material
universe leads, by what is usually known as
Mach's principle, to the following:

Postulate III on homogeneity. —The view of the
universe is the same for every fundamental
observer.

In our model of the universe we have funda-
mental particles, each moving along a geodesic
line. Our original coordinate system is related to
one fundamental particle; by this is meant that
the geodesic world-line of this particle is the t
axis x =y =s =0. If we now change the coordinate
system, relating it to any other fundamental
particle, our view of the universe remains un-
changed; in particular, ds' is invariant in form.

Mathematically, the line element ds' must be
invariant in form under a continuous group of
transformations, moving the t axis into world-

lines diA'erent from it. The existence of such a
group of coordinate transformations restricts the
possible functions y(t, r). In the following we
find line elements which satisfy our homogeneity
postulate. However, the treatment adopted here
gives no indication as to whether the admissible
forms have been exhausted or not. In the
appendix, the powerful methods of the theory
of continuous groups are applied to the problem
and it is there shown that the simpler arguments
of this section do, indeed, yield essentially all
possible line elements.

Consider the hyperquadric

zp' —zP —zp' —zp' —(1/K) z4' ———(1/K),
(1.3)

X=constant

in five-space and project stereographically from
the pole (0, 0, 0, 0, —1) onto the tangential
hyperplane z4 ——1. If the point (zp zf zp zp z4)

on the hyperquadric is projected into (x', x', x',
x', 1), a simple calculation yields the equations

x' 1+Ka/4
si S4—

1 —Ka/4 1 —Ka/4

where
i=0, 1, 2, 3, (1.31)

6= g 'X''l(,'2 = t (1.311)

It is well known that, for a suitable metric, the
stereographic projection is conformal. Thus we
obtain, by differentiating (1.31), the following
identity:

zp, z4 being expressed in terms of t, r by (1.31).
The problem of finding transformations leaving
(1.1) invariant is obviously equivalent to that of
finding transformations of the five-dimensional
z space which leave (1.3) and the left-hand side
of (1.32) invariant in form.

One such transformation group, if f is a func-
tion of s'0 only, is that of linear transformations
of the four variables si, s2, s3, s4 leaving si.'+s2'
+zoo+(1/K)z4' invariant, with zp—&zp. The grouP
is, for positive X, that of real orthogonal trans-
formations, i.e., Euclidean rotations, of. the

f(zo, z4) (dzo' dzi' dzp'—dz p'—(1/—K)dz4—') =

y(t, r)(dt' —dx' —dy' —dz') =ds', (1.32)
where

y(t, r) =f(zp, z4)/(1 —Ka/4)', (1.33)
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which satisfy our three postulates. The com-
plicated transformations (see appendix) leaving
this form invariant appear, by the above, simply
as rotations" of a four-dimensional subspace
about a line (the zo axis) in a five-dimensional
manifold.

The metric form (1.4) is admissible for all
non-zero values of X. It is natural to consider the
limiting case when X=O, and

ds' =f(t) it;,dx'dx& (1.41)

The limiting process X~O is dificult to carry
out on the five-dimensional linear transforma-
tions of the s considered above. However, it is
immediately obvious that the line element (1.41)
conforms to the homogeneity requirement as it
is invariant under spatial translations

(t, x, y, z)—&(t, x+ $, y+ it, z+ I'). (1.42)

We shall formally include (1.41) in the metric
forms (1.4) by permitting X to become zero.
Then, as will be shown in the following and in
the appendix, the metric forms (1.4) describe all

possible universes which satisfy our three pos-
tulates. The line elements (1.4) can be written in

the form
ds' =f(t/(1 Ea/4))ds0'— (1.43)

where ds02 is the line element of an indefinite
4-space of constant curvature —X. This may be
contrasted with the forms (0.1) where a 3-space
of constant curvature is multiplied by an arbi-
trary function (of time).

We shall now obtain two further metric forms
which are admissible. However, as they are ob-
tained from some of the line elements (1.4), for
X &0, by coordinate transformations, they do
not yield new universes and are essentially
equivalent to those included above.

If X&0, then zo and ( —1/X)z4' have the same
signature in (1.3) and in (1.32). Thus we may
interchange those two variables. Then f is a
function of z4 only, i.e. , of a; (1.3) and the left-

variables s~, s2, s3, K &s4, for negative X, that of
Lorentz transformations of the "time-like"
variable (—X) &z4 and the "space-like" variables
zi, z2, z&. Thus f f=(zo) yields, by (1.33), the line
elements

ds2= (1 E'g—/4) 'f(t/(1 —Xg/ 4)) r;t;dx'd x' (1 4)

where
ds'=y(a) q;;dx'dx&, (1.5)

7(a) = (1—Xu/4) —'

From the way in which it was obtained, it is
clear that (1.5) is equivalent to (1.4; X&0).
However, (1.5) is much simpler than the previous
forms (1.4), and this is also true of the group of
coordinate transformations which leave the line
element invariant and hence of,the motion of
fundamental particles. Thus we shall, whenever
possible, prefer to characterize universes by the
metric (1.5) rather than by (1.4) if %&0.

The last cosmological line element which we
derive is equivalent to (1.41), where X=O. It is
more cumbersome than (1.41) and need not be
discussed in detail. However, we include it in
this section for the sake, of completeness. The
inversion

(t, x') —+( t/a, /x—a), 0 =1, 2, 3, (1.61)

is a conformal transformation of Minkowski
space and changes (1.41) into the form'

ds'= (1/a') f( t/a)q dx'—dx'" (1 6)

The minus-sign in the inversion (1.61) is neces-
sary to preserve the sense of time. The group of
transformations which leave (1.6) invariant are
obtained from the spatial translations (1.42) by
subjecting them to the inversion (1.61).

This completes our survey of the cosmological
line elements satisfying our three requirements.
The forms (1.4), (1.5), (1.6), are shown, in the
appendix, to exhaust all possibilities, except for a
trivial change of the temporal origin, i.e., except

' lt may be noted that if {1.4) be written in the form
ds' =@(Xt/4(1—Ea/4))(X/4)'(1 —Ea/4} 'g;;dx'dx&, then,
if the function @ does not involve the parameter X im-
plicitly, we obtain (1.6) from (1.4}by the limiting process

hand side of (1.32) are invariant under Lorentz
transformations of the variables 2'0, s~, s2, s3 with
z4~z4, i.e. , with a~a. By (1.31), we see that
such transformation s of the five-space are
simply the Lorentz transformations in our
original space of variables x'. The new line
elements are, by (1.33), of the form
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TABLE I. The cosmological line elements.

Case

I
II
II'

III
III'

1/a'—1,/o."
( $ —a/4ot2) —2f(t/( $ —a/4~2) )
( & +a!4'')-2f(t/( ~ +a/4ot') )

v (a)
f(t)

(& /a')f (—t/a)

Transformations preserving ds

Rotations in (s1, ns4) plane
Lorentz transf. in (s1, as4) plane
Lorentz transformations of x'
Spatial translations of x'
From III by inversion

for the forms obtained from them by the trans-
formation t—+t+constant.

We summarize the results of this section in
Table I.

2. THE MOTION OF FUNDAMENTAL PARTICLES

x"(t, x, y; z) =0, a=1, 2, 3. (2.1)

The spatial isotropy of the universe implies
that the world-line of a fundamental particle
must, in cosmological coordinates, lie in a plane
through the t axis; i.e. , the fundamental particles
move radially. Thus we may, withou t loss of
generality, consider fundamental world-lines in
the tx plane only, and, throughout this section,
assume the two equations of motion

The postulate of homogeneity ensures the
existence of coordinate changes which leave the
metric form invariant and transform the t axis
into other world-lines which are the t axes of the
new coordinate systems. It follows from the
isotropy of the line element, which must hold in
all equivalent coordinate systems, that these
world-lines are geodesics. Thus it is natural to
identify such geodesics with the world-lines of
the fundamental particles. If x'—+x"(x) is a
transformation leaving (1.1) invariant, then the
equations of motion of the fundamental particle,
which is related to the new coordinate system,
are

The t axis x=0 has, in the s space, the para-
metric equations

(2.3)

by (1.31). The equations are those of a rec-
tangular hyperbola in the (eo, as4) plane, as
shown in Fig. Pa. The path of a fundamental
particle in the s space is obtained by rotating
the hyperbola about the so axis through some
angle p. In Fig. ib, this is the hyperbola in the
plane p. We obtain the world-line of the funda-
mental particle in the tx plane by projection
from the pole S—= (0, 0, —1) onto the plane
P. —= s4 = 1. In the figure, the points of the
hyperbolas in the planes p and P, which are
related by projection from S, are denoted by the
same letter, lower case letters being used for
points in p and capital letters for points in P.
It should be noticed that the branch abc of the
hyperbola in p is projected into the finite arc
ABC in P.

Before obtaining the algebraic expressions for
the motion of fundamental particles, the im-

y =x=0. (2.2)
~o

The third equation, describing the motion along
the x axis, will be obtained and discussed in each
of the five cases enumerated in Table I.

Case I—X=1/n') 0 We ne.e—d consider only
Euclidean rotations in the (s&, ns4) plane, since,
by (1.31), y=s=0 implies sm

——s, =0. Thus, sup-
pressing two dimensions, the rotations about the
so axis and the paths of fundamental particles can
easily be visualized by means of a diagram. FIG la t axis in s space
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FIG. 1b. The hyperbola in
plane p is the world-line of a
fundamental particle in s
space. The world-line in the
tx plane is obtained by pro-
jection from 8 onto the tx
plane I'. Points related by
this projection are denoted by
the same letter (lower case
letters for points in p, capitals
for points in P}.

portant problem of connectivity has to be dealt
with. It follows immediately from the fact that
an operation of projection has been used that
the "ends at infinity" of any straight line must
be identified. Thus both the s and x spaces have
the connectivity of projective spaces. Ke shall,
however, postulate a further connectivity. Re-
turning for the moment to the full five-dimen-
sional space, the points (so» sy» s2» sg» s4) and

(so, —z), —s2, —sg, —s4) on the hyperquadric
(1.3) will be identified. This is permissible as the
transformation (so» sy» s2» sa» s4)~(so» —si»
—s„—s,) leaves the form (1.32) invariant, f
being a function of so only, Thus the three-
dimensional section

tified with the points, C, E, R (and c, e, r),
respectively. The path of a fundamental particle
is the branch abc (c=a) of the hyperbola in p
or the arc ABC (C—=A) in I'. The set of all
fundamental particles is obtained by letting p
assume all values from —~/2 to s./2.

s, =constant,

2+s 2+s 2+~Is 2 —s 2+~2

18 R hypelsphere on which antipodal points aIe
identified, i.e., it is an elliptic three-space. In
Fig. 1b, the points A, 8, Q (and a, b, q) are iden-

FIG. 1c. Section so=constant of hyperboloid
-~'+S12+CX'ZP =n'.
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Proceeding now to the analytic treatment of
the motion of fundamental particles, we put

X= (1/2n) (t+x), Y= (1/2n) (t —x) (2.32)

and have, by (1.31),

Let

and

then

sp/n = (X+ Y)/(1 —X Y),

si/u = (X—Y)/(1 —X Y),

s4 ——(1+XY)/(1 —XY).

X=tan $, Y=tan it,

5+rt= r 5 rt=—p

(2.33)

(2.34)

(2.35)

zo/n = tan r, si/n =sin p/cos r,
(2.36)

Z4 =COS p/COS r.

v and p are parameters on the hyperboloid ob-
tained by rotation of the hyperbola in Fig. ia
about the zo axis, p being, as before, the angle of
rotation; n/cos r is the distance of a point on
the hyperboloid from the zo axis. Fig. 1c shows
a section zo =constant, and the geometric content
of the parameters ~ and p is clearly indicated.
The elliptic connectivity identifies the pairs of
points (r, p) —= (r+7r, p) and (7, p) —= (r, p+m),
as is immediately verified by (2.36). Thus we
may restrict both parameters to the interval
—x/2 to ir/2. A straightforward calculation
shows that the pair of points (X, Y) and

(—1/X, —1/ Y) must be identified, i.e. ,

(t, x) =—( 4n't/a, 4—n'x/a) (2.37)

points connected by an inversion which leaves
the line element (1.4, %=1/n') invariant, and
which changes (so, si, s4) into (zp, —zi, —z4).

The equation of motion of a fundamental
particle is simply p =constant, or

(1/2u) (t+x) = tan —,'(r+ p),
(2 4)

(1/2n) (t —x) = tan —',(r —p),

where v. is a variable parameter. Eliminating ~,
these equations become

t' —x' —(4u/v)x+4n'=0, v=tan p. (2.41)

Thus the world-lines of fundamental particles
are rectangular hyperbolas which do not meet
the t axis; their common transverse axis is the
x axis and their asymptotes are the null lines
t = W(x+2n/v).

FIG. 1d, The world-lines of a fundamental particle
(ABQA) and of a light ray (PQR, RS, 5I') in elliptic
universes of type I.

Putting p= &-', ir in (2.4) while r varies and
r = +-,'x while p varies, we obtain the two

rectangular hyperbolas

(2.42)

which bound our elliptic universe, as shown in
Fig. id. The points outside the concave quad-
rangle formed by the four branches of the hyper-
bolas (2.42) are each identified with an interior
point by the elliptic connectivity (2.37). In
Fig. id thy same letter is used to denote a pair
of points which are thus identified. The topology
of the tx plane is that of a torus which can be
obtained by first folding the plane along the
t axis, say, and connecting the branches of the
hyperbolas (2.42) which meet the x axis; then
folding along the x axis and connecting the two
branches of the other hyperbola with each other
without crossing.

Returning to the motion of a fundamental
particle, characterized'by the world-line ABQA,
say, in Fig. id, the following simple conclusions
are immediate: The fundamental particle, start-
ing from A, moves toward the spatial origin x =0
with decreasing velocity until it is at instan-
taneous rest at 8, i.e. , when t=0 and

x=x, ; =(2n/v)L+(1+v')' —1j (2 43)

It then recedes with increasing velocity, first to
Q, then to A, and the cycle is repeated. Thus, the
observer at the spatial origin sees the funda-
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interval (—2u, 20.) of one period's duration may
correspond to an infinite proper time. Then,
since all experiences of any observer are within
this finite t interval, the motion of fundamental
particles is no longer oscillating, and the light-
signal emitted by a fundamental observer does
not return throughout his entire proper life. By
Table I (case I), the proper time corresponding
to the t interval (—2u, 2u) is

FIG. 2. Fundamental particles in universes of type II'.

mental particles move back and forth; and we
may well typify this motion by the adjective
osci/lating.

The first bounding hyperbola x' —t' =4n',
whose two branches are identified, is the world-
line of the fundamental particle at the greatest
distance from the spatial origin. For this particle
x;„=2m. As is clear from Fig. 1d, the coor-
dinate distance 40. may be described as the
"perimeter of the universe" at time t =0; it is
the finite length of the x axis.

The second bounding hyperbola x' —t' = —40,',
whose two branches are identified, is the locus
of the points at the greatest distance from the
spatial origin on each world-line of a funda-
mental particle. To put it differently, it is the
locus of the events where the fundamental par-
ticles reach the amplitudes of their oscillations,
stop receding, and start moving toward the
spatial origin. The coordinate time interval 4o,

is the period of the oscillating universe as deter-
mined by the fundamental observer x=0.

The periodicity of the oscillating universe is
further exemplified by following the path of a
light ray emitted at some event P in the direc-
tion of the positive x axis. Without loss of
generality, we may take P on the t axis of our
coordinate system. Keeping the elliptic con-
nectivity in mind, we see that the world-line is
I'QR, RS, SI', as shown in Fig. 1d. Thus the
light emitted by a fundamental observer returns
to him after a finite coordinate time 40..

It is important to note that the physical
behavior of a cosmological model of type I is not
necessarily of a periodic nature. The finite t

d&' = I (1 c/40. ') '+t'/u' —
I 'rI dx*dx' (2.45)"

is the line element of a cosmological model of
type I, which will later (in part II) be identified
with the Einstein universe. We immediately have

20!

S= )I dt/(1+t'/4n') =7m
—20!

(2.46)

Thus S is finite and the universe is periodic.
Next, we consider the De Sitter universe of

type I, sometimes referred to as the De Sitter-
Lanczos universe (see Part I I). Its line element is

ds'= (1 a/4n') 'g;,d—x'dx~ (2.47)

In this case
p2A

S=
~

dt/(1 —P/4+2)
—20!

(2.48)

TABLE II. The motion of fundamental particles.

Case

I
II
II'

III
III'

Equation of motion

t' —x' —(4n/v)x+40. ' =0
t' —x'+ (40./v)x —40.' =0

x =vt
x =constant

t' —x' —x/v =0

Type of motion

Oscillating
Converging-diverging

Rest

II2a ~2a
S=

~
ds =

J (1—t'/4o. ')

Xf'(//(I t'/4n'))d—t. (2.44)

We have the following criterion: A universe of
type I is periodic or non-periodic in its physical
behavior according as the integral S converges
or diverges. Keeping this in mind, we shall
nevertheless, for reasons of economy, retain the
term oscillating to typify the general universe I
and the motion of fundamental particles.

Two simple examples follow, the first of a
periodic and the second of a non-periodic
universe:
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converges logarithmically at both limits. Thus
this universe is non-periodic in its physical be-
havior.

In conclusion, we may note that the spherical
universe in which antipodal points of the section
(2.31) are not identified is similar in its behavior
to the elli ptiq universe described above, and need
not be discussed in detail.

Case II X= ——I/n' &0.—We shall discuss
this case brieHy, mainly for the sake of com-
pleteness; in most applications, II' rather than
II will be appealed to. The equations of motion
of fundamental particles are immediately ob-
tained from those in Case I by applying the
transformation n—+ —in. However, the variables
X, Y, g, g, r, p, introduced above, are now
imaginary. In order to avoid this, the definitions
will be slightly changed and these variables, in
Eqs. (2.32) to (2.36), replaced by iX, i Y, i), ig,
iv, ip. We then have

X= (1/2n) (t+x), Y= (1/2n) (t —x), (2.5)

sp/n = (X+Y)/(1+X Y),

sg/n = (X—Y)/(1+X Y), (2.51)

s4 ——(1—XY)/(1+X Y),

X=tanh $, Y= tanh g, (2.52)

k+'g= r 5 rt= p (2 53)

so/n=tanh r, ~s/ =nsinh p/cosh r,
(2.54)

s4 = cosh p/cosh r,

It should be noted that the parameter v is now
limited to the interval —1 to 1. The world-lines
(2.55) are rectangular hyperbolas meeting the
t axis in the two fixed points t = &2o..

In contrast to the previous case, the only con-
nectivity of the tx plane in the present case is that
of a projective plane. All finite points represent
distinct events and no two are identified.

Rather than continue the examination of this
cosmological model in the c.c.s. II we shall find
it more convenient now to introduce the c.c.s.
II'.

where all variables are now real,
The equation of motion of a fundamental

particle is p =constant, or,

t' x'+(4n/p)x——4n' =0 v = tanh p. (2.55)

FIG. 3. Fundamental particles in universes of type III.

Case II'.—From the discussion immediately
preceding equation (1.5) we know that it is the
group of Lorentz transformations which leaves
the line element II' invariant. Under such trans-
formations the t axis is carried into the line

x=st, ivi &1, (2.6)

which is the world-line of a fundamental particle.
The fundamental particles all move radially,

each with constant velocity v. They converge,
meet at the origin t =x=0, and then diverge. This
simple behavior of the particles is shown in
Fig. 2. It should be noted that the whole ob-
servable universe, into which particles car
penetrate, is confined to the interior and the
surface of the double light-cone with vertex at
the origin t=x=0.

The explicit transformation which leads from
the coordinate system I I to I I' is easily obtained
in terms of the variables X, Y. As we saw in
the first section, the transformation, in the
s space, is

(so, s~, ns4)~( ns4, sl so—). (2.61)

The minus sign has to be introduced in order
that the sense of time be preserved. Using (2.51),
we obtain, by a short calculation,

If this transformation is applied to the equation
of motion (2.55), the equation of motion (2.6)
results. Thus the parameter v is actually the
same in both (2.55) and (2.6). It might be

(» Y)~((X—1)/(X+1)

( Y—1)/( Y+1)). (2.62)
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noted that (2.62) transforms the time interval

(—2n, 2n) in Case II into the interval (0, ~) of
the t axis in II'.

Case III—X=O.—It follows from the trans-
formation (1.42) that the equation of motion of
fundamental particles is

G~ of the complete group G, such that G~ moves
a plane through the t axis into itself. The trans-
formations of G& may be combined with suitable
spatial rotations to yield the required three-
parameter group G. The invariant plane of Gj,
the tx plane, say, determines a preferred spatial
direction. Thus it is convenient to introduce
cylindrical spatial coordinates (x, p, y) in which
the line element (1.1) becomes

(2 7)x =constant.

The fundamental particles are at rest, as shown
in Fig. 3.

Case III'.—Subjecting equation (2.7) to the
inversion (1.61), we obtain the equation of
motion

ds'=y(t r)(dt' dx —dp' ——p'dy')
(A2)

r2 —x2+ p2

t' x' —x/s =—0,
As we are not interested in spatial rotations, we

(2 8) may at the outset assume

where v is a constant. Thus the motion of funda-
mental particles is along rectangular hyperbolas,
all touching the t axis at the origin.

The results of this section are summarized in
Table II,

APPENDIX

In this section the theory of continuous groups
will be applied to the problem of finding all
functions p(t, r) in the line element (1.1) which
satisfy the postulate of homogeneity. This prin-
ciple states that the space with the metric form
(1.1) admits a continuous group G of motions
which do not move the t axis into itself. The
contravariant components P' of the infinitesimal
motion, which generates the group, satisfy the
equations of Killing"

0=v' p=p (A21)

and for i&j,
rt ~x -p ~t gp p

(A23).+$',
The last three equations of (A23) show that all
g' are independent of p. From the Eqs. (A22),
we have

The equations of Killing are now, for i =j,
y, ]'+y„]*x/r+y„] p/r+ 2y(', ,=0,

7. ,]'+.p, ,g*x/r+-y, „( p/r+ 2pP .=0,
(A22)

v i$'+v, .k'x/r+v. .h'Ilr+2vf'. p=o

~, ,]'+q, „(*x/r+~, ,&~p/r+2qP/ p =0,

Pg';a+g, sV ,+, g;s$"'. (A1)
(A24)

where the comma denotes partial differentiation;
thus g;,, q ——Bg,;/Bx", etc.

After solving Killing's equations for the
the finite transformations of a one-parameter
group are obtained by integrating the system of
differential equations"

dg'/dp= &'(x' x' x' x'), (A11)

with the initial conditions x'=x' when p=0;
p is the parameter of the group.

It follows from the isotropy of the space that
it is sufficient to find a one-parameter subgroup

' L. P. Eisenhart, Riemannian Geometry (Princeton
University Press, Princeton, l926), Eq. (70.1)."Reference 10, Eq. (66.3). -

We shall now proceed as follows: The first
three equations of (A23) and Eqs. (A24) will be
solved and the functions f' obtained. Substi-
tuting in any of the Eqs. (A22) we next obtain
a differential equation for p. This equation will
be solved under different assumptions which
exhaust all possibilities. Finally, substituting for
&' in Eqs. (A11), the finite transformations of the
group G& may be obtained. However, as the
main purpose of this appendix is to determine all
admissible functions y, this last step will not be
discussed in detail and only the results will be
given.

From the last of the relations (A24), we have

&'=~f(~ x)
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But, by (A24) and (A23),

, pp, tp, pt, tt

transformations of the group G& are obtained by
solving the system of equations

Thus gI', « ——0 and, similarly, $', ,=0. Therefore

f« ——
, f,„=0and

&& = p(axt+2bx+2ct+d),

d t/dP =x(2bt+e),

dx/d p =b(t'+ x' p') —+et+ g,

d p/dP = 2bx p,

(A31)

(A32)

(A33)

where a, b, c, d, are constants. From this and
(A23), (A24), we have

$', ~
= $1', ,=axt+2bx+ 2ct+d,

$', p
——$', g

——axp+2cp.

Therefore

$' = —,'ax(t'+ p') +c(t'+ p') +2btx+dt+ F(x),

and, similarly,

P = q~at(x —p )+b(x —p )+2ctx+dx+4(t)
But $', ,= $*, &, by (A23), and thus

-',a(t'+ p') +2bt+ F'(x) = —,'a(x' —p') +2cx+4 '(t)

with the initial conditions (t, x, p) = (t, x, p)
when p=0.

We now have the following mutually exclusive
possibilities:

1. b = e =0; g 40.—Then y, „=0; thus

(A4)

This is the universe III, Table I. Solving (A31)
to (A33), we immediately find that the trans-
formations of the group G~ are translations along
the x axis.

2. b=0, e/0.—Making a suitable choice of
the temporal origin, we replace t+g/e by t. Then
(A3) simplifies to

Hence a =0, F=cx'+ex+f, 4 =bt'+ et+ g, e, f, g,
being constants. Finally, we obtain Thus

ry, t,+ty, „=0.

g' =c(t'+x'+ p') +2btx+dt+ex+ f, (A25)

$'=b(t'+x' p')+2ctx+—et+dx+g, (A26)

$' = p(2bx+ 2ct+d). (A27)

Substituting in any of the Eqs. (A22), we have,
on multiplication by r,

ry, ,(ct'+cr'+dt+ f) +r'y, „(2ct+d)

+2ry(2ct+d) = —x I ry, &(2bt+e)

+y „(bt'+br'+et+g)+4bryI . (A28)

As y is a function of t and r only, we have the
alternative c=d=f=0 or b=e=g=0. The latter
possibility does not lead to suitable transforma-
tions: Using (A11), a short calculation yields the
explicit form of the finite transformations and it
is seen that r =0 implies r=0, i.e., the t axis is
moved into itself. We therefore put c=d=f=0
and have

ry ~(2bt+e)+y, „(bt'+br'+et+g)

(A5)

This is the universe II', Table I. The finite
transformations of G~ are easily obtained and
seen to be Lorentz transformations in the
variables t and x.

3. b WO, g/b e'/4b' 00—.—Changing the tem-
poral origin, we replace t+e/2b by t and also
write K/4 for (g/b e'/4b') ' Then —(A3) becomes

2tyy &+y (t~+y2+4/K) +4r7 =0. (A61)

v = t/(1 —(t' —r')K/4)

and putting
y= f(t, v)v'/t'

a short computation shows that (A61) simplifies
to f, ~=0. Therefore f=f(v), and we have

y = (1—(t ' r')K/4). —

Xf(t/(1 —(t' —r')K/4)) (A6)
+4bry =0. (A3)

This is the universe I or I I, Table I, according
This is the differential equation for y. The as E;)0 or K &0. The transformations which
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TABLE III. Line elements and motion.

Type

I
II
II'

III
III'

(1-+) 'f(tl(1 —~))
(1+~)-2f(t/(1+~))

v(~)
v(t)

(1/g2)f( —t/~)

Equation of motion

t' —r' —(2/v)r+1 =0
t' —r'+ (2/u)r —1 =0

r =vt
r =constant

t' —r' —(1/v)r =0

Type of motion

Oscillating

Converging-diverging
Rest

leave the form (A6) invariant are

xW (t' —p') '= 2K—'* tan I tan-' -'K-'*

we obtain f,=0. Thus f=f(v), and

v=(t' r') —'f( t/(t'—r'))— (A7)

)&(x&(t~—p~)")+2K "bPI, (A62)

pit = p/t

4. b WO, g/b e'/4b' —=0.—This is the last pos-
sibility and concludes our examination of spaces
which admit a group G of'motions. From Eq.
(A61), we now have

This is the universe I I I', Table I. The finite
transformations which leave the line element
(A7) invariant can be shown to be

x~(t' —p')'= (xw(t' —p') ~ —bp)-'
(A72)

p/t = p/t.

Putting
2rty, (+y, ,(t'+r') +4ry =0.

s = —t/(t —r ) y =f(t, s)s2/t2,

(A71) In each of the cases examined here the trans-
formations of the group G can easily be shown

to agree with those discussed in Section 1.

II. Special Problems and Applications

3. INTRODUCTION

We give here a short summary of the main
results of Part I"of this paper before proceeding
to applications.

In Part I, the metric forms and the associated
motion of fundamental particles (nebulae),
suitable for the kinematical description of our
universe at large, are examined on the basis of
three postulates, namely, the constancy of the
velocity of light, spatial isotropy, and homo-

geneity. The permissible line elements are of the
form

ds' =y(t, r) (dt' dx' dy' ds—')— —
(3.1)

=y(t, r)q, ;dx'dx', r'=x'+y'+s'.

The function p is restricted by the homogeneity
requirement, and three distinct types of cos-
mological models are obtained. The permissible
functions p and the radial equations of motion
of fundamental particles are listed in Tables I
and II.

x'/2n~x' (3 2)

The coordinates, being measured in natural units,
now have no physical dimensions. This intro-
duces a considerable simplification in most
formulas. Table III is a summary of the main

results of Sections 1 and 2.
In Table III, v is a parameter characterizing

the individual fundamental partiqle, and

(3.3)

We introduce two changes of notation. The
equations of motion of fundamental particles,
which move radially, will be written in terms of
t and r; it will be understood that they are to be
supplemented by the equations 8, p =constant.
Next, in cases I and I I, we change the coordinate
unit, measuring t and r in terms of the natural
cosmological unit 2n. This is achieved by the
coordinate transformation

'~ The numbering of sections, equations, and footnotes
is carried over from Part I. References to Eqs. (0.1)-(2.8)
and to footnotes 1-11are to those of Part I.

In universes of type I, the points

(t, r) = ( t/a, r/a)——(3.4)
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X=t+r, Y=t —r. (3 6)

The forms III' are obtained from III by the
inversion

are identified by virtue of the elliptic con-
nectivity.

The forms II' are obtained from II by the
coordinate transformation

(X, Y)~((X—1)i(X+1) (Y—1)/(Y+1)) (3 3)

where

The cosmological line element (3.1), in spatial
polar coordinates, is

ds'=7(t r)(dt' dr—' r'd—8' r' —sin' 8d p') (4.3)

where all permissible functions y are listed in
Table III. It will be shown that the line elements
(4.2) and (4.3) are equivalent and that they can
be obtained from each other by a coordinate
transformation.

We introduce the variables:
(t, r)~( t/a, —r/a). (3.7) (4.31)X=(t+r), Y=(t —r),

5=k(r+ p) ~=5(r p)—(4.32)

may be noted that X, Y, and, as will be seen
shortly, $, g, r, p, are essentially the same quan-
tities as were introduced in Section 2 (where

y and s were both zero and therefore x appeared
instead of r).

Case I—K=4.—In terms of the variables X
and Y, we have, by (4.3) and Table III,

(8, v)~(8, v) (3 8)

4. THE COSMOLOGICAL AND THE ROBERTSON
COORDINATE SYSTEMS

The coordinate system by which cosmological
models have usually been described in the past
is, in its general form, due to H. P. Robertson. "
An a priori separation of space-time into space
and time is ensured by writing the line element
in the form

)1 X+Yy 1 t X+Yy'
d"=f( —

I
— I+]

L2 1—XYl 4 E1—XY)
4dXd Y—(X—Y)'(d8'+sin 8dy')

and
Using spherical spatial coordinates (r, 8, p), the
transformation equations (3.5) and (3.7) must
be supplemented by It

ds =d7 —Ry do",

where do-' is the positive definite metric of a
3-space. The assumptions of isotropy and
homogeneity of space impose two restrictions:
R& ——R&(r') is a function of time only, and d02 is
the differential form of a 3-space of constant
curvature k=1, —1, or 0.

Let

'/ (') ()= ('). ( )

Then the line element (4.1) assumes the form

(1+X')(1+Y')

(4.4)X=tan $, Y=tan g.

We immediately obtain

ds'=f(k tan (p+s)) -', sec' (pyg)
. I4dtdg —sin' (g —q)(d8'+sin' 8dp') I

which, by (4.32), assumes the form (4.2—4.21),
where

The transformation to the Robertson coordinate
system is

dg2=R2(r)(dg 2 —dg2) (4.2)
R'(r) = 4 sec' rf(~~tan 7), and k = 1. (4.41)

where, with suitable spatial coordinates, we may
write

do' =dp'+sin' p(d8'+sin' 8d p')

if k=1, (4.21)
do' =dp'+sinh' p(d8'+sin' 8d p')

if k = —1, (4.22)

do'=dp'+p'(d8'+sin' 8dy') if k=0. (4.23)
"H. P. .Robertson "On the Foundations of Relativistic

Cosmology, " Proc, Nat. Acad. Sci. 15, 822-829 (1929).

From this last relation we note that not all
Robertson universes, with k =1, can actually be
brought into the cosmological form I. Only if the
function R(r) is periodic and of period s is this
possible. This can also be seen, and perhaps
better, from the transformations (4.4). An in-
crease of s in r changes, by (4.32), both $ and g

by an amount —,'x. The effect of this is to trans-
form X, Y into —1/X, —1/ Y; and events (X, Y)
and ( —1/X, —1/ Y) are identified in the elliptic
connectivity, given by Eq. (3.4).
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Thus the forms (4.2—4.21) seem to include a
more extensive class of cosmological models than
the corresponding forms I, Table III. We shall
show, however, that this limitation is not very
serious.

First, the physical signific'ance of the 7.-interval
ir will be examined. If (4.21) is interpreted as the
line element of an elliptic 3-space, the finite length
of a straight line is ~, the linear unit being, as
usually in elliptic geometry, the radius of cur-
vature 1/k. Equations (4.2—4.21) show that the
coordinate velocity of light rays traveling
radially is 1. Thus the interval x on the v scale
is, physically, the time interval in which light
circumnavigates the universe and returns to the
fundamental particle which emitted it. This is,
obviously, a considerable time interval and so,
even in a case where R(r) is not periodic, a large
portion of the Robertson universe can always be
represented by our model I.

Next, it should be noted that the periodicity
of R(r) does not necessarily imply the periodicity
of Ri(r'). In fact, in some important special
models the infinite proper interval ( —~, x ) on
the v' scale transforms into a fin'ite interval x on
the ~-scale, in which case the universe of type I
is non-periodic in its physical behavior (see dis-

cussion in Section 2).
To illustrate this, we examine the De Sitter-

Lanczos universe, '4 where k =1, and

X= tanh g, Y= taiih TI (4 5)

Corresponding to (4.41), we now have

We have shown that there is no essential
metrical difference between Robertson's uni-
verses and ours. However, there is an essential
topological difference. Suppressing 8 and p, we
have in the Robertson case universes represented
by a (r, p) plane in which the events (T, p)
and (r, p+s.) are identified; i.e. , the universes
are topologically equivalent to a cylinder, whose
7. dimension goes to infinity. The topology of
the universe I is different; the events (r, p)
and (r+Tr, p) must also be identified, because
in the c.c.s. they are connected by the inver-
sion (3.4). Thus we now have the topology,
not of a cylinder, but of a torus. Even in the case
of a "spherical universe, " the topology remains
that of a torus as the event (r, p) must now be
identified with (T, p+2ir) and with (r+2ir, p).
Though the topological difference between Rob-
ertson's universes and ours does not reveal itself
in the problems considered in this paper, it will

become decisive in the treatment of Maxwell's
'and Dirac's equations on a cosmological back-
ground.

Case II—E = —4.—The transformation to the
Robertson coordinate system is obtained from
(4.4) by replacing X, Y, &, g, by T'X, i V, ig, iq:

Ri'(r') = —', cosh' 2(r' —ro'), (4.42)
and

To being a constant. Ri(r') is not periodic. We
have

R'(r) =-,' sech' r f( 2 tanh r),

k= —1. (4.51)

T = 2~t sech 2(r' —ro')dr'

=2 tan —'e"" "'—-'ir (443)

The interval —~ &T'& ~ corresponds to —gir
&r&-,'ir and, by (4.4), to —1&t &1. A short
calculation yields

R2(r) = 4 SeC2 r. (4.44)

I herefore, by (4.41),f= 1, and, by I, Table III,
the De Sitter-'Lanczos line element has the form

ds'= (1 a) 'TI,,dx'dx' —(4.45)

There are in this case no limitations on the
function R(r).

Case II'.—The line element is, by (4.3) and
Table III,

ds'=y(XF) XI
dXd Y—(-'(X—Y))'(d8'+sin' Odip')

The transformation to the Robertson coordinate
system" is

in the c.c.s.
X=e'&, Y=e'&. (4.6)

'4 H. P. Robertson, "Relativistic Cosmology, " Rev.
Mod. Phys. 5, 62—90 (1933), Eq. (6.6), where we put c = 1,

16 =y.

"This transformation has been obtained by A. G.
WValker, "On the Formal Comparison of Milne's Kine-
matical System with the Systems of General Relativity, "
M. N. R. A. S. 95, 263-269 (1935).
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We immediately obtain

dgm —y(s2(t+n)) .s2(t+n)

Case II': (t, r)~(~,t., t,r),

Case III: (r, r)—&(/+)!0, r). (4.83)

X=2(, I'=2s,

R'(r) =y(r), k =0.
(4.7)

(4.71)

In Case III', the transformation is the inversion
(3.7) and need not be discussed further.

It has been shown that our cosmological
models are the same as those considered by
Robertson and his predecessors. However, the
mathematical picture as well as the physical
emphasis differ considerably in the two repre-
sentations. The universes which, in Robertson's
coordinates, are of type k= j., —1, 0, are, in a
c.c.s., of type I, II' (or II), III (or III'), re-
spectively. In the Robertson coordinate system
the fundamental particles are at rest; in a c.c.s.
their motion is, in the three cases, the oscillating
motion, the converging-diverging motion, and
rest, respectively. In Robertson's coordinates the
velocity of light is a function of position and
direction; in a c.c.s. it is constant.

The form of the cosmological hne element (4.2)
in the Robertson coordinate system suggests the
following consideration. The temporal translation

. }4dgds —sinh' (P—g) (d8'+sin' Ody') },
which, by (4.32), assumes the form (4.2—4.22),
where

R'(r) =e"y(e"), and k = —1. (4.61)

Comparing (4.5) and (4.6), we easily regain the
transfor'mation formula (3.5) leading from Case
II to Case II'.

Case III, III'—K =0.—The cosmological line
element III is of the. form (4.2—4.23) and no
transformation is required. For the sake of com-
pleteness, we may write

These transformations change the cosmological
line elements into others which are formally
different but of the same type; the equations of
motion of fundamental particles are preserved,
and, in particular, the t axis is moved into itself.
The event (to, 0) is transformed into (0, 0), (1, 0),
(0, 0), respectively. Thus, by a suitable choice of
the line element and the function y, any event
on the t axis may be made to coincide with the
natural origin (0, 0), in Cases I and III, and
with (1, 0) in Case II . This different behavior of
models of type II' is due to the fact that the
motion of fundamental particles has a singularity
at k =0 (when the universe shrinks to a point).

The magni6cation (4.82) may also be applied
to a model of type III. The event (tp, 0) is
transformed into (1, 0), if to/0. ,

5. SOME SPECIAL UNIVERSES

In this section some special cosmological
models will be examined and the line element
obtained in a c.c.s.

Univsrses of Type I. The line elem—ents of
these universes are of the form

ds'= (1 a) 'f(t/(1—a—)) r);;dx'd' —x&, (5.1)

and the motion of fundamental particles is, in
general, the oscil/ating motion. As was seen in
Section 2, some of the universes I are, physically,
not of a periodic nature. In such cases the funda-
mental particles only approach and then recede
from a fundamental observer within his infinite
proper life.

The simplest model, in our representation, is
the non-periodic De Sitter-I.ancsos universe, which
we denote by S~. Its line element is

(4.8)
ds'= (1 a) 's;,dx'dx3. — (5.11)

changes the function R(r), and therefore also
the line element (4.2), but preserves the type of
the universe, which is determined by do'. The
translation (4.8) induces the following trans-
formations in the cosmological coordinates:

Case I: (X, Y)~((X+/0)/(1 —foX),

(I'+tp)/(1 tp F)), (4.81)—

The line element of Einstein's cylindrical
universe Z is usually obtained in the Robertson
coordinate system:

ds2=dr 2 —do~, (5.12)

where d(r' is the metric (4.21) of a 3-space of
constant curvature k=1. By (4.1) and (4.11),



266 L. INFFLD AND A. SCHILD

TABLE IV. Special cosmological models.

Case

%=4
(k =1)

Z= —4
{k= —1)

Oscillating

Converging-
diverging

S1
(a)

(b)

(~)

(d)

(e)

Universe

(1—a) '

1/4t2

4 I (1 a)2+4t2 I
—1

1/a'

4(i+a —2t) '

Type

I

Transformation of line elements

(a), (&) (&) (~), () (o),
(&)~{f)
(e) (g),
(j) (k)

by transformation

(X, Y) ((1+X)/{1—X),
(1+~)/{1—~))-

S2
(~)

{j)
(k)

4(1+a+2t) '

(1—a) '

1/4t'

1/a II'

4 I (1+g)'—4t'I ' II

(d), (~) (e), (m),
(~) (o),
(g) (r),

by inversion

(t, r)~(-t/a, r/a).

X=O
(k =0)

Rest
{m)

(n)

Ss (o)

{q)
ES

(r)

1 /g2

1/4t'

1/4t'

(1/a')(1+2t/a) '

t'

t4/a6

I I I (f)~(m),————(a), (a) (P),III'
by temporal translation

t~t+1.

(g)~(m),

by temporal translation

t~t —1.

+ Motion of fundamental particles.

R=2/(3 coth' ,'r 1). ——
f(x) =4(1+4x')

we have RP(r') =R'(r) =1, and Eq. (4.41) then and, on integration,
yields

(5.14)

Thus the Einstein universe has the cosmological
line element

ds' =4 I (1 a) '+4t' I 'rt—;dx'dx' (5.13).
We see that in the c.c.s. the Einstein universe
does not have a simple line element, and that it
seems more artificial than the De Sitter model.

Finally, we examine very brieHy Iemoftre's
universe. The Lemaitre line element in the
Robertson coordinate system" is of the type
k =1, and the function R~(r') is defined by

dr' = (3Rg) '*dRg/(R g+ 2) '*(Rr—1).

Since dr'=R&dr, by (4.11), and R&(r') =R(r),
we immediately have

dr= 3'dR/(R'+2R) t'(R 1), —
".Reference 14, Eq. (8.2), where we put R.= i.

Thus R is not a periodic function of 7 and we
can, at best, represent only a portion of the
Lemaltre universe in a c.c.s.

Universes of Type II, II'. The line elem—ents
of these universes are preferably taken in the
form II':

ds' =y(a) q;,dx'dx'. (5 2)

The fundamental particles move with constant
coordinate velocities and they all mee't in a
point at time t = 0. We have described this motion
as converging-diverging.

The transition from the form I I' to I I is
achieved by the inverse of the transformation
(3 5):

(X, F)~((1+X)/(1—X),
(1+~)/(1 —~)) (5 21)
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The simplest model of Type II' is the Minkozv-

ski universe (y(a) =1) which we denote by IV2.

Its metric is given by the pseudo-Euclidean line
element

besides being of type II', is also of type III.
Thus, among the models III, we have a 3finkom-
ski universe 3SI3 with line element

d$ = gs~dx dx~. (5.22) (5.31)

The De Sitter line element (5.11), besides
being of type I, is also quite obviously of type
II'. Thus among the models II' we have a
De Sitter universe, which we denote by S2, and
whose line element is

ds'= (1 a) 'rj;;dx—'dx'. (5.23)

Subjecting this form to the transformation (5.21),
we obtain the line element of S2 in the form II:

ds' = (1/4t') rI;,dx'dx& (5.24)

This is also a special case of the forms (5.1) of
type I, where f(x) =1/4x'. Thus (5.24) is an
alternative line element of the universe S~."

Finally, we mention a model which we call
3fihse's universe and denote by Mi. Its line
element is

ds' = (1/a) v dx'dx'. " (5.25)

In this universe, the motion of free particles
along any geodesic is identical with the motion
of particles in Milne's "kinematical relativity"
under the inHuence of the "substratum""; in

particular, the fundamental particles, which form
Milne's substratum, behave like those in all our
models II'. We may add that in Robertson's
coordinates Milne's universe has a form analogous
to Einstein's universe; its line element is (5.12)
but do' is now the metric (4,22) of a 3-space of
constant curvature k = —1.

Universes of Type III, III'. It is convenient-
to use the c.c.s. III:

ds' =y(t) v;,dx'dx'. (5.3)

'7 The transformation (5.21) is a special case of (4.81),
t 0 ——1, and therefore changes any line element of type I into
another of the same type, and also preserves the equation
of motion of fundamental particles. A similar statement is
easily verified to hold for the inversion (3.7) applied to a
line element of type II'."C. Gilbert, "On the Occurrence of Milne's Systems of
Particles in General Relativity, " Quart. J. Math. 9, 187,
Eq. (9) (1938). See also reference 15.

In these models the fundamental particles are at
rest.

The pseudo-Euclidean line element (5.22),

The De Sitter line element (5.24) is immedi-
ately seen to be a special case of the forms (5.3).
Thus we have a third De Sitter universe $3 of
type III and with line element

ds'= (1/4t') rl; dx'dx'. (5.32)

S3 is sometimes referred to as the "stationary"
De Sitter universe. "

The Einstein-De Sitter universe ES has, in the
Robertson coordinate system, "a line element of
type k=0, where

R,= (3r') *
(5.33)

Using (4.11), a short calculation yields the line
element in the c.c.s. III:

ds' = t4g;;dx'dx'. (5.34)

» Reference 14, Eq. (6.1).
~0 Reference 14, Eq. (8.8), where we put ffB =12.
'~ P. A. M. Dirac, "A New Basis for Cosmology,

" Proc.
Roy. Soc. A165, 199-208 (1938), Eq. (6).

"Reference 13, p. 824, assumption II'.

This cosmological model has also been proposed
by Dirac."

It must be emphasized that the two Minkowski
universes 3I2 and M3 are quite distinct cos-
mological models and differ in their physical
behavior; e.g. , M2 exhibits a nebular red shift,
M3 does not. M2 and M3 are characterized by
the same line element (5.22) but by different
motions of fundamental particles, i.e. , the con-
verging-diverging motion and rest, respectively.
A corresponding statement holds for the three
De Sitter universes S&, S2, S3, which may be
described by the same metric form (5.24) and by
the three different types of motion of funda-.
mental particles.

We conclude this section with a short examina-
tion of stationary universes. "We may define this
term as follows: A universe is stationary if its
line element and the equation of motion of its
fundamental particles are invariant in form
under a coordinate transformation which moves
the t axis into itself and which transforms any
non-singular event on it into any other.



I . I NFELD AND A. SCH ILD

It is easily verified that the line elements of the
universes E, 3fi, 313, are invariant in form under
the transformations (4.81), (4.82), (4.83); re-
spectively, and are therefore stationary. The line
element of the universe S3 is invariant under
(4.82), which, however, preserves the origin
(0, 0). But this line element is singular at t =0,
and thus the deFinition of stationary cosmologies
applies to S3.

The different cosmological forms of the special
models examined in this section are summarized
in Table IV.

0. THE NEBULAR RED SHIFT

The displacement towards the red of the
spectral lines of nebulae, which .is roughly pro-
portional to their distance from us, is now a well
established astronomical phenomenon. ' One of
the chief advantages of many relativistic models
of our universe is that this nebular red shift
emerges as a natural consequence of their struc-
ture. In this section expressions for the red shift
will be obtained in terms of the coordinates of
the fundamental particles under observation. No
comparison with observational data will be
attempted as the coordinates x' are not immedi-

ately interpretable in terms of physical time and
distance as estimated by the astronomer. Such
a comparison involves an examination of the
apparent magnitudes and luminosities of nebulae
in the model; the problem is not difficult but is
outside the scope of this report. However, in
most cosmological models where the red shift is
not altogether absent (as it is in the Einstein
universe) the first-order red shift effect is linear,
and agreement with observation can be achieved
by a suitable choice of some of the constants of
the model, such as 2oL (the cosmological unit) or
the present time to (which may, for practical
purposes, be treated as a constant). Thus the red
shift phenomenon, at least to the first order, , is
not a very effective criterion for narrowing down
the large number of possible cosmological models.
Most restrictions on the models, which are
suitable for describing our universe at large, are
obtained from the red shift effects of higher
order and from dynamical considerations which
are outside the domain of pure kinematics.

We base the derivation of the red shift formula
on a practical, corpuscular theory of light. This

is completely justified by the fact that Maxwell's
equations have in all cosmological spaces the
same form as in Minkowski space and that
therefore light is propagated exactly as in flat
space. Appeal is also made to a fundamental
principle of relativity which states that the
proper period of vibration (i.e. , the period
measured in proper time ds) of an atom emitting
a sharp spectral line is constant, whatever the
motion or position of the atom. Consider an
atom, moving with a fundamental particle
P=(t, r) of radial velocity V, emitting a light
signal at time t and again, after one complete
vibration, at time t+dt. The two light signals
reach the observer 0 at the spatial origin at
times to=t+r and to+dto, respectively, where
dto ——dt(1+ U). This is immediately seen from the
fact that the second light signal is emitted from
the event (t+dt, r+ Udt) and reaches 0 at
time t+r+dt(1+ U). Remembering the form of
the cosmological line element (3.1), we find that
the proper period of vibration of the atom (which
equals the proper wave-length ), since the
velocity of light is 1) is given by

Thus the ratio of observed to proper wave-length
1S

l o/~ = (vo/7) '((1+ U)/(1 —U)) *'. (6 1)

This expression for the red shift may be ana-
lysed into two independent components, the
Doppler effect which contributes the factor
((1+V)/(1 —U))&, and the gravitational effect
which contributes the factor (yo/y)'.

An explicit formula for the red shift will now
be obtained in each of the three types of universes
and the result expressed in terms of the time to

of observation and the distance r of the funda-
mental particle P, determined at the time
when the observed radiation left P.

Case I.—The velocity U of a fundamental
particle is obtained by differentiating the equa-
tion of motion, given in Table III.

V= 2tr/(t'+r'+1). (6.2)

ds = X= y&(t, r) (1—V')'*dt.

The proper period of vibration as observed by 0
1s dsp =QDMtp, ol,

d&o=&o='vo (1+V)d& To= v(~o 0).
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TABI.E V. First-order red shift eKects.

Universe

$1 (a)

z (.)
(d)

S2 (h)

Mi (j)
Ms (/)
S, (n)
ZS (q)

TXpe

I
II'
II'
II'

III
III
III

(1—a) '

4 I (1—a)'+4t'I '
1

(1- )-
1/a
1
1/4t'
t4

hX/X to first order

(4tp/(1+tp ))r

0
(1/tp)r

II
—I'I

(~1 )
0
0—2(I to I /tp)r
(2/tp')r

Remarks

—1 &tp&0: v.s.*
0&tp&1: r.s.

rigorously
tp&0: v.s. tp)0: r.s.
to& —1, 0&to& 1:r.s.

—1 &tp&0, tp) 1;v.s.
rigorously
rigorously
tp&0: r.s. ; tp)0: v.s.
tp&0: v.s. ; tp)0: r.s.

+ r.s. is red shift; v.s. is violet shift.

Replacing t by to —r, we have

V=2r(tp —r)/((tp —r)'+r'+1). (6.21)

Thus the Doppler effect is given by the expression

((1+V)/(1 —V)) '
= ((1+to')/(1+(to —2r)'))'. (6.22)

Before considering the complete red shift in
the general case, it is convenient to examine the
special case of the Einstein universe E, whose
line element is given by (5.13). Remembering
that y =y(t, r) =y(to —r, r), we have

(yo) ~ ((1—(to —r)' —r')'+4(to —r)'q '*

I, (6.23)
(1—too)'+4t, ' )

which, after simplification, reduces to the
reciprocal of (6.22). Thus )I,p/X = 1 in the Einstein
universe and there is no red shift.

The Doppler effect is the same for all universes
of Type I. Writing y=F pz, where pzq;;dx'dx&
is the line element of the Einstein universe, we
see, from (6.1), and from the fact that (psp/ys) &

just cancels the Doppler effect, that

Xp (Fp) & ( F(tp/(1 —tp'))
(6.3)

( F ) (F((tp —r)/(1 tp +2tpr)))—
In terms of the function f, introduced in Section
1, F is defined by

F(x) = (o'+x')f(x) (6.31)

as is easily verified by Eqs. (5.1) and (5.13).
Case II'.—The fundamental particles now

move with constant velocity U= r/t and y =y(a).
Thus V=r/(tp r), and Eq. (6.1)—becomes

4/X = (tpp(tp )/(tp —2r)p(t 2o tpr)) '. (6.4)

It is interesting to note that Milne's universe JI/Ii,

for which y = 1/tt, exhibits no red shift.
Case III.—The fundamental particles in these

models are at rest and hence the red shift is
completely due to the gravitational effect.
Remembering that y =y(t), we have

) o/) =(V(to)/V(to-r)):. (6.5)

The only universe of this type without red shift
is the Minkowski universe M3.

We proceed to obtain formulas for the first-
order red shift effect in the special cosmological
models listed in Table IV. The red shift vrill be
given by the usual expression

a),/X = (Xo —) )/), . (6.6)

It will be expressed in terms of the time to of
observation and a new distance coordinate r,
defined by-

po =p(t„p). (6.61)

From the line element (4.3) we note that r is the
proper distance at time to and in the immediate
neighborhood of the spatial origin. Neglecting
second-order corrections, r is actually the dis-
tance estimated by the astronomer, who always
assumes the rectilinear propagation of light with
constant velocity.

With the formulas (6.3)—(6.5), (6.61), and the
functions y of Table IV, the calculations are
quite straightforward. Therefore no computa-
tional details need be given and the first-order
red shift effects are collected in Table V.

Finally, it is of interest to note that the three
models B, Mi, 3fe, are the only universes with
no red shift.



270 L. INFELD AND A. SCHILD

(r, p) = («, np), (7.11)

where n is a constant, the line element (7.1)
becomes

ds'= y'(r) I d r' dp'—
—n'S'(p/n) (de'+sin' ed p') } (7.2)

where g(r) =(1/n)R(r/n). In (7.1), r, p are
dimensionless numbers; R has the dimensions of
ds. In (7.2), g is dimensionless; r, p have the
dimensions of ds. By a suitable choice of n, we
can always ensure that

7. THE PHYSICAL CONTENT OF THE
COSMOLOGICAL COORDINATES

Suppose a physical cosmological model be
given which is of the kind considered in this
report. In this concluding section we deal with
the problem of finding the line element of the
model and of determining the coordinates of any
event in it. This is achieved by means of idealized
experiments. They give a clear indication of the
physical content of our time and distance coor-
dinates which so far were only convenient mathe-
matical constructs.

We choose a fundamental particle (arbitrarily)
and associate with it a coincident fundamental
observer 0. Without loss of generality, we may
assume the particle to be at the spatial origin.
The observer 0 is to be equipped with a theo-
dolite and with apparatus for sending and
receiving light signals. Also he is to carry a
mechanical or atomic clock whose vibrations, ac-
cording to the fundamental principles of rela-
tivity, measure proper time ds.

For the purposes of this section, the most con-
venient coordinate system is that introduced in
Section 4, Eq. (4.2). The line element is

ds2 =R2(r) Idr2 —dp2

—S2(p) (dg'+sin' Ody2) }, (7.1)

where S(p) is sin p, sinh p, or p, according as the
model is of'type I, II', or III. From (7.1) simple
transformations lead to the form of the line
element in Robertson's coordinate system LEq.
(4.11)g or in a c.c.s. LEqs. (4.4), (4.6), (4.7), in
cases I, II', III, respectively].

Introducing new variables

ds=df, when f =0. (7.22)

The mechanism just described will be called a
v.-clock.

In order to obtain the coordinates (r, p, 0, 22)

of an event 8, the observer 0 sends, at time f i,
a light signal to B which is reflected by Z and
returns to 0 at time v.~. The direction of the
light ray, measured by 0's theodolite, immedi-
ately yields the polar coerdinates 8 and
Since the light signal travels radially with unit
velocity, the coordinates 7., p of 8 are given by

r = (T2+2T1) p i2 (r2 Tl) ~ (7.3)

2. The observer 0 selects two fundamental
particles P& and I'2 close together and at equal
distance from him. By the procedure outlined
above, 0 determines the coordinate distance
OI'j ——OI'2 ——p and the small angle I'iOI'2=d8.

We know that in the coordinate systems of
(7.1) and (7.2) the fundamental particles are at
rest. Moreover, the velocity of radial light signals
is 1; this is an important property which these
coordinate systems share with the c.c.s.

We shall now proceed in the following order:
A 7-clock is constructed which measures

v=-time at 0; it is used to obtain the coordinates
(r, p) of any event. 2. The type of the universe
and the constant 0. are determined. 3. The line
element is obtained. 4. The transition to a c.c.s.
is examined.

I. The observer 0 sends a light signal to a
fundamental particle I' in his immediate neigh-
borhood. I' reflects the light ray back to 0 who
returns it to I', and this procedure is repeated
indefinitely. The fundamental observer 0 counts
the number of times the light-pulse has reached
him and this number serves as a measure of time,
7 time. This is immediately seen from the fact
that, in the coordinates of (7.2), all fundamental
particles are at rest and that the radial velocity
of light is constant.

Since, in the general line element (7.2), there
is no preferred point on the temporal axis, 0 may,
without loss of generality, denote the initial
moment at which he starts his light ray experi-
ment by r =0 In acco. rdance with (7.21),
0 normalizes the f.-time measure to agree initially
with the proper time of his atomic clock; i.e.,
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agree. 0 can, by prolonged observation, deter-
mine ds/dr as a function of r. But, by (7.2),

ds/d r =y(r) (7.5)

FrG. 4. Arrangement of light signals to determine the type
of universe.

0 sends a light signal to P~ who reHects it to P2,
who, in turn, sends it back to O. This arrange-
ment is sketched in Fig. 4. 0 measures the time
interval A~ in which the light ray completes the
circuit OP&P20. Then the light ray travels the
distance P~P2 in time

df =AT- —2p,

Thus the function p; and therefore also the line
element, are known.

4. Applying the transformation (7.11) to (7.2),
we regain the line element (7.1). Regraduating
the coordinate time scale in accordance with
(7.11), 0 obtains a r clock-

From the line element (7.1), the coordinate
transformations (4.4), (4.6), or (4.7), according
as the cosmological model is of type I, II', or
III, lead to the form of the line element in cos-
mological coordinates.

In a c.c.s. the observer 0 can determine the
coordinates t, r of an event Z by the procedure
outlined above for the coordinates 7=, p. We have

(7 6)

c& ——(p/n) /S( p/n) . (7.4)

S(x) is sin x, sinh x, x, in Cases I, II', III, re-

spectively, and x/sin x) 1, x/sinh x(1, x/x=1.
Thus we have the following criterion:

The given cosmological model is of type I,
II', or III, according as c& is greater than, less
than, or equal to 1.

In Cases I and I I', the constant n can now be
obtained from Eq. (7.4). In Case III, n does not
enter the line element (7.2).

The experiment described above is based on
the observation of transverse sects These trans. -

verse effects also enter such phenomena as the
distribution of nebulae in depth and the second-
order red shift effect, when the estimate of
nebular distances is based on the observation of
apparent luminosities. These phenomena may
serve as a practical means of determining the
type of the universe and the order of magnitude
of the constant 0..

3. As described above, 0 normalizes his
f-clock so that, initially, its time measure d7=

coincides with the proper-time measure ds of his
atomic clock. After a period of time, however,
he finds that his two time measures no longer

and 0 can compute the transverse velocity of
light pd8/dr =c~. From the line element (7.2) it
follows that

the notation corresponding to that in Eqs. (7.3).
However, the structure of 0's t-clock is diferent.
From the transformation equations it follows, by
putting r = p =0, that the t-clock is characterized
by the following equations

Case I:
Case II'.

Case III:

t = tan —,'v-,

t=e',

(7.61)

(7.62)

(7.63)

r =vt. (7.7)

We see that the structure of the t-clock does not
depend on the particular function 8, as does the
~'-clock measuring Robertson's v'-time.

This completes the examination which we
undertook in this section. However, we now have
an opportunity to indicate how the trans-
formations leading to a c.c.s. , which we merely
stated in Section 4, can be arrived at by logical
deduction and without guesswork. In Case III,
the line element (7.1) is automatically of the
cosmological form, and no transformation is
required. We shall limit ourselves to an examina-
tion of Case II', the treatment of Case I being
similar.

In the c.c.s. II', the equation of motion of a
fundamental particle P was (in Section 1) shown

to be



L. I NF ELD AN D A. SCH OLD

(7.9)

A light signal is, at time t~, sent by 0 to P who spectively, by (7.8). Thus we obtain the equa-
reHects it, the light signal returning to 0 at time tions of transformation
t2. By (7.6) and (7.7), we have

t~r =pe(r+I) IP

(t2 —tg)/(t, +tg) =v. (7.71)

dr =Pdt/t, (7.72)

where p is a constant. Integrating, we have

We assume that I' is close to 0, i.e., that v is
small. We denote the short cosmological time
element tq —t~ by dt. The constant (4—4)/(tm+tq),
or dt/2t, since OP is small, is proportional to a
constant ~-interval de. Thus

If this transformation is applied to the line
element (7.1), it is seen that the resulting line
element is of the cosmological form only if P = 1.
Thus the constant P is determined and (7.9)
now agrees with (4.6).

Similarly, the transformation leading from the
coordinates (r, p) to cosmological coordinates
(t, r), with dimensions, is given by

t&r=ae'~"'~ (t+r)/a=ter (7.91)
r=P log (t/P), t=Pe'e. (7.8)

The constant of integration has, without loss of
generality, been chosen such that dv =dt when
v =0. Regraduating the v--clock in accordance
with Eq. (7.8), we obtain a t clock measuring
cosmological time.

By use of the t-clock the coordinates of an
event B may be obtained from Eq. (7.6).
Similarly, the coordinates v, p of 8 are given by

r = ,'(r2+r—i), p = —,'(rg —rg).

t, =(t+r), r, =(r+ p),
(7 81)

t& = (t r), rg (r p)— ———

The times t2, t~ are connected with 72, r~, re-

(t~r)/2~= tan ((r~p)/2~);

(ter-)/2n=tar.
(7.92)

The radius of curvature o. of the spatial section
7.=0 appears, in the c.c.s., as one-quarter of the
coordinate period of oscillation.

if we demand that df, =d7. when 7.=0. The con-
stant a which appeared in the line element (7.2)
as the negative radius of curvature of the spatial
section v=0, appears now, in the c.c.s. , as the
age of the universe on the cosmological time
scale.

In Case I, parallel considerations show that
the transformation equations are


