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Calculation of the Binding Energy of the Deuteron and the Neutron-Proton
Scattering by a New Potential
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The binding energy of the deuteron and the scattering cross section of the proton by fast
neutrons are calculated by using new forms of nuclear potential suggested by K. C. Wang.
Results obtained are found to be. in good agreement with experimental values when "zero
cut-off" of the potential is employed.

I. INTRODUCTION

' 'T has been pointed out by K. C. Wang' that
- ~ the force between two nuclear particles may
be related to the gravitational force. He con-
siders two alternative forms of the nuclear
potential:

and

equation for I& is then

5' fd'u& l(1+1)
ui i+(P. V)ui ———0.~L«' r' )

For the ground state 3 =0, we have

O'Np M
+ (P. V)—up =0—.

dr' (3)

with
V= —(P/r) e"'",

k=h/me=3. 84&(10 "cm,

(ib)
To solve (3), two forms of potential cut-off given
by (1a) and (1b) are employed;

where the constants A and 8, as determined by
the gravitational constants, are 4.78)( j.0 4' and
1.83)&10 ", respectively.

The purpose of the present work has been to
determine whether the potential (1a) and (1b)
can be used to obtain satisfactory values. for the
binding energy of the deuteron and the scattering
cross section of the neutron by the proton. The
calculations follow closely those of Bethe and
Bacher. '

II. THE BINDING ENERGY OF THE DEUTERON

(a) zero cut-off: V= 0 for r &u, V= V(r) for
r&c;

(b) straight cut-off: V= U(a) for r &u,
U= V(r) for r&a.

(a) Zero cut-og. —For r &c, V=0; Eq. (3)
takes the form,

(d up/dr ) —(Mp/5 )up=0

where e = —8, the binding energy of the deuteron.
Its solution is

The wave equation for the relative motion of
the two nuclear particles is

~4+ (~/&') (~—U)4' =o (2)

The potential is spherically symmetric. Equation
(2) can thus be separated in polar co-ordinates
r, 0, p, by putting

where

and

Therefore,

up ——D (e~"—e—e' I,

P = (Mp/5'):

du, /dr =DP(ee'+e ~')

( 1 dupe

(up dr &,=„
P(r, 0, P) = (1/r) u(P)„(0)e'"P,

where I'~ is a spherical harmonic. The wave
For r) a, V= U(r); the asymptotic solution of

Eq. (3) is
Np ——Ce

—&".
' K. C. Wang and H. L. Tsao, Phys, Rev. 66, 155 (i944);
,"H A B' h d R B h h

Treating c as a slowly varying quantity whose
(1936). second derivative with respect to r may be set
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equal to zero, we have

duo dc d2uo dc—ee' P—ce ~~ = 2—P e—~~+P'ce e'
dr dr dr 2 dr

Substituting this last expression in (3), we get the

TABLE I. Values for Eq. (7).

e, 10 Perg

3.50
3.60
3.70

coth [1.24)(10«(Vp e)&a] Vp/2e —1

1.38
1.32
1.26

differential equation for c,

dc 2lI U
C)

dr 2pk2

the solution of which is

Thus

and

( pMV
C=Fexp

I

— dr f.
2tlh' )
~&V

u, =F exp
I

Pr ,

-dr -I,
2lttho )

(1 duol Mf U(a) I P-
Euo dr ),=, 2PA'

(5)

—p=p coth Pa.
2Ph2

(6)

(h) Straight cut og.—For r&-a, U= U(a); Eq.
(3) takes the form,

In order that the wave function uo could be
joined smoothly at r =a the expressions (4) and

(5) must be equal; i.e. ,

For r)a, [(1/up)(dup/dr)], =, is the same as
given by (5). Therefore, instead of (6), we have

3III V(a)f —P=y cot ya.
2Ph'

(6a)

From Table I we see that the root of (7), the
binding energy of deuteron, is 3.60)&10 ' erg or
2.26 Mev.

(2) U= 0, for r &a; V(r) = —(B/r) e" '", for r )a.
Also take Uo = 10.5 Mev, then e =4.42 &(10 "cm.
from (1b).

From Table II we get the binding energy of the
deuteron, 3.66)& 10 ' erg or 2.30 Mev. The results
given by (1) and (2) are in good agreement with
the experimental value 2.27 Mev.

(3) V = V(a), for r &a; U(r) = —2 e~'", for r )a.
Also take Uo = 10.5 Mev, then c=4.20)& 10 "cm
from (1a). Equation (6a) becomes numerically

0.5 Vp/Qp —Qp
cot [1.24 X 10"(Vo —p) ~a] =

(Vp —p)'

TABLE II. Values for Eq. (7),

Equations (6) and (6a) serve to determine the
binding energy of the deuteron, if we use the
experimental value of —V(a) = Vp (the depth of
the potential well) and calculate a (the range of
the nuclear force) from (1a) or (1b). Conversely,
if we use the experimental value of ~, we can
calculate the value of Vo and a by the aid of the
Eqs. (1a) or (1b).

(c) Numerical calculation. (1) U=—O, forr(a;
U= V(r) = —Ae"'", for r)a We .take the recent
experimental value, Vo= 10.5 Mev, then a calcu-
lated from (1a) is equal to 4.21 X 10 " cm.
Equation (6) becomes numerically

coth [1.24 X 10"( Vp —p) 'a] = ( Vp/2p) —1. (7)

Its solution is

with
uo=G sin yr,

d'uo M
+—( Vp —p) up ——0.

dp2 $2
«, 10 Perg

3.50
3.60
3.70
3.80

coth [1.24 )&10«(Vp —e) &a]

1.29
1.29
1.27
1.27

Vp/2~ —1

1.38
1.32
1.26
1.19

Thus
(1 dupl

=y cot ya.
&up dr ) „.

(4) V= V(a), for r(a; U(r) = —(B/r)e"'", for
r &a. We get the results listed in Table III.

From Tables III and IV, the binding energy of
the deuteron is 8.0&10 ' and 8.3&10 ' erg,
respectively. These values are too large in com-
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e, 10 serg

7.8
8.0
8.2

cot [1.24 X10"(Vo—e) &a)

0.018
0.038
0.061

0.5 Vo/ &e —&e
(Vo —e) ~

0.067
0.037
0.027

TABLE IV. Values for Eq. (6a).

TABLE III. Values for Eq. (6a). It has been shown' that if (1/k)))a, a being the
range of the force, all phases 6~ will be small
except bp. Then

da. =2~k 'sin' 8p sin gd0,
and

'p =
~I dp =4m.k ' sin' bp.

For the ground state of the deuteron, we have
already shown that

e, 10 'erg

8.2
8.3
8.4

cot [1.24 )(1015(Vo—e)'a]

—0.020—0.013—0.004

0.5Vo/ Qe —Qo
(Vo —e) ~

0.206
0.005—0.083

(1 dup l (MVp

L, up
— dr j,=. q 2Pk' j (12)

Now, ' in the present case B is positive, we should
have'

parison with the experimental value. I'he correct 1 d +&
.results will be obtained if we take Up ——5.93 Mev.

pup+ dr

3E(B+p)
up~up dr,

k2u +u

III. PROTON-NEUTRON SCATTERING

Let us denote by 8 the kinetic energy of a
proton and a neutron in a coordinate system in
which the center of gravity of the particles is at
rest; this is equal to one-half of the kinetic energy
of the incident neutron in a system at rest. The
radial function u1 will satisfy the equation,

oaM(Z+p) =—A,
k2

(13)

up+=8 sin kr, up D{e~" ee" I, —— —

where up+ and up are up functions for r(a,
corresponding to the positive and negative values
of 8 respectively; i.e. ,

k' (d'ui I(l+1) thus
ug i+ {Z—VIug ——0. (8)

cVI & dr' r' j
gC =

Asymptotically for large r, the solution of (8) is

1 I' p coth pa —k cot ka
up+up —dr =

,+,—J, p'+ k'
(14)

with
u~=c sin (kr —-', br+8~)

k' = MZ/k'.

Then the cross section do i.e. , the number of
neutrons scattered per unit time through an
angle between 0 and 0+d0, if there is one neutron
crossing unit area per unit time in the incident
beam, —is given by the well-known formula

For large r,

( 1 dup+&
=k cot (ka+fp)

(up+ dr j „, (15)

In order to join the wave function smoothly at
r =a, the expressions given by (13) and (15)
must be equal, thus

~ gq (2l+1)P~(8)(e""—1) ~'sin Hdo. (10)
2k'

k cot (ka+ 5p) =A.
' Cf. reference 2, page 115-

(16)

TABLE V. Numerical results.

B1 Mev

2.15
1.05

0.85X10 '4

1.03X10 24
1.43X10 "
1.86X10 '4

0'o g

1.2 X10-24
1.6X10-24

1.8X10 24

2.4X 1O-24

a (obs.)

(0.5—0.8) 10 '4

(1.1—1.5)10 "
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Under the assumption that ka is small, we get

and by (11),
cot 8o ——A/k,

o =47r/(k'+A')

(17)

(18)

If g is small, A =n, we have

oo ——4m/(k'+n'). (19)

The numerical results are given in Table V, in
which we take V= —Ae~'", and the values of a are
obtained from the Table I at the point of joint.
Corresponding to (18)and (19),Bethe and Bacher

have derived the formulae: oos=4n.k'/(o+Z),
0'g= 20p, ' and the values calculated from these
are given in the 4th and 5th columns of Table V
for comparison.

It is seen that the present results are in better
agreement with the experimental results than
those given by Bethe and Bacher.

If we take U= —(8/r)e"'", the results do not
diR'er appreciably from those given. above.

In conclusion, the author wishes to express his
thanks to Dr. K. C. Wang for suggesting this
calculation and for helpful discussions.
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Fourier Transforms of Retarded and Advanced Potentials
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The Fourier transforms of the retarded and advanced potentials of the electromagnetic
6eld and of the wave ftelds of elementary particles are obtained with the help of the invariant
functions of Jordan, Pauli, and Dirac, together with their generalizations. It is shown that the
Fourier transforms of these potentials are closely related to those of the outward and inward
moving waves given by Dirac for the scattering problems in quantum mechanics, and their
connection is discussed. It is also shown that there exists a type of potentials which represents
waves with frequencies of opposite signs propagating in opposite directions.

1. INTRODUCTION

ORDAN and Pauli' introduced into the quan-
tum theory of electromagnetic field a function

&(&o+ Ixl) &(&o Ixl)

which plays a very important part in the commu-
tation relations of the field variables. Following
Dirac, ' we shall denote it by —6 and write

8 (xo —
I
x

I ) —B(xo+
I
x

I )
d(X) =

Ixl

where X denotes the four-vector (x, xo). This 6
function is relativistically invariant and satisfies
the wave equation of electromagnetic field in

vacuum
A(X) =0,

' Jordan and Pauli, Zeits. f. Physik 4V, 151 (1928).' Dirac, Proc. Roy. Soc. A180, 1 (1942).

82
Q — g2

OXp

It can be expressed as a triple Fourier integral of
the form

I sin exp
A(X) = exp (&ik x)d'k, (4)

2m' J

where k =
I
k I, or as a quadruple Fourier integral

of the form'

6(X) = A(K) exp ( ikoxo)—
4X2 0

&&exp (&ik x)d4k, (5)

where K denotes the four-vector (k, ko).
Some functions of the same type but more

general than that of Jordan and Pauli appeared
first in Dirac's4 positron theory, which are in the

3 Dirac, Ann. 1'Inst. H. Poincar6 9, 13 (1939).' Dirac, Proc. Camb. Phil. Soc, 30, 150 {1934).


