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rium energy; (2) gives the instantaneous energy in terms
of the equilibrium value and the phase variation, and (3) is
the "equation of motion" for the phase. Equation (4)
determines the radius of the orbit.

Ep = (300cH)/(2'),

d dQ2~—Ep—+ Vsin @d8 d8

(1)
(2)

1 dEp 300 dFp Ep df d@

f dt c dt f'dt d8'

R = (E'—E„')&/300H. (4)
The symbols are:

E =total energy of particle (kinetic plus rest energy),
Eo =equilibrium value of E,
Ei =rest energy,
V =energy gain per turn from electric field, at most favorable phase for

acceleration,
L =loss of energy per turn from ionization and radiation,
H =magnetic field at orbit,
Fo =magnetic Qux through equilibrium orbit,

=phase of particle (angular position with respect to gap when elec-
tric field =0),

=angular displacement of particle,f =frequency of electric field,
c =light velocity,
R =radius of orbit.

(Energies are in electron volts, magnetic quantities in

e.m.u. , angles in radians, other quantities in c.g.s. units. )
Equation (3) is seen to be identical with the equation of

motion of a pendulum of unrestricted amplitude, the terms
on the right representing a constant torque and a damping
force. The phase variation is, therefore, oscillatory so long
as the amplitude is not too great, the allowable amplitude
being +~ when the first bracket on the right is zero, and
vanishing when that bracket is equal to V. According to
the adiabatic theorem, the amplitude will diminish as the
inverse fourth root of Ep, since Ep occupies the role of a
slowly varying mass in the first term of the equation; if the
frequency is diminished, the last term on the right fur-
nishes additional damping,

The application of the method will depend on the type
of particles to be accelerated, since the initial energy will

in any case be near the rest energy. In the case of electrons,
Ep will vary during the acceleration by a large factor. It
is not practical at present to vary the frequency by such a
large factor, so one would choose to vary H, which has the
additional advantage that the orbit approaches a constant
radius. In the case of heavy particles Ep will vary much
less; for example, in the acceleration of protons to 300
Mev it changes by 30 percent. Thus it may be practical
to vary the frequency for heavy particle acceleration.

A possible design for a 300 Mev electron accelerator is
outlined below:

peak H =10,000 gauss,
final radius of orbit =100 cm,
frequency =48 megacycles/sec. ,
injection energy =300 kv,
initial radius of orbit =78 cin,

Since the radius expands 22 crn during the acceleration,
the magnetic field needs to cover only a ring of this width,
with of course some additional width to shape the field

properly. The field should decrease with radius slightly in
order to give radial and axial stability to the orbits. The
total magnetic flux is about -', of what would be needed to

satisfy the betatron flux condition for the same final energy.
The voltage needed on the accelerating electrodes

depends on the rate of change of the magnetic field.
If the magnet is excited at 60 cycles, the peak value of
(1/f)(dEp/dt) is 2300 volts. (The betatron term containing
dFp/dt is about —', of this and will be neglected. ) If we let
V=10,000 volts, the greatest phase shift will be 13'. The
number of turns per phase oscillation will vary from 22 to
440 during the acceleration. The relative variation of Ep
during one period of the phase oscillation mill be 6.3 per-
cent at the time of injection, and will then diminish.
Therefore, the assumptions of slow variation during a
period used in deriving the equations are valid. The energy
loss by radiation is discussed in the letter following this,
and is shown not to be serious in the above case.

The application to heavy particles will not be discussed
in detail, but it seems probable that the best method will

be the variation of frequency. Since this variation does not
have to be extremely rapid, it could be accomplished by
means of motor-driven mechanical turning devices.

The synchrotron offers the possibility of reaching energies
in the billion-volt range with either electrons or heavy
particles; in the former case, it will accomplish this end at
a smaller cost in materials and power than the betatron;
in the latter, it lacks the relativistic energy limit of the
cyclotron.

Construction of a 300-Mev electron accelerator using the
above principle at the Radiation Laboratory of the Vni-
versity of California at Berkeley is now being planned.

Radiation from a Group of Electrons
Moving in a Circular Orbit

EDWIN M. MCMILLAN
University of California, Berkeley, California
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SINGLE electron of total energy E (rest energy =E,)
~ ~ ~

moving in a circle of radius R, radiates energy at the
rate L (electron volts per turn), given by:

L =400 (e/R)(E/E„)4,

where e is the electronic charge in e.s.u. , and E))E„. In
the synchrotron one has the case of a rather concentrated
group of electrons moving in the orbit, and the total
amount of radiation depends on the coherence between the
waves emitted by the individual electrons. For example, if
there were complete coherence, the radiation per electron
would be N times that given by (1), where N is the number
of electrons in the group.

It is apparent from the above that an answer to the
coherence problem is very important for any device in
which groups of electrons are made to move in a circle
with high velocity. This answer is given by a formula due
to J. Schwinger (communicated to the author by I. I.
Rabi). Schwinger's formula gives the radiation in each
harmonic of the period of revolution, in a form that allows

easy computation for any distribution of electrons around
the orbit. It leads to the following conclusions:
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(a) Most of the energy in (1) lies in very high har-
monics.

(b) The coherence between the high harmonics from
diEerent electrons tends to become very small if
the group has an appreciable angular spread.

(c) The low harmonics are partially coherent, and

give an energy loss per electron per turn (L')
depending on N, but not on 8 if 8) )8,.

(d) Because of fluctuations from a uniform distribu-
tion, each electron also radiates the same amount
L that it would if alone in the orbit. The total
radiation per electron is thus L+L'.

Values of I' have been computed numerically from
Schwinger's formula for the case of N electrons covering
uniformly an arc with an angular extent which is 1/m of a
circle. This was done for m=2, 4, and 6; also the asymp-
totic form for large m was obtained. These values can all
be fitted within a few percent by the formula:

L' 4007r(e/R) )& 2.4(m'/' —1)¹ (2)

Applying (1) and (2) to the case where R=100 cm,
B/B„=600, N = 10" (1/60 microcoulomb, giving l micro-
ampere at a 60 cycle repetition rate), and m = 6, we get:

L= 780 volts, L'= 1400 volts.

Thus the radiation loss will not seriously affect the opera-
tion of the synchrotron. Furthermore, L. I. Schiff has
shown that the coherent part L', which is mostly in the
very low harmonics, can be strongly reduced by shielding.

TABI.E I. Rate of diffusion, i, of H~ into water vapor. (i is expressed in
cm3/cm»(sec. at 150'C and 1 atmos. )

v (cm/sec. )
—1000—100—10—1

0
+1
+10
+100
+1000

b =0,01 cm

2.34
120
156
164
165
166
177
220

1002

b =0.1 cm

000
0.234

12.0
15.6
16.5
17.6
22.0

100
1000

b =1.0 cm

000
000

0.023
1.20
1.65
2.20

10.0
100

1000

TABLE II. Separation currents and compositions. (i is expressed in
cm'/cm'Xsec. at 150'C and 1 atmos. )

v
cm/sec.

b =0.01 cm
t fH2

b =0.1 cm
i fH~

b =1.0 cm
fH2

—1000—100—10—1
0

+1
+10
+100
+1000

1.17 1.00
62.3 0.964
91.5 0.852
97.8 0.839
98.5 0.837
99.3 0.836

107 0 827
162 0.678

1001 0.500

000
0.117
6.23
9.15
9.85

107
16.3

100
1000

1.00
0.964
0.852
0.837
0.826
0.678
0.500
0.500

000
000

0.012
0.623
0.985
1.63

10.0
100

1000

1.00
0.963
0.837
0.678
0.500
0.500
0.500

If it is further assumed that the velocities in A and 8 are
so large that the concentration of gas in B and of the vapor
in A are substantially zero, (3) must be solved subject to
the boundary conditions:

p(x)=pp at x=0,

If p is considered a function of x only, and v =v is con-
sidered constant, then

82p v Bp————=0
Ox D Bx
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into a Fast-Streaming Vapor

F. A. ScHWHRTz

Mellon Institute of Industrial Research, Pittsburgh, Pennsylvania+
December 8, 1944

~

~ ~

~ ~ ~

~

HILE it is well known that gas mixtures may be
separated by diffusion into a fast-streaming vapor,

the potential speed of the process is not generally appreci-
ated. The simple calculation given below may serve to
correct this situation. The calculation is meant to be
illustrative and not quantitative in the sense that it would
agree with experimental data.

In Fig. 1, A and 8 are two channels connected by a cross-
duct, C, of very small cross-sectional area. A pure gas is
assumed to be traveling in A at a high velocity in the
downward direction. Similarly, a vapor is flowing in B.The
pressure differential across C is assumed to be such that the
fluid velocity in the x direction is constant. To express the
rate of transfer of the gas the equation. '

I =pv —D grad p

may be used. ' In this equation i is the rate of gas transfer
per unit area; p, the density of the gas; v, the fluid velocity;
and D, the mutual coefficient of diffusion of gas and vapor.
For the steady state div i =0, so that

and

The result is
p(x) =0 at x=b,

p pp[~vx/D evb/D31 L
evb/D j

lz

For the current (1) gives

i= ppv/Py —e- b/D].

The limit of i as v approaches zero is

ip ——ppD/b.

(4)

(6)

div (pv) —D div grad p=0. (2) FIG. 1. Gas and vapor streaming by a connecting duct,


