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The Vibration-Rotation Energies of Polyatomic Molecules

Part II. Accidental Degeneracies
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(Received August 22, 1945)

The first- and second-order corrections to the vibration-rotation energies of polyatomic
molecules are dealt with in instances where two or more vibration frequencies are accidentally
degenerate. The method of the contact transformation employed in Part I is extended and
made applicable to the two types of first-order resonance interactions, i.e. , the Fermi-Dennison
type and the Coriolis type. The components of the energy matrix are evaluated in general, and
examples are considered to demonstrate how the actual energies may be evaluated.

I. INTRODUCTION

'HE vibration and rotation of a general polyatomic molecule have been dealt with quantum
mechanically in an earlier paper, hereafter referred to as Part. I,' and expressions were derived

for the energies by a second-order perturbation calculation. The results are applicable, except in cer-
tain anomalous cases, to specific molecular models to obtain the vibration-rotation energies.

The perturbation method applied to this problem is related to the fact that, except for the terms
of Coriolis interaction between degenerate vibrations and the rotation of the molecule, the terms in
the first-order Hamiltonian, H1, cannot in general contribute to the energy before in second order of
approximation. It is, therefore, effective to transform the Hamiltonian, H&, of the molecule by a
contact transformation into T H T '=Imp'+eH1'+e'II2' where H1' will contain to second order
of approximation only the above mentioned Coriolis interaction terms. Linear combinations of the
zero-order wave functions may always be found so that the matrix of H1' will have only diagonal
elements. Using the stabilized wave functions of FIp, i.e. , the linear combination of the zero-order
wave functions which will diagonalize Ifp +eIX1, the calculation of the second-order energies is re-
duced, in effect, to a first-order perturbation calculation.

Denoting by T(e) the transformation function e"s, we have to second order of approximation:

T= I+f~S—(~'/2) S'+ (&)

Transformation of H=IIp+eHI+e FI2' ' leads to THT '=H'=Hp'+eH&'+e'H2' where it is readily
shown that

HD Hp& Hg Hy s(HDS SHp) ~ H2 =H2+ (~/2) fS(Fiz+H& ) —(H&+FF& )S]. (2)

The method is very effective except in such cases where peculiar relationships exist between
the vibration frequencies. For example, if the first-order Hamiltonian of a molecule has a term
k„.,"g„j, g,", in it, the transformed second Hamiltonian, H2, will contain a contribution inversely
proportional to

where X, =4m'c'or, ', and the anharmonic coefficients x„, x„etc., in the expression for the vibration
energy of the molecule will contain terms with the same denominator (see for example, Eq. (30),
Part I). If accidentally X. i should be very nearly equal to X,l+X, & (i.e. , a&, . =co.+co, ) in which case
resonance is said to occur, the quantities x„and x„may become indefinitely large and the method
described above will fail. A similar instance may arise when the first-order Hamiltonian, Hl, of a
polyatomic molecule contains a Coriolis interaction term

I - L(I /~ ")'V"P.—(l "/~.) 'a.P"3F'-.
' H. H. Nielsen, Phys. Rev. 60, 794 (1941).
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The transformed second-order Hamiltonian, III, will contain terms corresponding to those with the
denominator ),—X, . These in turn give rise to correction terms to the effective reciprocals of inertia
with the same denominator. As before, if X, should accidentally be very nearly equal to X, so that
resonance sets in, the correction terms may become indehnitely. large, and the method described before
becomes inadequate. We shall hereafter consider how the above method may be modified to take
account satisfactorily of the contribution to the energies by such terms when resonance between
fi cqucncics takes place.

II. ANHARMONIC RESONANCE INTERACTIONS

We shall erst consider the case where the resonance interaction results because of the presence of
terms in the anharmonic portion of the potential energy which are cubic in the coordinates. The
general anharmonic potential energy term which is cubic in the coordinates may be written'

h~~es's" g8ags'rr'gs "n"~ (3)

This term may be removed from the erst-order Hamiltonian by transforming H with the transforma-
tion function'

8= —kck...- Ix, p, —x, —x,")p,.g. .g,-."/5+x, '*(x,.—x,"—x,)g,.p. .g."."/5

+X;.&(X; Xs —X, )g—,.g;. P;.."/5 2X.'*—X. &X."iPs.P, .;Ps ."/fi'}

X I fi(X,&+X, '*+X.-l) (X.'*+X, i —X,-') (Xp—X, &+X. '*) {X.&—X. &—X,"&) I '. (4)

The transformation produces, however, a term in the second-order Hamiltonian with the denominator
(X.&+X, & —X."&).When, for example, the combination frequency X.'*+X, ~ (or overtone frequency when
s =s') and the fundamental X, 'are very nearly alike, resonance sets in and the term &ck„."g, g, , g, ,"
may evidently contribute to the energy of the molecule an amount which is of first-order magnitude.
It therefore appears that it is not legitimate to remove the term ht."k„,"g„g, , q," " from the First-
order Hamiltonian. A closer inspection reveals, however, that it is only the (v„, v. .. v... jv„&1,
v, , &1, v,", .+1) matrix elements of this potential energy which offers difficulties. It theref'ore be-
comes apparent that if a transformation function 5 can be found such that after the transformation of
H has taken place Hi' will contain only the elements (v„, v. .. v,",.

i
v„~1,v. , &1, v. ,"~1),these

having, of course, the same values as the corresponding elements of the term he&„."g„g, g,",then
a transformation method may still be employed with advantage. It will be seen that the term,

(& &C'ss's/4) I (gssPs's'+ gs's'Pss) P " /s& s(PssPs's'/& gssgs's') gs' 's" }r

has the same (v... v. .. v, ." i v,.a1, v. .a1, v."."%1)matrix elements as {3),but that all its other
matrix elements are equal to zero. Since the function (4) will remove the term (3) entirely from FIq',

we may expect to obtain a transformation function appropriate for us by adding (4) to a function s
which will put the expression (5) back into the transformed Hi . A little experimentation shows that
the function

s=(hyness. saa/4) Ig,&+/pa& lt, a.&+g,"&g, g—.sg, .r )„)„.& l—a, g, a g—,.&g,"+—g;.'ag; —2)„&j—„8)„ih}

~ I (0-0""0"" /I') —(g-g."P. " ill)+(g-P". g"" /I )+(P-g. "gs s " /I') }

x {kgpox. .~+a.-') {V+&,.~ x,-~)(x.~—x;~+a; —)(x.~ —x, ~—~.-~) }-i (6)

will accomplish this. The transformation function 5* suitable for our problem will be 5*=5+s and

~ The coordinates q. used here are dimensionless so that if k„i, i is expressed in cm ', the term hck, ,is«will have the
dimensions of energy. The constants k„i,i used here will be found to be equivalent to the k,.i,ll used in Part I, multiplied
by the constant (h&i8~'c'i'a, &co, &co, &).

~ W. H. Shaffer, H. H. Nielsen, and L. H. Thomas, Phys. Rev. 55, 895 (1939).S. Silver and W. H. Shaffer, J. Chem.
Phys. 9, 599 (1941).
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is equal to

S*= (hcks i ~i/4) {(X+g ~ +)srr —2g, )t,. +2)„*gsi"+2/, .*g,ii*)(p, p.. pas, ","/$ ) —()t,+)s, —3g, i

—2)s, 'X. ' —2)„'*X."&—2X. ')s, ')(q.,q. , p.", /h')+(X. —3X, +X. +2K.4, &+2K,'*X, &

—2). '&. ') ( q..P. . q.".-/ h')+( —3)t.y) .+) .-+ 2),:)..I—2) .')„-'+2),.:)t,-:)
X(p..q, .q.".-/h') }{(V+)..I+).-*')(V—),.I+),-*')()~,I—)~, .I—)~...I) j-~. (V)

It should be noted that Ss does not contain the denominator (X,&+X. & —X."&).
We have, then, for the zero-order Hamiltonian

~o=(1/2) {(&.'/~**")+(&.'/~. .")+(~*'/I*.")}+(&/2) 2 2 {)t'(P '/h'+q-') j (8)

and for the transformed first-order Hamiltonian, H&', the following:

~r'= (hck-"-/4) {(q-p."+p-q. ")p" " /&' —(p* p""/&' —q' q"")q""-j (9)
The transformed second-order Hamiltonian will also differ from the relation given in Eq. (21e),

Part I, but only insofar as the terms containing k„... as a coefficient are concerned. Ke restate,
therefore, only this term. It is:

(i/2) (S*Ht—HtS*) = (hck.:, /2) '"{i()„+X,.+X," 2X,—I)t,'*+2&,ig, "&+2),.~X...')
3 /z4X (psaqsaps'a'qs'a'ps' 'a'rqs "a' ' qsala saqs 'a 'p as'qs 'ra' 'p a' s')/ss

—(X,+X. —3X, —2X,'X, & —2X,'X,"&—2X, 'h. &) (q„q. , /A)

+(Xs—3Xs +As" +2XsIXs'*+2)ts'*As I—2Xs '*hs '*)(q,.q,"a /A)
2+(—3X.+X, +X, +2K,I)t, I—2X,'X. I+2K, IX, &)(q, , q, , /5) }

X {2(),I+),.I+)t,-I) () .I—) .I+) .-') () .:—) .-' —)t.-') j-'. (1O)

To arrive at the energies we proceed now by assuming that X,&+X, '=),"& so that we may write
X,"&=X, &+X,&+5 where 8 is small. When we substitute this into the portion of Ho which concerns
these f'requencies we obtain

2
FIs= (ls/2) {X.**(P,.'/5'+q. .') +X. **(P;;/h'+q:;) +(V+X ) (P.";/hs+q", ")}, ( )

and
2 2

Hr' (bh/2)(ps. .——/A'+qs". .)+(hck„s /4) {(q,.p, .+p„q, .)p. .."/h'

(psaps'a'/h qsaq' sa) q"s'a' }~ (12)

If now the frequencies are non-degenerate so that we may set 0. = o-'= 1, we obtain at once that

(Es/hc) =to, (v, +v,"+1)+co.(v, +v,"+1). (13)

(v„v, , v,"iHr'/hctv. , v, , v,")=(v, +—',)6, A=(h/47rc), (14a)

(vs s v", vs s
I
~r'/hc j v.+1, v.+1, vs s —1) = (v.+1, vs s+1, vs s —1II'fr'/hc

I
v. , v", v. )

=k*."-L((v.+1)/2) ((vs s+1)/2) (vs s /2)]' (14b)

The matrix components of the transformed second-order Hamiltonian which are of importance
are those diagonal in the quantum numbers. In our case they are the same as those. given in Part I

The 6rst term in H&' has only elements diagonal in the quantum numbers and the second, as we have
seen, has only the matrix elements (v„v, , v,

~
v, ~1, v, &1, v, "%1).These elements are the following

To arrive at the modified expression for H2', it is necessary to recompute the expression (2'/2) JS*(H1'+H1)—(H&'+HI)S*). It is quickly seen that S* has no matrix elements of the type (v, rv, v,«tv, &i, v, &1, v,-+1) while H1'
was so determined .that it contains only elements of this type. In evaluating the energies to second-order of approximation,
we shall be interested only in the elements of H&' diagonal in the quantum numbers v„v,~, v,«, but it is evident that
(SsHs' —Hs'Ss) will have none such. It is necessary, therefore, only to consider (SsHq —HsS").
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except insofar as the terms having the coefficient k„," are concerned. These occur in only x„. In

our case the term multiplied by k„,» will be

—(hc/2) (0„,"/2) ' +
GOs+COs~+GOs» GO/

—M$~+Ms» CO/
—M/1 Ms«

(15)

The expression (15) will be seen to be identical to the relation occurring in x„as defined in Part I

except that the term having the denominator (~,+&a,.—a&, . ) is absent. ~

When the frequency ),l is equal to the frequency X, &, we have the interesting case which is generally
referred to as Fermi-Dennison' resonance. When the frequencies A,,' and X,":are non-degenerate so
that o. =o."=1, the term in the first-order Hamiltonian which allows the resonance interaction to
occur, may be written hck„, q, q,".The appropriate transformation of this term may be achieved by
using the function (7) where s=s', o. =o.

, and where the order in which the operators occur is pre-
served. In this case we set X, s =2K,.l+6, 6 being small, and we have for the zero-order Hamiltonian
which relates to X, ' and A,, '

FF.=(»''/2) I(f '/&'+9 ')+2(P" '/&'+&"') I

and for the transformed first-order Harniltonian

FF '= (»/2)(P"'/&'+Q"')+(&c&-" /4) L(i 0 +9 f )P" /h' (.f '/&' ——&')&"']
For the zero-order energies we obtain at once

(Zo/bc) =ca.(v, +2v. + ,'). —

(17)

As before the first term in II&' has only elements diagonal in the quantum numbers, while the second
has the elements (v„v,"

~
v, &2, v, &1) only. These are

(v. , v. ~ iFIg'/bc~ v. , v, ")=A(v, "+-',), (6=8/4vc), (19a)

(v. , v, ~
i
FFi'/hc

i
v, +2, v, —1) = (v.+2, v,' —1

i
FI&'/hc

i
v„v,")

= (k„,"/2) [(v,+1)(v, +2) (v, /2) ]'*. (19b)

~c~883"(ga, 1 +gs, 2 )ga" ~ (20)

Here it is only the elements (v, , i; v., ~; va"
~

v. , i~2; v., 2; va" ~ 1) and (v8, i', va, a
' v"'

l
v, &

' v . 2+
which cause trouble when resonance between 2', and a&." occurs. The terms in (20) are properly
transformed by use of (7) exactly as in the preceding example. As before we proceed by setting

The diagonal elements of II2 are again the only ones which are of interest. Their contributions
to the energy can be shown to be identically the same as those give in Part I except insofar as the

contributions which have the coefficient k„, ~ are concerned. Such terms occur only in x„and x„".
As in the earlier example one may show that the contributions which have the coefficient k„,»
remain the same as those given in Part I except that the term which h'as the denominator (2~, —ru, )
will be absent.

When the frequency ),' is twofold degenerate, as may be the case in linear and axially symmetric
polyatomic molecules, the index o. may take the values 0 = i and 0-=2. In such cases resonance may
occur between the overtone 2~, and the fundamental frequency ~," if the first-order potential energy
contains the following component

The component of x,.~ which has k...~ ~ as a coefficient is stated in Part I as fo11ows: co,~ (co,«' —co,' —cps ') /L(co, +co,~+co,«)
1 1 1

X(cu +co, —cv ~)(cv, —cu +&os )(cu, —~, —u, ~) j.This may be factored into (1/4) — +
COs+s +Cps" Qls+COs' COs' ~s ~s +~s'

1

COs COs~ G)a~I

E. Fermi, Zeits. f. Physik 7'I, 250 (1931).D. M. Dennison, Phys. Rev. 41, 304 (1932).
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),"i=2K, l+8 and obtain for the zero-order Hamiltonian the following:

~~.= (»:/2) I (f, '/&'+f. , 2'/&'+a. , ~'+a, 2')+2(P"'/&'+a"') I (21)

and the transformed first-order Hamiltonian mill be:

If~'= (~&/2) (f " '/&'+V. -')+ (&rk-" /4) [(P., ~e., ~+V, ~P, ~+f, 2'.. 2

+rf., ~P., ~)P. /k' (P.,
—i'/&'+P. , 2'/k' V'. ~'—a.,

—2)V" ] (22)

(Zo/kc) = (v, +2v. +2)(u.. (23)

It is convenient to replace the coordinates q, , q and q, , 2and the conjugate momenta P,, q and

p, , 2 by their equivalents in cylindrical coordinates. These are q, , ~=r, cos X„q,, 2=r, sin x„p,, ~

=( ik—)[cos y,S/Br, —(sin y„/r, )B/Bx,] and P,, 2=(—ik)[sin X.B/Br, +(cos x,/r, )S/Sx,] Th.e eigen-
values of (21) are known to be:

The matrix components of III' rewritten in the same coordinates are known to be the following:7

(v„I., v. lHg'/hclv„ I., v, )=A(v. +-,'), (6=8/4xc) (24a)

(v„ i., v.-
I
~,'/k.

I
..+2, I,„v "—1) = (v, + 2, I., v."—1111,'ik.

I
v. , I v ")

= (—k-" /2) L(v.+2)' —I.']f(v" /2)', (24b)
where l, takes the values v„v, —2, . 1, or 0.

As in the preceding example the elements of the transformed second-order Hamiltonian which.

are diagonal in the quantum numbers are the same as those in Part I, except insofar as those terms

which have k„," as coefficients are concerned. These elements contribute only to x„, x„",and xt, t„,
2 2

and the terms which have k„.» as a coeScient are altered from (—k„, /4'. ")(8'.2 —3'. ')/(4~/ —ra. ')
2 2 2

to —k„,"[(1/2~, )+1/8(2'. +co.")]in x, ,„from —2k„,"co,/(4', ,' —co,,' ') to (—k„,"/2)/(2(o, +(o.' ) in
2 2

x.,", and from ( —k„, . /4)co, ./(4a&, ' —cu,,"') to (k.„"/8)/(2a&,, +co. .) in xt, i, These .will be seen to be
the same as those occurring in the expressions for x„,x,,', and x&,t, given in Part I, except that the
part containing (2', —cu. ) as a denominator is absent.

The actual energy values may be obtained by diagonalizing the matrix II, and this is readily ac-
complished by setting its secular determinant (i.e. , l

(rlIilr ) Ev„
l

where r c—omprises all the
quantum numbers, vibrational and rotational) equal to zero and solving for the roots. For simplicity
we confine ourselves to the energies of the non-rotating molecule.

Study the erst example considered. The elements of II are diagonal in all the vibration quantum
numbers except v. , v, , and v, . The zero-order energy (13) no longer depends upon the quantum
numbers v„v, , and v, independently, but rather upon v, +v, ~ and v, +v,".There exists, therefore, a
degeneracy and the degree of degeneracy is the number of ways v.+v," and v, +v," can be made to
add up to a given value. For example, consider that v, +v," and v, +v," are made equal to one. This
can happen if v, =v, .= 1 and v,"=0 or if v, =v, .= 0 and v,"= 1. In both cases (80/kc) =2(a&,+co, ) and
the level is twofold degenerate, and the matrix elements relating to this level form a step matrix of
two rows and columns grouped about the principal diagonal. This is illustrated in (25):

Vs=Vs'= ~

v,"=0
Vs =Vs'=0

vSI I ]

VS VSr ]
&

VSr r {)

2 ((a.+co,. ) +6/2

kg@ 3' /(8)

VS VSr Oy VSr r

kss's''/(8)"

2(cv, +co, ) +36/2
(25)

These matrix components have been computed by Professor W. H. Shaffer of this University who generously made his
Computations available to the author. The author wishes to express his appreciation to Professor Shaffer for his kindness.
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Similarly, in the second example the elements of H are diagonal in the vibration quantum numbers
except. v. and v, . There will, as before, be a degeneracy since the zero-order energies (18) do not
depend upon the quantum numbers, v, and v,», independently, but upon v, +2v,".The degree of the
degeneracy is determined by the number of ways in which v, +2v,"can be made to add up to a given
value. Suppose &v, is a linear harmonic frequency and that we let 2v, +v, be equal to four. This may
take place in the following ways: v, =0, v, =4; v, ~ = 1, v, = 2; and v,"= 2, v, = 0. The level (2v,"+v,)~,
is, therefore, threefold degenerate, and the matrix elements relating to this level form a step matrix of
three rows and columns grouped about the principal diagonal. This step matrix is illustrated in (26):

v~« =0, v&=4 v@~1 —1 ) vs" =2& vs=0
vol I 0

v, =4
vs"=1

v~=2

vg» =2
v, =0

(11',/2) +6/2

(k„, /2) (6)' (11(0,/2)+36/2 (k„,"/2) (2) &

(k„, /2) (2)' (11(o,/2)+56/2

(26)

The example where co. is a two-dimensionally isotropic frequency has been examined by Dennison'
and will not be discussed here.

The matrix of the vibration energy will, therefore, to this approximation contain elements along the
principal diagonal only, except insofar as v„v, , and v, » are concerned. The diagonalization may then
be accomplished by diagonalizing each substep independently. When the roots have been evaluated,
the stabilized wave functions for the component states may readily be obtained since these will be
linear combinations of the wave functions of the unperturbed states, the coefficients multiplying each
term being the normalized cofactors of the secular determinant.

III. THE CORIOLIS TYPE RESONANCE INTERACTION

We shall investigate, in this section, a perturbation which arises when two mutually perpendicular
vibrations interact with the rotational motion of the molecule through the Coriolis operator:

The quantities P„... g.... , and i'„:, which occur in (27) are the Coriolis coupling coefFicients and
depend in an involved manner upon the nature of the normal coordinates associated with the fre-
quencies cu. and cu, .The term (27) may be removed from the first-order Hamiltonian by transforming
H using the transformation function;

S= —{L(X,+X, )g.,g, , +2K.4, ~p„p, , /li']/X, &X,.&(X,—X, ) }

The transformation of H by 5 gives rise to terms in the second-order Hamiltonian with the denomi-
nator (X,—X, ), (i.e. , ra. —co, ).When X,~ is very nearly equal to X, ', resonance sets in and we have much
the same difficulty as that which arose in the preceding section. In this example it is the
(v... v, , ~v,.~l, v, .~1) matrix elements of the operator (27) which present difficulty. We may
proceed as in Section II to transform H by a contact transformation such that it will have only the
elements (v„, v. ..

~
v,.&1, v, , W 1), these being the same identically as the corresponding elements of

D. M. Dennison, Rev. Mod. Phys. 12, 175 (1940).
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the operator (27). It will be noted that

(I)'
Hsasra' =

g g [(&s +&sr )/(&s''hsr ') ][qsapsrar qsra'psa][(ksasrarPs/Iaa )
os'

+(~*-"P.P-")+(I'-"P.P-"] (29)

satisfies the above requirements. Since S will remove the operator (27) completely from Hi' we may
expect to derive the function S*required by adding to Sa function s which will put the expression (29)
back into the transformed first-order Hamiltonian H&'. It may be verified that the correct form for s
will be

s=-', [(X.&+rI,.«)'/X. ». &(X.—X. )][q,.q. .+p..p, , /h'][($„, P /I, ")
+(~*-"PPPss")+(I -""P*P*")] (3O)

Evidently the transformation function S*=S+s suitable for opr problem will be:

S*=-:[().~-~.i)/~. »":(~.~ +~"~)]l q..q." p-p""/-h'][(~:""P*/I**")

+(v-."P,/I„")+(I-.:.P./I*.& &)] (». )
It does not contain the denominator (si,& —ri, &).

Consider now the two frequencies co, and ~, which are assumed to arise from two linear harmonic
oscillations which are perpendicular to' each other. We proceed as in Section II by assuming that
X.&=X, & so that we may write X, '=X,&+5, 6 being a small quantity. The zero-order Hamiltonian
pertaining to these two frequencies may be written:

Ho has the eigenvalue
H = (e. ~/2) [(P '/h'+q ')+(P '/h'+q ')]

(&o/hc) = (v, +v, +1)sd,.

(32)

(33)

The first-order transformed Hamiltonian will be:

Hi' ——(bh/2) (p '/h''+q ')+H
H~' has the following non-vanishing matrix components:

( .v„v, , KIH, '/hcl v„vsr K) =a(v, +-', ), (a= 6/4src)

(' '" v"' ' KIHi'/hcl ' v, +1, v. —1 K) = —( v, +1, v, .—1 K{Hi'/hc{ v„v.".K)

(34)

(35a)

( v„v,, KIH, '/hcl v, +1, v, , —1 Ka1)
=zl „Z.K[(X.i+A. &)/(X.X, )'](v,+1)&(v. )&, (35b)

= —( v, +1, v. —1 KIIii'/he{ . v. , v.' .K&1)
= &-',[s„F,&i)„X,][J(J+1)—K(K&1)]&[(X,&+li,.&)/(X, 'A, )'](v,+1)&(v, )&. (35c)

The transformed second-order Hamiltonian II2' will, of course, also be altered, but only insofar as
the coefficients of the operators P,', P„', and P,' are concerned which are multiplied by $,.', g„m, and
g„'.When the contact transformation of II has been completed, the above coefficients will be replaced
by

[(h/8) (X,X. ):(X.i—X..—:)/( .'+~, ~)]{[3(X../~. ) '-+(X,/Z. ):]q..'
—[P" /~)'+3(~. /&")'](p-'/h') I {(f"P*/I**")+(~-P.Pss")+(f- P*/I.*")I' (36)

To this approximation II2 will contribute only to the diagonal elements of the matrix II, and these
will be exactly the second-order corrections to the reciprocals of inertia given in Part I except that
the terms containing X,/(li, —X,.) which occur in the rotational constants x, , y.„and z„will be absent
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and in their place will be found, respectively:

p,.'X,(h/2I„~'& (lj.,X, )') [(lb„«—A, «) /(&+4 «) ],
&„'v.(a/21, „& &(x.x. ):)[(z.« —x. «)/(z, «+x, '«)],

f„'Z,(k/2I„&'& (x,lI,. )«) [(X,« —lj «)/(&.«+&"«)]
(37)

The energy values themselves are obtained as
before by solving for the roots of the secular deter-
minant of the matrix which has the elements (32),
(35), and (37). To second order of approximation
all the terms are diagonal in the vibration quan-
tum numbers v, and v, . The zero-order energies
are degenerate in the frequencies co, and co, since
they depend not upon v, and v, . independently,
but upon v, +v. . The degree of the degeneracy
depends upon the number of ways v, +v. can be
made to add up to the same number. The ele-
ments associated with the resonating components
form a sub-matrix of the matrix of H. This sub-
matrix will contain as many rows and columns
as the degree of. the degeneracy, its elements
being grouped about the principal diagonal of
the matrix in a little box. Diagonalization of the
matrix is accomplished simply by diagonalizing
these sub-matrices by themselves. Once the roots
of the secular determinant are known, the stabi-
lized wave functions are immediately available
since they are linear combinations of the zero-
order wave functions of the component levels,
the coefficient of these being the normalized first
minors of the secular determinant.

We shall examine the case where the frequen-
cies ~, and co. lie in the xy plane of the molecule
as is the case in the planar ZXY2 molecular
model studied by Silver. ' This is tantamount
to setting p„.=c«„.=0 in which case the matrix
elements (v„v. , X~v, &1,v.&1,%&1)will vanish.
If we confine ourselves to the fundamental fre-
quencies co, and or, (i.e., v, =1, v, =0, and v, =0,
v, = 1), we have specifically the case described by
Silver. ' We shall set up the secular determinant
of the sub-matrix associated with these frequen-
cies for the value of J= 1, J being the quantum
number of total angular momentum. We follow

Silver and use as the basic rotational wave func-
tions (-,')«[P(%=1)&f(X=—1)] and $(Z=O)
instead of the functions P(X=1),P(X= —1) and

P(X=O). We have then Eq. (38) as given in

' S. Silver, J. Chem. Phys. 10, 565 (1942).
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adjacent column where the R;
are the values of R; defined in
Eq. (27), Part I, wherev. =1 and
v, =0 and the R are the values
when v, =0 and v, = 1. The roots
of (38) will be seen to be those
given by Silver' for the state
J=1

The selection rules for the
quantum number K are altered
by this type of resonance inter-
action. This question has been
dealt with elsewhere" and need
not be repeated here.

Another example, which may
be regarded as a generalization of
the previous example, but which
is sufficiently different from the
foregoing to warrant separate
mention, is the one where there
are three resonating frequencies,
ra„co... and co, (i.e. , X, '*=),'+5
and X, '=X,'+8', 5 and 6' being
small quantities), arising from
three linear harmonic oscillations
which are mutually perpendicu-
lar to each other. We shall con-
fine ourselves to the situation
where the vibrations associated
with the frequencies co„co, , and
co," are respectively along the
body fixed axes z, x, and y. This
is equivalent to declaring that
only the Coriolis coupling factors,
$, „ri,.", and i. . . are different
from zero. In this case there will
be matrix elements of all the types
given in (35) which are non-van-
ishing. We shall here consider only
the fundamental frequencies, co„
rs, , andre, ~ (i.e. , v, =1,v, .=v. =0;
vs=vsii = 0) vs' = 1 j vs = vs'

v,"=1), and set up the secular
determinant for the sub-matrix
associated with these frequencies
for the value of J= 1, Jbeing the
quantum number of total angular
momentum. We follow a method

' H. H. Nielsen, J. Chem. Phys. 5,
818 (1937).
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suggested by the work of Sha8er, Nielsen, and Thomas' and use as the basic wave functions the
1 0) 0

following: FR(K), GR(K), and HR(K), F and H being, respectively, (st)&
~

pO&iyl
~

and G=rpO
0 Oj 1

1 0 0
where yO=P(v. =0, v, =0, v, =1)pl=a(v, =0, v, =1,v, =0) and @0=A(v,=1,v, =0, v, =0). In the

above functions R(K) is the rotational wave function which for a given J value is characterized by
the quantum number E'. We have then the rather complicated secular determinant" given in Eq.
(39) on page 189, where

I.=(t" "/2)[() ":+&.')/() ")"):j,
a = ($g,/2) [()I,&+)Ig.&)/()E,hg )t)xgy(r], g /2) [()%.,1+X, ')/(X, )j,")'jY.,
&= (1/4) ILI'(v" =1)+I'(v" =1)j—[&(v"=1)+X(v"=1)1I,
v = (6"/2) [(&.'+) "')/() .&")'3&.—(s-"/2) [(&.'+&" ')/(&. &" ) ']I',

(40)

and the R s are defined as before.
When the molecule is a symmetric molecule, the reciprocals of inertia X, and Y, are alike, the

frequencies e4 and ei, ~ are the same (i.e. , X,.' = X, &), and P, , and r), .become equal to each other. The
determinant (39) is then much simplified since P and y reduce to zero and the R;, become respectively
equal to the R;&. It will then be seen that the secular determinant factors into five sub-determinants,
two identical ones with a single element, two other identical steps with two rows and columns each,
and another with three rows and columns. The general secular determinant for a given value of J
will have 3(21+1)rows and columns, but will again factor into sub-determinants. There will always
be two identical steps with a single element each, two identical steps each with two rows and columns,
and the rest will have three rows and columns each. The general form for the sub-determinant will be:

F R(K+1) G R(K) H R(K—1)

F R(K+1)

G R(K)

H R(K —1)

Rp+ (K+1)'Rs

+(K+1)4Rs

—21(K+1)Z,—e

f K(K+1—) &

2

f—K(K+1) '
2

Rpc+X'R2c

+X4RS—e

f K(K 1—) &—
2

f K(K 1) 1— —
n =0. (41)

2

Rp+ (K—. 1)'Rs

+ (K—l)4Rs

+2/(K —1)Z, —s

There will be an odd number of steps with three rows and coIumns each, and these will be identical in
pairs except for the step where %=0. In the limiting case of molecules like CH4 where X,= F,=Z„
the frequencies ei„n4, and cs, form a, triply degenerate frequency. It may be shown that g...=r)„~
=I. ..=l If the c.entrifugal distortion term Rs is neglected in the sub-determinant (41), it yields
(e—Rs)/bc = 2 JIB„(s Rs)/bc=— 2/8. , and (e—Rs)/bc= —2(J+1)IB, as the value—s for the roots.
These are the well-known values given by several authors. "

It is not practicable here to discuss the selection rules which result because of the resonance since
they become quite complicated. One may visualize them somewhat in the fo11owing manner. The

"The elements (FR(1) H R( 1)), (H R( 1) ~
F R(1—)), (F R( 1—) ~

H R(1)), and (H R(1) [ F R—( 1)) are not exactly—
zero as indicated in (39). They are of the order of differences in the anharmonic corrections to the reciprocals of inertia
and will, therefore. not contribute to the energy of the molecule in this approximation.

M. Johnston and D. M. Dennison, Phys. Rev. 48, 868 {1935).H. A. Jahn, Proc. Roy. Soc. A168, 469 {1938).
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frequencies ~, and co,"were assumed to lie in the xy plane of the molecule while the frequency co, was
taken to be along the body fixed axis s. When the molecule is a symmetric molecule and co, = co.",we
have a twofold degenerate frequency in a plane perpendicular to the axis of symmetry. Such a fre-
quency is termed a perpendicular vibration and the selection rules in the unperturbed case are
hJ= &1, 0; hX= &1. The frequency co, is non-degenerate and along the axis of symmetry. It is
known as a parallel vibration and in the unperturbed case, the selection rules are 6J= &1, 0; AX =0.
When resonance sets in there will be a mixing of the wave functions, i.e., the wave functions of the
component levels become linear combinations of the unperturbed wave functions. Thus, ip the case
discussed here, the actual wave functions will be linear combinations of F R(X+1), G R(X), and
H A(Z 1).T—his will mean that when a transition takes place from the normal state to the component
level which corresponds more nearly to the unperturbed state, co„ the resulting spectrum will, to be
sure, have the characteristics of a parallel type band, but at the same time it will also possess charac-
teristics of a perpendicular band. In the same manner when a transition occurs from the normal state
to the component level co, (=co, ) the spectrum will have characteristics not only of a perpendicular
band, but also to some extent the characteristics of a parallel type band.

By way of conclusion it is perhaps worth while to point out the similarities and the differences
between the method here employed to obtain the vibration-rotation energies when vibration fre-
quencies are accidentally degenerate and the method used by Dennison" in his study of the carbon
dioxide molecule. The method of Dennison is to evaluate the energy matrix by using the zero-order
wave functions, i.e., the solutions to the zero-order wave equation. This matrix will, to the desired
approximation, have diagonal elements containing zero- and second-order contributions and non-
diagonal elements of first- and second-order magnitude. This matrix is then transformed into another
matrix which has no off diagonal elements of less than second-order magnitude. To second order of
approximation the elements along the principal diagonal may be regarded as the energies of the
molecule. When two vibration frequencies, co, and 7.~, are close together, the method may fail since
the transformed matrix will have second-order correction terms on the principal diagonal which have
the denominators co, —r~, . In such instances where ~,= res, the elements which cause trouble are the
same as those referred to in earlier sections. These are computed on the basis that the energies E,
and E, are degenerate, and the corresponding elements will be contained in sub-matrices grouped
about the principal diagonal. The remaining elements are computed as before, the elements along the
principal diagonal being the same, according to Dennison, except that all terms containing the
vanishing denominators will be absent.

In our method it is the Hamiltonian which is transformed in such a manner that the first-order
Hamiltonian, II~, vanishes to second order of approximation so that the second-order corrections
to the energy are simply the diagonal elements of II2', and consequently the energies of the molecule
may be taken to be just the diagonal elements of Ho+~'H2'. When resonance occurs the transforma-
tion is of such a character that the first-order Hamiltonian, H~, while it does not vanish, contains
only terms which would give rise to energy corrections that have vanishing denominators. As in
Dennison's method their contributions are determined by degenerate perturbation theory, and the
elements may be arranged about the principal diagonal in little boxes. It is readily verified by this
method that the diagonal elements are exactly the same as when no resonance exists except that they
contain no contribution with vanishing denominators.

The author wishes to acknowledge his indebtedness to Dr. Samuel Silver of the Radiation Labora-
tory at the Massachusetts Institute of Technology who has read this manuscript and verified many
Of the relations included in it.

'3 D. M. Dennison, Rev. Mod. Phys. 12, 175 (i940).


