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which the present method may have in the in-
vestigation of the meson spectrum at great
heights (notice in this connection how the slope
of the a ss. r/pc' curves increases with increasing
height). An experiment of this kind by Bernardini
and Scrocco was in progress in 1941,but was inter-

rupted by a serious Hying accident to the airplane
which carried the apparatus. As a consequence
the apparatus was gravely damaged, and for
this and other reasons connected with Italian
events, the experiment was given up for the
time being.
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The disorder scattering (background) owing to local distortions is caused mainly by the
elastic strain field surrounding the distorted zone rather than by the misfit atoms in the zone
of distortion. As an example, the scattering caused by a distortion of spherical symmetry is
calculated. The result is extended for more general types of distortions. The background
intensity increases strongly in the neighborhood of a line, and it tends toward a constant value
for small scattering angles. This explains previous observations on rolled copper.

0 explain the plastic properties of solid
bodies, it is necessary to assume local lattice

distortions or irregularities. Most of the evidence
for the assumed models of dislocation is indirect.
Several papers have attempted to connect the
observed line intensities and widths with the
internal distortions. ' ' Little attention has been
given to the continuous background scattering
arising from the distortions. The experimental
conditions for this type of research are not easy,
because other effects such as fluorescent radia-
tion, Compton radiation, diR'use scattering by
air, coherent temperature scattering and back-
ground owing to the continuous x-ray spectrum,
all contribute to the observed background. Yet
experiments by Guinier' have shown the effect of
plastic deformation of copper upon the back-
ground to be appreciable. If the scattering caused

' J. Hengstenberg and H. Mark, Zeits. f. Physik 61, 435
(193O).

~ G. W. Brindley and F. W. Spiers, Phil. Mag. 20, 882
(1935).' U. Dehlinger, Zeits. f. Krist. 65, 615 (1927).

4 W. Boas, Zeits. f. Krist. 97', 354 (1937).' U. Dehlinger and A. Kochendorfer, Zeits. f. Metallkunde
31, 231 (1939).

6A. Kochendorfer, Zeits. f. Krist. 101, 149 (1939).
7 A. Guinier, Comptes rendus 208, 894 (1939).

by local distortions can be isolated, it will provide
more useful information than the study of the
lines; first, because this scattering is entirely
absent in an ideal crystal, while the line intensity
decreases only by a few percent when distortion
is introduced, and secondly, because slowly vari-
able internal stresses affect the line, but not the
background.

The following theoretical discussion gives a
correlation between local distortions and disorder
scattering, which explains some of Guinier's
results, and may be helpful for further experi-
mental work.

For a simple Bravais lattice, the scattering
intensity is given by:

I=I.[ F ~

'
~
P„exp (27riR r ) ~

',

where I, is the scattering intensity from one
electron, I' the atomic form factor,

R=k —kp,

k and kp the wave vectors of incident and
scattered wave, and r„ the radius vector of the
nth atom. For r„, we write

rn =~n++ng
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where a„ is the radius vector of the nth lattice
point.

In physical lattice distortions of the type
usually assumed, the displacements of the atoms
from the regular lattice points are of the order of
magnitude of the atomic distances in the immedi-
ate neighborhood of the distortion which extends
over only a few atomic distances. The number of
atoms within this zone is small, and they cannot
be expected to give a large contribution to the
disorder scattering. Outside the distortion zone
itself, the displacement of atoms is of the elastic
type, i.e. , the displacements are small as com-
pared to the atomic distance. While the displace-
ment decreases rapidly from the origin of the
perturbation, the number of atoms affected is
large, and we may expect an important x-ray
effect from them.

In the following the atoms within the distorted
zone in this sense are disregarded, and only the
indirect effect of the distortion, through its
elastic strain field, is taken into account.

Consequently, we may assume that in Eq. (3)
u„ is small in comparison to the interatomic dis-
tance. With the notation

G=g„exp (2zriR r„), (4)

i
P u„exp (2zriR a ) = —P U(R —A~), (6)

where U(R) is the Fourier transform of a function

' P. P. Ewa1d, Gottinger Nachrichten 55 (1938).

the Taylor expansion yields:

G=g„exp (2zriR a„)

+2zrzR. (g u exp (2zriR a„))

+ . = Go+Gz (5)

The first term of (5) represents the ordinary
scattering by a regular crystal and can be dis-
regarded here. As we are interested only in the
scattering outside the lines, the second term may
be treated separately.

In order to bring the second term of (5) into a
more convenient form, we use a transformation
formula given by Ewald. ' If A& are the lattice
vectors of the reciprocal lattice and v the volume
of the unit cell, then

zz(r) which interpolates the values zz„at the lattice
points:

and

U(R) =
J zz(r) exp (2zriR r)dv,

zz(r=a„) =zz„.

(7)

(8)

U(R) =~ u(r) exp (2zriR r)dv, (7a)

u(r =a„)=u„.

The Eqs. (7) and (8) do not determine uniquely
the function U because any function which
interpolates the values u„ is acceptable for u(r).

The disorder scattering function G~ is built up
of a number of identical functions having their
respective origins at lattice points of the re-
ciprocal lattice. The advantage of this transfor-
mation is that the function U(R) often decreases
so rapidly from R=O, that near a lattice point A;
of the reciprocal lattice, all terms of the sum (6)
can be neglected except the term U(R —A~).

As an example, the case of spherical dilatation
will be considered. If one or several atoms are
inserted into the lattice in addition to the regular
atoms or if a larger atom is substituted for a
regular one, then the neighboring atoms will be
pushed radially outwards. In most metal crystals
each atom is surrounded by a sizable number of
equidistant atoms so that it is reasonable to
replace the central perturbation by a spherical
cavity with a pressure p&. Furthermore, the
resultant displacements will be calculated as if

9 A. L. Patterson, Phys. Rev. 56, 9'72 (1939).

This transformation may be considered as a
three-dimensional generalization of Poisson's sum
formula. Patterson's representation of the inter-
ference function of perfect crystals' can be
recognized as a special application of the gener-
alized Poisson formula.

The Eqs. (6)—(8) are evidently still applicable
if the quantities N„are vectors, u„, if only the
functions zz(r) and U(R) are repla, ced by vector
functions u(r) and U(R). Equations (6)—(8)
become:

1
Q u„exp (2zriR a„)=—Q U(R —Aq), (6a)
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the crystal were isotropic, because the results will

be interesting mainly for their order of magni-
tude. According to Love," the radial displace-
ment u in a shell bounded by concentric spherical
surfaces of radii ro and r&(ro) r&) is given by

1 P~r~' 1 ro'r~'Pq 1
r+— —. (9)

3K+2@ r03 r~' 4—p ro' rP r—'

In our case the crystal size ro is large as compared
to the radius of the distortion r~ so that the first
term in Eq. (9) can be neglected. Similarly, we
disregard the term r j3 in the denominator of the
second term of (9). The displacement u| at the
inner surface is

» = (ri/4~)pi,

and we get instead of (9)

u =u, (rg'/r').

Inserting (11) into (7a), we obtain

r
U=»r~'~ —exp (2miR r)dv.

r3
(12)

2iu~r P (sin 2m r ~R sin 2m roR )
R L 2n r,R 27rroR

This function vanishes at R =0, but beyond a
maximum at R=1/2ro, the first term rapidly be-
comes predominant. Now, the central spot of the
interference function Go which gives rise to the
x-ray line itself, extends to about R =2/ro. As the
disorder scattering cannot be measured in the
immediate neighborhood of the line, we may limit
ourselves to such points which are well outside
the line. In the following, this domain will be
called "near the lattice point" (of the reciprocal
lattice) or, "near the line. " With this restriction,
U~ becomes

sin 2mr~R
Ug =iugrg

xR'
(14)

"A. E. H. Love, Mathematical Theory of Elasticity
(Cambridge University Press, New York, 1934), p. 142.

Because of the spherical symmetry of the dis-

placement, U must be parallel to R:

p cos (r, R)
exp (2siR r)ds,

r2

and, by Eqs. (6a) and (5)

—2uyr y

Gi = R g cos (R, R —Aq)

sin 2nr&~R —Az~
X ~ (15)

iR —Ay, /'

Now, the distance between two neighboring
lattice points of the reciprocal lattice is of the
order of the inverse interatomic distance. As r~ is
of the order of this latter quantity, it may be seen
from (14) and (5) that the bulk of the function
which constitutes the contribution of a particular
lattice point A; will be contained in the space
between A; and its immediate neighbors. Near
any lattice point, we may disregard the contri-
butions of all other lattice points, because of
the rapid increase of the individual function
U(R —A;).

The surrounding of the lattice point (000), i.e. ,

of the direct transmitted beam, assumes a special
place. By Eq. (5), the disorder scattering is pro-
portional to R, and furthermore Qu„vanishes
because the center of gravity is at rest, so that we
should expect the disorder scattering to tend
toward zero near the direct beam. The physical
significance of this fact was explained by Ewald"
by the observation that even an asphalt road
makes a fairly good mirror when observed at a
very oblique angle. Yet, according to Eq. (15),
the predominant term of the sum is that which
corresponds to A& =0; R becomes equal to
(R—Ag):

2u&r~ sin 2~r jR
(16)

and G~ tends toward a constant value at R =0.
This is true, as explained above, only for points
not too close to the line (000) itself, but it
describes the experimental form of the disorder
scattering curve. Indeed, Guinier's experiments
show that the background intensity of cold
worked copper becomes constant near the scat-
tering angle zero. As the Compton radiation as
well as the temperature scattering tends toward
zero at small angles, it is probable that the eGect
is caused by a perturbation similar to that con-
sidered here.

"P. P. Ewald, Hamdbuch der Physik (Berlin, 1927),
Vol. 24, p. 271.
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Equation (14) predicts a strong increase of
intensity near a reciprocal lattice point. This, too,
is in agreement with Guinier's observations. The
exact form of the intensity curve for a poly-
crystalline aggregate would be given by the
average of ! G&! ' over all crystal orientations, the
absolute value !R! being fixed for a given
scattering angle. But this integration would
not have a result comparable to Guinier's experi-
ments. Indeed, G~ is proportional to the cosine of
the angle between R and (R—Aq) in the example
under consideration, and this is owing to the
spherical symmetry of the perturbation assumed
in this section. We cannot expect the local
perturbation created by plastic deformation to
have a spherical symmetry, so that our example
would not be typical for the general case.

from Eq. (17):

Au= —4v' R'U exp ( 2—v.iR r)d V, (18)

grad div u

= —4s'~ R (R U) exp ( 2v—iR r)d. V .(19)

f(r) =~I F(R) exp (2v.iR r)d V, (20)

with the inversion:

The force function f(r) will also be represented by
a Fourier integral:

F(R) =~ f(r) exp ( —2xiR r)dv. (21)

The results of the preceding section are sus-
ceptible of considerable generalization. In this
section, an infinitely extended body with a local
perturbation of general character and no forces at
infinity will be considered. The action of the local
distortion will be replaced by a system of volume
forces f(r), confined within a volume of atomic
order of magnitude. The resultant force,

)tf(r)dv,

u(r) = U(R) exp (—2v-iR r)d V, (17)

then the inversion of Eq. (17) is Eq. (6a). By
differentiating under the integral sign, we obtain

must vanish if there are no boundary stresses.
The laws of isotropic elasticity will again be used.

This method differs from that of Section 2,
where the distorted zone was replaced by a
cavity, in that the atomic configuration within
the distorted zone is replaced by one which is
formally in agreement with elastic equilibrium
and the fictitious volume force. However, because
of the small number of these atoms, no appreci-
able difference between the two methods should
arise.

If the displacement u(r) is represented by a
Fourier integral

pR'U+(X+@)R (R U) = F.
4x'

The solution of this vector equation is:

(24)

U=
p (RX(FXR) R (F R)i

! +, I (»)
4x'R4 ( X+2p

We are interested in the behavior of U at small
values of ! R! . Expansion of Eq. (21) yields:

F= fdv+2v-iJ (R r)fdv+ (26)

The first term is the resultant force, and there-
fore, vanishes. Introducing the expansion (26)
into Eq. (25), it can be seen that U behaves like
1/R for small values of R.

This is the generalization of the result of
Section 2. In particular, it can be seen from

The equation of elastic equilibrium:

pAu+ (X+@)grad div u+ pf =0, (22)

becomes, by Eqs. (18)—(20):

~~ exp (—2vriR. r)

X[—4s'pR'U —4v'R (R U)+pFjd V=O. (23)

By virtue of a general theorem, the transform
must vanish:
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Eqs. (5) and (6a) that near the lattice point
(000), the scattering amplitude and consequently
the intensity tend toward a constant value, in
agreement with Guinier's observations.

The results of this section are valid only for
infinitely extended crystal grains. When the grain
is finite, but large enough to give rise to sharp
lines, the statements of this section remain valid
only for points well outside the line, as was shown
in Section 2.

Near a lattice point Ay„ the scattering ampli-
tude will be given by

27ri
G = iAI, (cos (Ai„U). iU(R —Ay) i. (27)

Now, if the force system f has a privileged
crystallographic direction, then we must expect
to obtain different scattering near different
lattice points of similar absolute distance ~A~~,
because of the direction cosine appearing in
Eq. (27). Conversely, observations of the disorder
scattering near different lines should be able
to show the crystallographic symmetry of
distortions.

A disorder scattering of the type under con-
sideration must affect the measured line intensity
and line width. However, conditions are more
complex within the line itself, because the grain
size and the slowly variable stresses account for
part of the line broadening. '
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A study of the AIO spectrum indicates that, a predissociation of the type one b takes place
in the lower electronic state of the green system. It is suggested that the y- and e-bands of NO
do not belong to a single system; the p system shows a strong perturbation of the v'=4 level.
An accidental predissociation of the vibrational type is found in the spectrum of Te2, and the
analogy of the three molecules S2, Se2, and Te2 is strengthened.

A10

1
MA NLY a few examples of predissociation in-

volving the lower state of a molecule are
known, among which the best studied case is
that of HgH. However, in the type III of pre-
dissociation (by rotation) exhibited by HgH the
widening of the predissociated levels is such that
they cannot be observed. Hoist' has reported
predissociation effects in two systems of emission
bands of AIH due to transitions ending on the
unstable 'll level. But, so far as we know, this
example has not been studied in detail. The
observation of the predissociated lines in the
above-mentioned examples is dificult on high
dispersion spectrograms, on account of the in-
tensity drop in the centers of the lines.

It is well known that, as a result of the rise in
total absorption in the incompletely resolved

' W. Hoist, Thesis (Trondheim, 1936).

predissociated lines (Loomis and Fuller), ' pre-
dissociation may, under certain conditions be
observed in absorption even with low dispersion.
This criterion has been applied previously to the
investigation of induced predissociation. In the
case of natural predissociation, the criterion was
first applied to the H2 spectrum by Beutler,
Deubner, and Junger, ' and to the S2 spectrum
by Rosen and Neven. ' The latter example has
recently been investigated in detail by Herzberg
and Mundie. '

In emission, the widening of the lines of in-
completely resolved bands manifests itself in
different manners according to the position of

2 F. Loomis and H. Fuller, Phys. Rev. 39, 180 (1932).
3 H. Beutler, A. Deubner, and H. O. Junger, Zeits. f.

Physik 98, 181 (1935).
4 B. Rosen and L. Neven, Comptes rendus 203, 662

(1936);J. Chim. Phys. 35, 58 (1938).
'G. Herzberg and L. C. Mundie, Phys. Rev. 8, 263

(1940).


