
126 L. PAGE AND N. I. ADAMS, JR.

the y-system. Hence the hypothesis of Herzberg
and M undie and its conclusions should be
abandoned Io

Te2

In collaboration with R. M igeotte we have
recently studied the ultraviolet part of the Te2
spectrum. "The following observation concerning
a predissociation effect is of interest. The ultra-
violet end of the Te2 spectrum consists of the
v" =0 progression. Theoretically this progression
should have a regular intensity distribution with
a single maximum. This is what we observe in
absorption, the maximum being found at v' = 15.
In emission, however, the bands v' = 14 and
v'=16 are abnormally weak (for the number-
ing of the Tem bands). " It seems that we are
confronted with a predissociation phenomenon
which can be accounted for as an accidental
predissociation of the vibrational type analogous
to a vibrational perturbation affecting a whole
band.

"We have recently published a detailed investigation of
the various ultraviolet band systems of NO (Bull. Soc.
Roy. Sci., Liege, Belgium, pp. 40 and 49, 1945). Subse-
quently we have learned that three papers had been
recently published on the NO molecule, one by Gero,
Schmid, and Szily (Physica 9, 144 (1944)); the others by
Gaydon (Proc. Phys. Soc. 56, 95, and 160 (1944)).As far as
predissociation is concerned, these authors reach the same
conclusion as we do."R.Migeotte and B. Rosen, Bull. Soc. Roy. Sci., Liege
(in press)."R.Migeotte, Bull. Soc. Roy. Sci., Liege 13, 48 (1942).

The unresolved isotopic bands v' = 14 and
v'= 16 are not only weakened, but they present
in emission a very pronounced asymmetry. In
connection with the observations of Olsson, "
who states that the positions of the individual
absorption bands are quite normal, this means
that the weakening by accidental predissociation
is different for different individual isotopic bands.
No such asymmetry is observed in absorption.

Two regions of predissociation are known in
the S2 and Se2 spectra. In S2, predissociation
occurs at the levels v' & 10 and v' & 17' whereas
in Se2 it occurs at the levels v'& 10 and v'&22."
In the spectrum of Te2 only one predissociation
region, setting in at v'=21, has been reported. "
Our new observation indicates that the Te2
molecule also can predissociate at intermediate
v' values. However, contrary to the other mole-
cules of the same group, the predissociation of
Te& at intermediate v' values is only possible
through an intermediate state, by an accidental
predissociation of the vibrational type. The close
analogy existing between the spectra of the three
molecules is thus strengthened, especially since
considerable perturbations of the vibrational
type are known for numerous excited levels of
S2 and Se2.

'3 E.Olsson, Thesis (Stockholm, 1938);Zeits. f. Physik 95,
215 (1935)."B. Rosen, Physica 6, 205 (1939)."E.Hirschlaff, Zeits. f. Physik '7S, 315 (1932).
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New solutions of the space charge equation are obtained, which converge much more
rapidly than Langmuir's solution in the important case where the radius of the outer electrode
is large compared with that of the inner electrode.

HE theory of the limitation of a current
by space charge in an evacuated region

containing ions of one sign only was given first

by Child' for parallel plane electrodes and later

C. D. Child, Phys. Rev. 32, 498 (1911).

by Langmuir' and Langmuir and Blodgett' for
the far more important case of coaxial cylindrical
electrodes, as found in the usual construction of

' I. Langmuir, Phys. Rev. 2, 450 (1913).' I. Langmuir and K. B. Blodgett, Phys. Rev. 22, 347
(1923).
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the diode vacuum tube. In the first case the
solution is obtained easily in closed form, but in
the second a non-linear differential equation is
encountered which can be solved only in series.
Langmuir's solution is a power series in the
logarithm of the ratio of the distance r from the
common axis of the electrodes to the radius a
of the inner electrode or cathode. While this
series converges satisfactorily for small values
of r/u, it converges very poorly in the much
more important region where r/a is large, and
special approximate methods had to be em-
ployed for values of r/a greater than 66. The
object of the present paper is to develop a
solution which converges the better the larger
is the ratio r/a. In fact, five terms of the solution
obtained give an accuracy of two or three parts
in ten thousand for all values of r/a greater
than 3.

If e/m is the ratio of charge to mass of the
ions (electrons) in the tube, U(r) the excess of
the potential over that of the cathode, p(r) the.
charge density, and j& the current per unit legnth
of the coaxial electrodes, the equations to be
satisfied are, in Heaviside-Lorentz units,

2e
g2 P'

1n

The function g is identical' with Langmuir's P'.
It is obvious that g=1 satisfies (6). Hence to

obtain a solution which converges rapidly for
large r or small g, it would be natural to try the
power series

g = 1+Gyg+G2'g + ' ' '.
However, substitution in the differential equa-
tion shows that a power series solution in g
does not exist. Hence we change the independent
variable from q to s, getting in place of (6)

(ds) d g d zdg
g 3&( —

(

Edg) ds' dg' ds

ds dg ds dg—
q——+2 (g —1)

dg ds dg ds

and assume a power series solution in s, to wit:

g = 1+GyS+G2S +
Substituting in the differential equation and
equating the coeScients of a& on both sides, we
find that a& is arbitrary provided

d s ds
3g' —g—+2s=0,

dg dq

the solution of which is

1 d (dUq

r dr E dr )
jl 2x'prf',

subject to the boundary conditions

dU/dr=0, p= ~, (4)

where

Now put

s=A gg»+A2q»7

2+i(2) &

j.= 7 P2
3

2 —i(2) i

(2)*'
3'= 57 P log=3'+

2

at r=a. The boundary conditions imply satura-
tion current and negligible initial velocities.

Eliminating p and r', we find, if we put g
—=a/r,

Then a power series solution in

sy —=c$8 ~, s2 =—cd@

exists, of the form

8~ t 2t, q
& (—U)*

9 E m) rg(q)
(g) g = 1+(sl+s2) + (+llsl ++12sls2++22s2 )

+ (slllsl ++112sl s2

where g(g) satisfies the non-linear differential
equation

d ( dg) dg dg
g 3&—

I ~—I

—4~—+2(g —1) = n
dg E dq) dg

0~& 8~&1 (6)

++122slsl ++222s2 ) + ' ' - (7)

This is a comp/etc solution, since it contains the
two arbitrary constants c and n.

4 The reason for this departure from an established
notation is that our treatment leads to a differential
equation. in g, and it would be awkward and unusual to
express the dependent variable as the square of a function.
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9
g =—x'[1+b,x+b 2x'+

4d(dgi dg 9 dg'
g 3y—

I y—I-6y—+-(g-1) = y-
dy E dy) dy 2 .. dy

We find the following recursion formula for the
and we find for the first five terms of the solution' coeKcients:

To evaluate the coefficients in (7), it is con- In order to satisfy the boundary conditions at
venient to change the independent variable in the cathode, the function g must be of the form
(6) from g to y. Then

g = 1+2cy cos p

5 2(2)& 1
+2c'y' —cos 2p+ — sin 2p+—

33 33 3

(3P+2) (P+ 1)b~ = [6P' —5.6P —2]b„ i

—[3p"-—10.756,667p+10.41]bu &

+ [(5ba —8b2+3bi)p

+2c y
17 19(2)l

cos 3p+— sin 3p
594 2376

—(65b8 —68bg+16.5bi) ]b„3
+[(6b4 —10ba+4b2) p

(2)' .+ cos p+—sin p
396 264

—(102b4 —125b,+36.5b2) ]b„4
+ [(7b~ 12b4—+5bg)P

+2p4y4
2386

421,443
cos 4p

—(147bi, 198b4—+64.5b„.) ]b„5

+ [(8b, 14bg+—6bi) P
7541(2)'

sin 4p—
1,685,772

91

33,858
cos 2p

—(200bs —287bg+100.5b4)]b, 6

82(2)'
sin 2P+ + (9)

16,929 11,286

When we attempt to determine the constants
c and n from the boundary conditions g=0 and
dg/dy=0 at y=1, we find that this series does
not converge rapidly enough for this value of y
to ensure the desired accuracy of one part in a
thousand from the five terms computed. Instead
of calculating further terms we have developed
a second series which converges very rapidly in
the neighborhood of y=1, and then made use
of the principle of analytic continuation to fit
the series (9) to it. This second series is a power
series in x=—1 —y=1 —g'I'.

Changing the independent variable in (8) from

y to x we have

dg dR
g 3(1—x)—(1—x)—+6(1—x)—

dx dx dx

9 dg'
+—(g —1) = (1 —x)—,0&x~&1. (10)

2 'i dx

~After expressing the solution in trigonometrical form,
the' numerical coefficients were checked by substituting
back in the differential equation.

TABLE I.

1 0
2 0.37004
3 0.51925
4 0.60315
5 0.65800
6 0.69715
7 0.72672
8 0.75000
9 0,76888

10
11
12
20
40
80

160
320
640

1280
2560
5120

10240
20480
40960
81920

from (12)

0
0.2793
0.5171
0.6671
0.7666
0.8363
0.8870
0.9254
0.9550

0.48075
0.39685
0.34200
0.30285
0.27328
0.25000
0.23112
0.21544
0.20218
0.19079
0.13572
0.08550
0.05386
0.03393
0.02137
0.01347
0.00848'
0.00534
0.00337
0.00212
0.00134
0.00084
0.00053

g from (14)

0.5170
0.6670
0.7667
0.8363
0.8870
0.9254
0.9549
0,9782
0.9970
1.0123
1.0716
1.0947
1.0846
1.0634
1.0422
1.0253 ~

1.0135
1.0060
1.0019
0.9998
0.9991
0.9990
0.9991

+[( )p —( )]bi, (11)

where first differences are constant in the coeS-
cient of p and second differences in the other
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term. This gives for the solution

9
o =—x'[1 —0.200,000x —0.110,833x'

—0.065,303x' —0.042,006x4

—0.028,876x' —0.020,858x'

—0.015,647x' —0.012,09ix'

—0.009,568x' —0.007,720x"

—0.006,330x"—0.005,261x"
—0.00442x"—0.00375x'4

—0.00321x"— j. (12)

which gives

c= —0.9780, a = —22 .83,

to one part in a thousand. Consequently, if we

put
(13)8 —=93'.288 logio (1/y) +22'.83

to avoid negative signs, the solution (9) satis-
fying the specified boundary conditions at the
cathode is

g = 1 —[1.9560 cos 8jy+ [0.63767

+0.28985 cos 28 —0.16396 sin 28]y'

—[0.00472 cos 8 —0.01002 sin 8

—0.05354 cos 38—0.02116 sin 38]y'

+[0.00276 —0.00492 cos 28

+0.01253 sin 20+0.01036 cos 40

This series is superior to that given by Langmuir
in that the variable goes to unity instead of
infinity as r/a increases without limit.

After a few trials it appeared that x=2/3,
y=1/3 was the best point at which to fit the
complete solution (9) to the solution (12) satis-
fying the boundary conditions. At this point

dg
g =0.78220, y—= —0.59784,

These five terms give an accuracy of better
than one part in a thousand for all r/a greater
than three. In fact, for r/a greater than ten the
first four terms are sufficient, for r/e greater
than fifty only three terms are needed, and for
r/a greater than five hundred two terms suffice.
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FrG. 1. Value of the function g.

r = 9426@[783.9]" (15)

We have calculated g for a number of values
of r/a from both the "near" formula (12) and
the "far" formula (14) for the purpose of show-

ing the excellence of the fit obtained. The results
are included in Table I. It will be noticed that
in the overlap extending from r/a, =3 to r/a=9
inclusive, where both series converge satisfac-
torily, discrepancies are nowhere greater than
two parts in ten thousand. Values of g calculated
from (14) for larger values of r/a are also con-
tained in the table.

In Fig. 1 we have plotted the function g
against the logarithm of r/a, to illustrate how

the function behaves in the range r =5a to
r =2560a. Beyond the latter point the curve
oscillates about the straight line g= 1 with ever
decreasing amplitude. The function g becomes
unity first at r = 11.18a, again at r =9426a, and
next at r=7,389,000a. In fact, g=1 for

+0.01158 sin 48]y' — . (14) where n is any positive integer including zero.


