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the fission fragments was determined in this way. Later
on, small improvements of the apparatus have made it
possible to measure the Hp-distribution for each of the two
groups of fission fragments separately.

Figure 1 shows the energy distribution as obtained when
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FIG. 2. Hp-distribution of fission fragments. Full circles: light group.
Open circles: heavy group. Crosses: Both groups.

the slit SI was made so wide (7 mm) that the fission frag-
ments entering through $2 could have all possible values of
Hp. The figure clearly shows that, apart from a very few
exceptions, the pulses of energies higher than 34 Mev are
caused by fragments of the light, most energetic group,
while the fragments of the heavy group correspond to
pulses between 9 and 34 Mev; pulses of energies lower than
10 Mev are caused by coincidences between recoiling argon
atoms. In the Hp-measurements the slit SI had a width of
1.0 mm and it was moved in steps of 1.0 mm; for the
different positions of SI the number of fragments were
counted, of course for equal neutron doses, and by means
of the photographic record divided into two groups corre-
sponding to the sizes of the pulses. In this way we get the
number of fragments of each group as a function of the
displacement of SI and we then calculate by means of
the known magnetic field (which is not homogeneous)
the Hp-distribution curves shown on Fig. 2.

As seen, the two groups have nearly the same values of
Hp, but the light group has evidently slightly higher Hp-
values than the heavy one. Putting the most frequent
value of mZ to 8.5&&10' mass unitsXMev' we get for the
total charge of the light and the heavy group 20' and 22',
respectively, when e denotes the electronic charge. This is
in agreement with calculations by Professor Bohr' which
predict an effective charge of fission fragments of about 20m.,
yet the agreement is not perfect, as the theory involves a
higher effective charge of the light group than of the heavy
one in contradiction to the present experiments. Neverthe-
less, it is no real disagreement; as pointed out by Professor
Bohr in the paper, the total fragment charge need not be
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O NE of the most successful methods for accelerating
charged particles to very high energies involves the

repeated application of an oscillating electric field, as in
the cyclotron. If a very large number of individual accelera-
tions is required, there may be difficulty in keeping the
particles in step with the electric field. In the case of the
cyclotron this difficulty appears when the relativistic mass
change causes an appreciable variation in the angular
velocity of the particles.

The device proposed here makes use of a "phase stabil-
ity" possessed by certain orbits in a cyclotron. Consider,
for example, a particle whose energy is such that its angular
velocity is just right to match the frequency of the electric
field. This will be called the equilibrium energy. Suppose
further that the particle crosses the accelerating gaps just
as the electric field passes through zero, changing in such a
sense that an earlier arrival of the particle would result in
an acceleration. This orbit is obviously stationary. To show
that it is stable, suppose that a displacement in phase is
made such that the particle arrives at the gaps too early.
It is then accelerated; the increase in energy causes a
decrease in angular velocity, which makes the time of
arrival tend to become later. A similar argument shows
that a change of energy from the equilibrium value tends
to correct itself. These displaced orbits will continue to
oscillate, with both phase and energy varying about their
equilibrium values.

In order to accelerate the particles it is now necessary
to change the value of the equilibrium energy, which can
be done by varying either the magnetic field or the fre-
quency. While the equilibrium energy is changing, the
phase of the motion will shift ahead just enough to provide
the necessary accelerating force; the similarity of this
behavior to that of a synchronous motor suggested the
name of the device.

The equations describing the phase and energy varia-
tions have been derived by taking into account time varia-
tion of both magnetic field and frequency, acceleration by
the "betatron effect" (rate of change of flux), variation of
the latter with orbit radius during the oscillations, and
energy losses by ionization or radiation. It was assumed
that the period of the phase oscillations is long compared
to the period of orbital motion. The charge was taken to
be one electronic charge. Equation (1) defines the equilib-
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rium energy; (2) gives the instantaneous energy in terms
of the equilibrium value and the phase variation, and (3) is
the "equation of motion" for the phase. Equation (4)
determines the radius of the orbit.

Ep = (300cH)/(2'),
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R = (E'—E„')&/300H. (4)
The symbols are:

E =total energy of particle (kinetic plus rest energy),
Eo =equilibrium value of E,
Ei =rest energy,
V =energy gain per turn from electric field, at most favorable phase for

acceleration,
L =loss of energy per turn from ionization and radiation,
H =magnetic field at orbit,
Fo =magnetic Qux through equilibrium orbit,

=phase of particle (angular position with respect to gap when elec-
tric field =0),

=angular displacement of particle,f =frequency of electric field,
c =light velocity,
R =radius of orbit.

(Energies are in electron volts, magnetic quantities in

e.m.u. , angles in radians, other quantities in c.g.s. units. )
Equation (3) is seen to be identical with the equation of

motion of a pendulum of unrestricted amplitude, the terms
on the right representing a constant torque and a damping
force. The phase variation is, therefore, oscillatory so long
as the amplitude is not too great, the allowable amplitude
being +~ when the first bracket on the right is zero, and
vanishing when that bracket is equal to V. According to
the adiabatic theorem, the amplitude will diminish as the
inverse fourth root of Ep, since Ep occupies the role of a
slowly varying mass in the first term of the equation; if the
frequency is diminished, the last term on the right fur-
nishes additional damping,

The application of the method will depend on the type
of particles to be accelerated, since the initial energy will

in any case be near the rest energy. In the case of electrons,
Ep will vary during the acceleration by a large factor. It
is not practical at present to vary the frequency by such a
large factor, so one would choose to vary H, which has the
additional advantage that the orbit approaches a constant
radius. In the case of heavy particles Ep will vary much
less; for example, in the acceleration of protons to 300
Mev it changes by 30 percent. Thus it may be practical
to vary the frequency for heavy particle acceleration.

A possible design for a 300 Mev electron accelerator is
outlined below:

peak H =10,000 gauss,
final radius of orbit =100 cm,
frequency =48 megacycles/sec. ,
injection energy =300 kv,
initial radius of orbit =78 cin,

Since the radius expands 22 crn during the acceleration,
the magnetic field needs to cover only a ring of this width,
with of course some additional width to shape the field

properly. The field should decrease with radius slightly in
order to give radial and axial stability to the orbits. The
total magnetic flux is about -', of what would be needed to

satisfy the betatron flux condition for the same final energy.
The voltage needed on the accelerating electrodes

depends on the rate of change of the magnetic field.
If the magnet is excited at 60 cycles, the peak value of
(1/f)(dEp/dt) is 2300 volts. (The betatron term containing
dFp/dt is about —', of this and will be neglected. ) If we let
V=10,000 volts, the greatest phase shift will be 13'. The
number of turns per phase oscillation will vary from 22 to
440 during the acceleration. The relative variation of Ep
during one period of the phase oscillation mill be 6.3 per-
cent at the time of injection, and will then diminish.
Therefore, the assumptions of slow variation during a
period used in deriving the equations are valid. The energy
loss by radiation is discussed in the letter following this,
and is shown not to be serious in the above case.

The application to heavy particles will not be discussed
in detail, but it seems probable that the best method will

be the variation of frequency. Since this variation does not
have to be extremely rapid, it could be accomplished by
means of motor-driven mechanical turning devices.

The synchrotron offers the possibility of reaching energies
in the billion-volt range with either electrons or heavy
particles; in the former case, it will accomplish this end at
a smaller cost in materials and power than the betatron;
in the latter, it lacks the relativistic energy limit of the
cyclotron.

Construction of a 300-Mev electron accelerator using the
above principle at the Radiation Laboratory of the Vni-
versity of California at Berkeley is now being planned.
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SINGLE electron of total energy E (rest energy =E,)
~ ~ ~

moving in a circle of radius R, radiates energy at the
rate L (electron volts per turn), given by:

L =400 (e/R)(E/E„)4,

where e is the electronic charge in e.s.u. , and E))E„. In
the synchrotron one has the case of a rather concentrated
group of electrons moving in the orbit, and the total
amount of radiation depends on the coherence between the
waves emitted by the individual electrons. For example, if
there were complete coherence, the radiation per electron
would be N times that given by (1), where N is the number
of electrons in the group.

It is apparent from the above that an answer to the
coherence problem is very important for any device in
which groups of electrons are made to move in a circle
with high velocity. This answer is given by a formula due
to J. Schwinger (communicated to the author by I. I.
Rabi). Schwinger's formula gives the radiation in each
harmonic of the period of revolution, in a form that allows

easy computation for any distribution of electrons around
the orbit. It leads to the following conclusions:


