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High Frequency Vibrations of Thin Crystal Plates

H. EKSTEIN
Armour Research Foundation, Chicago, Illinois

(Received May 4, 1945)

The boundary conditions of free vibration can be satisfied on the major surfaces of a plane-
parallel plate if the displacement components are assumed to be products oF trigonometric
functions. In addition, the boundary conditions can be approximately satisfied on the minor
surfaces when the plate is thin. The theory leads to a frequency equation

p =
g (c/p) &$(n/2b)2+/(yg/2a) 1&

which has been found empirically to satisfy observations. The theoretical values of the constant
k are 3.7 and 1.8 for the A T and BT quartz plates, respectively, while the observed values are
3.9 and 1.7, respectively.

INTRODUCTION

~REE elastic vibrations of anisotropic plates
were treated extensively by W. Voigt' who

developed a general theory. Voigt's theory is
limited to the case where the wave-length is large
as compared with the thickness. and it must fail
when the wave-length is of the order of mag-
nitude or smaller than the thickness. This latter
case was not interesting to Voigt; because of their
high frequency it was impractical to excite these
vibrations. By piezoelectric excitation, it has
been possible to excite vibrations of high fre-

quency in thin plates. I. Koga' treated them
theoretically by assuming the plate to be
infinitely extended and gave a rigorous solution
for this case. Experiments' ' showed, however,
that while one resonant frequency and the cal-
culated mode of motion were in good agreement,
numerous other frequencies could be detected
which were not foreseen by the theory of the
infinite plate. The purpose of the present paper
is to explain these deviations by presenting a
theory of the thin plate whose lateral extension
is large but not infinite.

The consideration will be limited to the case
where the elastic constants c15, c16, c25, c26, c35,

c36 c45, and c46 are zero or negligibly small. Ac-
cording to Voigt, ' the former is the case when
the x-axis of the reference system (which we
assume parallel to one long edge) coincides with
a twofold axis of symmetry. This case includes

' W. Voigt, Lehrbuch der Kristallphysik (B. G. Teubner,
Leipzig, 1928).

~ I. Koga, Physics 3, 70 (1932).
3 J.V. Atanasoff and P. J.Hart, Phys. Rev. 59, 85 (1941).

W. P. Mason, Bell Sys. Tech. J. 19, 74 (1940).

11

—Y,= c&4x,+c24y„+c34s,+c44y,
—X,= CSSXz+ C56X~

C56Xz+ C66Xy.

The boundary conditions for the free body are:

X, cos (n, x) +X,cos (n, y) +X.cos (n, s) =0,

X„cos (n, x)+ F„cos (n, y)+ Y. cos (n, s) = 0, (2)

X, cos (n, x) + Y.cos (n, y) +Z. cos (n, s) =0,
* Voigt's notations are used, so that compressional

stresses are positive.

those quartz plates whose one major edge is
parallel to the crystallographic x-axis. Most of
the experimental work was done on this type of
quartz plate.

Standing sine-waves along one major edge will
be first. considered so that the boundary con-
ditions on the major surface can be met rigor-
ously. With these solutions, the boundary con-
ditions on the smaller lateral surfaces can be
satisfied approximately.

Standing Sine-Waves along the X-Direction

We consider a rectangular plane-parallel plate
of edges 2a, 2b, and 2c where 2b is the thickness.
The origin of coordinates is in the center and
the x-, y-, and s'-directions are parallel to the
edges 2a, 2b, and 2c, respectively. If, as we
assume,

C15 = C]6 = C25 = C26 = C35 = C36 C45 = C46—

the stress-strain relations are:*
—X =C11X +C]2y„+C132' +C14y
—Y„=C] 2X +C22y„+C23S +C24y

Z C] 3X +C23y +C33S +C34y
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X,—2(c»n U+c12p V+c14pW)

&&exp [i(nx+py)],
—U„=2(c12n U+c22p V+c24p W)

)(exp [i(nx+py)],
Z, =—i (ci,n U+c26P U+c24P W)

Xexp [i(nx+py)],
(5)—Y.=i (c14u U+c24p V+c44p W)

&&exp [i(nx+.py)],
X,—i(C=»uW+C66p U+C66n U)

Xexp [i(n~+py)],
X„=2(c—66n W+c«P U+ c«u U)

)&exp [i(nx+py)]

BX BX„BX,
pMQ= + +

Bx Bp Bs

BXy 8 Yy 8Y,
pbbs 8= + +

Bx Bp Bs
(3)

BX, BP, 8Z,
pcs w= + +

Bx Bp 88

where co =2xr is the angular frequency and u, v,

and m are the components of the displacement
vector.

We desire at first to satisfy Eqs. (3) in the
whole body and Eqs. (2) on the major surfaces

y = &b only. Furthermore, the displacement
components will be assumed to be independent
of s. Tentatively, the solution will be written
as a linear combination of plane waves of the
form

Substituting into Eqs. (3), we get:

U( —p46 +C66p +Ciiu ) + Vnp(C12+C66)

+WuP (C14+C66)

UnP(c12+c66) + V( —p46 +c66u +c22P')

+W(C66n'+ C24P')

UnP (C14+C») + V(C»n'+ C24P')

+W( —p462+ C66n'+ C44p')

=0
24= U exp [i(nx+Py)],
v = V exp [2(nx+Py)],

w= Wexp [2(nx+Py)],
(6)

=0,

where U, U, and W are constants.
If the strains are calculated in the usual way

from Eqs. (4) and substituted into Eqs. (1), we

=0

The compatability of Eqs. (6) requires that

which should be satis6. ed on all six faces. The obtain:
dynamic equations are:

C66p +Clln p~

up(c12+c66)

up(c14+c66)

nP(c12+C66)

C2qP +C66n —
pCO

C560! +C24p

nP(C14+C66)

C560.'1C24p

C44P +C550F —p~

(7)

Solving Eqs. (7) for p', we obtain three roots p12, p2', p22, and from Eqs. (6) the corresponding ratios
Ul. Vl. Wl, U2.. U2. W2 and U3. V3'. W3, where the p, s and the ratios U, : V;: W; are functions of
pe) and 0,'.

The form of this function can be seen if we substitute p/n =4i and divide each row of the deter-
minant (7) by u':

c66q2+ c»+ p46'/u2

4i(C12+C66)

g(C14+ C66)

4i(C12+ C66)

C224i +C66 p64 /n

C56+C24g

g (C14+C66)

CS6+C24g

c44g +c66—pGP/n

=0

From this, we see that the roots p,' will have the waves:
form

p'' = n'f*(p~'/n') (9)
24= U; exp [i(nx+P,y)5

and the ratios U, : V;: W; are only functions of
p462/u2. To each value p,2 belong two complex

and
24 = U; exp [i(ux —P;y)].
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We form real linear combinations of these com-
plex waves: I= U; cos nx sin P;y,

v= V, sin nx cos P;y,

m = W; sin O.x cos p,y;
I= U; cos nx cos p;y,

v = U; sin otx sin P,y,

m= W; sin ax sin P;y;

(10A)

of

(10B)

and the final solution will be a linear combination
of the three functions (10A) or (10B):

u =cos ux' Q L; U4 s111 p,y,

v =sin ux P L„V; cos p,y, (11A)

6v= sin ux P L,W, cos p;y;
or

u =cos ux p L,U, cos p;y,

v=sin ux P L, V, sin p,y,

6v = sin ux p L4W, sin p,y;

(11B)

where the U; and p, are known functions of
p~' and. OP, while the 1., are to be determined by
the boundary conditions. The strains are now:

x = usin ux—Q I,U, sin p,y,

y„= —sin ux Q p,L„V, sin p;y,

z„=—sin ux Q p g„W, sin p;y,

z, =u cos ux p L;W; cos p,y,

x„=cos ux p L„(U;p,+uV;) cos p;y,

for case A; or

x, = —u sin ux p L; U, cos p;y,

y„=sin ux P p,L, V; cos p,y,

z„=sin ux g p;L,W,: cos p,y,

z, =u cos ux. P L„W„sin p,y, .

x„=cos ux p I.;(u V; p, U~) sin p,y, —

(12A)

(12B)

Y„=P, =X„=O at

Substituting the strains, Eqs. (12), into Eqs.
(1), we obtain

P L;(C16uU;+C66P; V;+C64P;W)

Q L,(c14u U, +c64p; V, +c44p, W4)

p L;(C66p, U, +C V66,u+C66uW;)

sin P;b =0,
sin p,b=0, (13A)

cos P;b=0,

for case B.
The boundary conditions require that the

stresses

for case A; or

Q L;( c—16uU, +c66P;V,

+c64p;W;) cos p,b=0,

g L,( c—,4u U;+c, 64p, V„

+c44p, W;)

Z L ( c66p —U'+c66uV'

(13B)
cos P,b=0,

Consequently, the determinant of Eqs. (13) will

yield a transcendental equation which relates
p466/u6 to ub Solution. of this equation yields the
frequency as a function of the wave-length 1/u
and of the product nb under the form

p466 = u'g (ub)

When this is done, Eqs. (8) yield the ratio
I.i.J 2.L,3 and the displacement components are
known from Eqs. (11).

While this formal solution is impractical for
numerical results, a numerical solution can be
carried out by assuming some numerical value
for p466/u' and calculating the roots, 4I, , of Eq.
(8) and the corresponding ratios U„: V, : W, .

Then Eqs. (13) yield a transcendental equation
for ub, the only unknown in (13).Thus the whole
frequency spectrum can be determined.

It is shown in Appendix I that Eqs. (7) and
(13) include as a special case Timoshenko's
theory of Hexural vibrations in an isotropic plate.

Thickness Vibrations

We shall discuss Eqs. (7) and (13) for the case
where u is very small, i.e. , the displacement is a
very slowly variable function of x. Physically,
this can be expected to be true in a plate whose
thickness is very small as compared to its lateral
dimensions. If the displacement is independent
of x as can be assumed in an infinitely extended

+c66uW, ) sin p;b=0,

for case B.
The compatibility of Eqs. (13) demands that

the corresponding determinant vanish.
In view of Eq. (9), we can divide each Eq.

(13) by u and we then have only functions of
p466/u6 in the parentheses. The transcendental
functions sin p;b and cos p,b will have the form

sin ubf, l(p(o'/u6), cos ubf;l(p466/u')



HAN S E KSTE I N

plate, a=o and Eq. (7) becomes

C66P —pV

C22p poo C24p' =0. (14)

C24P C44P —P&

This determinant has the characteristic values

Pol pso /cssi P02 pso /c2 5 P03 pso /c3 ~ (15)

where

C» 3 2(C22+C44~L(C22 C44) +4C24') ). (16)

I. Koga' has shown that the boundary conditions
on the surface of an infinitely extended plane-
parallel plate are satisfied when

('i=1, 2, 3
po, =23~/2b =P( —

I (17)
En=1, 2, 3 .)

(A+a/PI3+ 432/P2C)U = p402/P2U (19)
where

f' css 0 O)
A=I 0 c22 c24 ~,

(0 C4 C4)

f 0 C12+Css C14+Css)
o o i, (2o)
o o )

8 C12+C66

(C14+C56

t'c„o o )
Css Css

(O c„c„)
Putting

n even, Koga's solution satisfies Eqs. (13A or B)
if +=0.

We return to the case where n is not zero, but
small. Equations (6) can be written as

This must also be a solution of Eqs. (13A) or
(13B). Indeed, if

pol = (p402/Css)3 = 422r/2b (23 Odd), (18)

1/pB+43/p2C =D,

Eq. (19) becomes

(A+64D)U= p402/psU.

(21)

(22)

then we use the functions (11A). From the deter-
minant (14), it is evident that the corresponding
ratio is

Disregarding for the moment the fact that D
still contains n and p, we obtain from perturba-
tion theory the second-order solution of Eq. (22):

Ug. VI .. t/t/'g=1:0:0.

Because of Eq. (18)

DaSpi
Uo=U03+~ p'

po1'/p 0 5' pso'/ps 1'— (23)

cos ppy5 =0.

Therefore, the Eqs. (13A) are satisfied by

Lg. L2.L3=1:0:0.

If, on the other hand,

p02 n2r/2b or po——s 422r/2b ——(n odd),

then we use the functions (10B).From Eqs. (6)
and (14), it can be seen that in both cases

U2= U3=0

pM pM DaP
+~D55+~' Q'. . . , , (24)

Pk Ppk poo /poo p40 /poP—
where

D31= (DU03'Uos) = (Uoo' Il/&&+cs/P'CIU 1)0
=1/p(Uo BUo )+ /p'(Uo CUo ) (25)
= I/p&51+ ~/p'Cos.

In Eq. (25), Uoo are the normalized eigenvectors
of the secular equation (14) which satisfy the
following relations:

Again,

or
cos p026 =0,

C22 V02+ C24 ~02 C2 V02&

C24 V02+C44~02 C2 ~02 y

(26a)

Cos pp36 =0;

and (13B) is satisfied with

C22V03+C24W03=C3 V03 — C3 %02)
(26b)

&24V03+&44~03=43 ~03= &3 V02

or
LI ——L3=0, The third member of Eqs. (26b) follow from the

orthogonality of the eigenvectors. Further,
Lg=L2=0,

pespectively. Similar considerations show that for

Uo1=(1, 0, 0), U02 (0, V02, W02),
(27)

Uos ——(0, —W02, V02),
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I'02= 1+/
C24 )

(C22 C2 ) (C22
Wo = — 1+( )

= —Vo;
c24 E c24 )

and) of couIse,

xo= Coo+2'
p~'/poo' —p~'/poP

In Eqs. (32) and (33) we have, on the right-
hand side, replaced P&' by Po&' because a cor-
rection would only add terms of higher order.
As shown above, if o. =o,

(C68

p~2/32 = S C,
'
t

C3 .
~O2'+ ~O2' = ~O3'+ WO3' = &

(C88

p402/P2 = (1+6)C c2'l
c66) c2 ) C3

The expansions (23) and (24) will fail if the
matrix A is accidentally degenerate or quasi- If o. is small, the expansion
degenerate, i.e. , if two of the values

(34)

D55 =n/p'(CU05 U05) = n/p'C55. (30)

are equal or nearly equal ~ In this case, the de-
generacy should be first removed by the con-
ventional methods.

It can be seen that B55= (Uoq„. BU05) vanishes.
Indeed, the vectors Uol„- have either no y- and
s-components or no x-component. Application of
the matrix 8 to these vectors produces a new
vector which has no x-component or no y- and
s-components, respectively, so that the scalar
product of vector and transformed vector
vanishes in either case. Therefore, by Eq. (25):

can be assumed. e must be determined as a
function of n. Combining Eqs. (33), (34), and
(15), we get

p40 p (1+6)c
pk

C+n2X5/P 052 C+nocx5/p402

I)'(1+6)c
=$2(1+0 —r2xo/c),

c+now /P 5(12+0)
(35)

where c stands for either one of the three values
given in Eq. (34), and the notation

n/P =r, (36)
According to Eq. (25):

Dop =1/p'(Uoo BU01)'+ =1/p'Bop

(k W I), (31)

where the dots stand for terms of higher order.
Equations (23) and (24) become

ls used.
In the following, me shal/ treat exp/icitly the

shear vibration +hose sero-order approximation is
g2M)2 by Z4I. (18). If

p~'/I)'= (1+6)coo

then by Eq. (35)
~k tUOl

(32)
p~'/p0 5' p~'/p04'—

p1'= p'(1+8 —r'51/C86). (3g)U5 =U05+n/poo. Z'

p40 /Po = p40 /Poo +n /P05 &5

441 is given by Eq. (33). In appendix II it is shown

(33) that explicitly

2(C14+C56)C24(C12+C66) (C14+C56) (C22 Coo) (C12+C88) (C44 C86)
KI =Cyy+

(C22 C66) (C44 C66) C24

Substituting the expansions (32) and (33) with (27) and (1'I) 111to (13A), we llave

t
'

I 1C66(pol+ ' ' ') cos plb++2n
~

C66 +C66I 02+C58II 02+ '
~

cos (p02b+ )
C2 —C66

B12
+12nl c«, +c88It02+c58II'02+ I cos (po6b+ ) =o

cs' —C66

(39)
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r &1i~pi &tlWQtl
L142) C14+C24 2 +C44 2 ~

sin pQlb+L2(C24V02+C44W02+ )
2, 3 C66 Ct 2, 3 C66 Ct

X (p02+ ) sin (p02b+ ' ' ')+L3(C24 V03+C44WQB)(p03+ ' ) sin (pQ3b+

r 81' ~pi &1iWPi't
L142~ c12+C22 p +c24 p ~

sin ptb+L2(C22VQQ+C24W02+ )
28 C66 Ct 23 C66 Ct )

X(p02+ ) sin (p02b+ )+LQ(C22U03+C24W03+ ' ' ')(p03+ ' ) sin (p03b+

The dots stand for terms of higher order which can be omitted.
The terms of Eqs. (40) will be simplified one by one: By Eq. (38)

pl=p�(1
+ -', LQ

—r'Kl/CSS]),

nor 7m
cos plb = cos —(1+-[26 r'Kl/c66]) W —(6 rK1—/c66)

2 4

)=0

)=0

(41)

(42)

The upper sign refers to n= i, 5, 9. . and the lower to n=3, 7, ii . The factors sin p1b which
appear with the first terms of the second and third Eqs. (40) are

Sin Plb=Sin nlr/2 = &1. (43)

The two signs refer again to the two cases mentioned above. Smaller terms are omitted here as they
are in addition to unity. By Eqs. (20) and (27)

812—(U01 BU02) —(C12+CSS) V02+ (C14+C56) W02i

+13 (U01'2~UQB) (C12+C66) W02+ (C14+C56) V02 i

~12 (CSS(C12.+C66) l (C66(C14+CSS)
CSS +C66V02+C56W02 = V02~ +CSS

~
+W02~ +C56

C2 C66 C2' —C66 ) C2' —C66 j
1 [V02CBQ(C12+C2 ) + W02(C14C66+C2 C56) ]1 (45)

C2 —C66

~13 ~13
C66 t +C66VQS+CBSW03=C68 —C66W02+CSSV02

C3 —C66 C3 —C66

i
PU02(C66C14+C3 C56) W02C66(C12+CQ )]. (46)

C3 —C66

In view of Eqs. (26a) and (26b):

(+12V02 +13U03, l t + 21W20+13WQQI C2 2I12W02 C3 2I13WQB
C14+C24 + —+C44 + = + . +C14.

ECQS —C2 C66 C3 ) ECQQ C2 C66 —
CQ ) C66 C2 C66 —C3

The second and third terms of the second Eq. (40) become in view of (26a) and (26b)

(47)

Also,
L'2c2 p02~02 sin p02b 1L'3c3 p03 ~02 sin p03b

(&12U02 +18UQQ t (+12W02 +13W031 C2 +12U02 C3 +13UQS
C12+C22 + +C24~ + =C12+ +

ECQQ C2 C66 CB ) E C66 C2 C66 C3 ) C66 C2 C66 C3

(48)

The second and third terms of the third Eq. (40) become in view of (26a) and (26b):

L 2C2 p02 Sin pp2b —L43C3 p 02p03 Sin po3b.

According to Fqs. (15) and (18):

P01 Pi P02 P(CBS /2C) i P03 P( CSSC/3)
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Equations (40) read now:

WLicssp (6 r K/Css)+L2 [VQ2Csll(C12+C2 ) + W02(C14C66+Cs C56)] cos (C66/C2 )
&2 —&66 2

+is I Vos(C14C66+C3 Css) WQ2C66(C12+Cs )]cos (C66/Cs ) 0~
C3 —C66 2

( cs Bj W282 cs B13WQ3) nsr
~+1

~
C14+,+, ( +~ scs' p( Cs/sC2')' Wos»n —(css/cs')'

Css Cs Css C3' )

+I.scs'p(css/c, ') & Vps sin —(c,s/cs') & =0,
2

( cs'Bis Vos cs'B 13Vos&, nsr
+~142) c12+ I + I ~

+~sc2 p(c66/C2 )' VQ2 sin (css/cs )
Css C2 C66 Csi ) 2

n~I.scs'—
W 62(css/cs') ' sin —(css/cs') & =0.

2
Consequently, the determinant

(50)

wcssp (6 —r' /x—c)ss [VQ2C66(C12+C2 )
&2 —&66

+ WQ2(C14C66+C2 c56)] cos (C86/C2 )'
2

c4 cos —(css/cs') &

2

&3 —466
I [V82(C14C68+Cs C56)

WQ2css(C12+cs )]
c2'Bg2lV02 nm.

+42~ C14+ Cs'p(C58/Cs )5WQ2 Sin —(C«/C2 )'
Ceg —C2 2

cs'BisWQ3&
+

CQS
—Cs )

nx
cs'p(css/cs')'* Vos sin —(css/cs') l

2

C2 B12Vos
&42 Cis+

Css C2

cs'8 13 Vps)
+

CSS —Cs

nx'
cs'p(css/C2')'* Vos»n —(css/C2')"

2

nx—cs'p Wps(css/cs') l sin —(css/cs') &

2

must vanish. The determinant (51) is expanded in terms of the elements of the first row. The first
co-factor is

n~ . . n~
Css(cs'cs')'*p' sin —(c«/c2')' sin —(c«/cs')'*( —Wos —VQ2 )

2 2

= —css(cs'cs') p' sin —(css/cs')' sin —(css/cs')i, (52)
2 2

in view of Eq. (29). The second co-factor is:
C2'BisWo2 Cs'BisWQ3)

~12= +42C3'p(C66/C3')2
I C14+, +—,

~
Wos

C66 —C2 C66 —C3 )
( cs B12VQ2 C3 B13VQ3)+ I cis+ + I Vos s111—(Css/Cs )'

css C2 css cs ) 2

~2 ~12 ~3 ~13
+42cs p(css/cs ) (WQ2 + VQ2 )+ (W02WQ3+ V02VQ3)

C66 —C2 C66 —C3
ng

+cisWQ2+cis Vos»n —(css/cs')' (5&)
2
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The second term in the bracket vanishes because the quantity in parenthesis represents the scalar
product of two orthogonal eigenvectors. We substitute the value of Bjo from Eqs. (44) into (53):

( C2 (Cjo+C66)1 ( C2'(C14+C66)1 . njr
+ 12 ~np(cooco')*' U02

I
C12+ I +W02

I
C14+ I

Sin —(cpp/c3 )l
C66 —C2' ) C66 C2 ) 2

(C66C3')*= ~42P [V02c«(c12+c2') +W02(c14cop+c2'c66) ] sin —(c«/co')'*. (54)
C66 —C2 2

The third co-factor is:

( C2 B12W02 C3 B13U02 l

+13 +42pc2 (C66/C2 ) U02I C14+
&

+
C66 C2 C66 C3 )

( C2 B12Vp2 C3 B13W021—Wo2I c12+, —
I

sin —(coo/c2')'
C66 C2 C66 C3' / 2

C3 813 C2 812
+42PC2 (C66/C2 ) ( V02 +W02 ) + (W02 U02 W02 U02)

C66 C3 C66 —C2
n7r

+ U02c14 W02c12 sin (c66/c2 )
2

(C66/C2') *

= &42pc2 [U02(c3 c66+c14c66) W02c66(c12+c3 )] sin —(c66/c2 )',
C66 —C3 2

(55)

because Vpo= Wp3 and W„= —Vpo. The determinant Eqs. (51) can now be written in view of Eqs.
(52), (54), and (55):

7m n~ n~
jc66'p' (6 —r' jjj/—C6)6(c,'co')l sin —(c,o/c, ')l sin —(c„/c3')'

4 2 2

A n~ n~
(c66co ) [V02c66(c12+c2 ) +W02(c14c66+C2 C66)] sin (C66/C3 ) cos (C66/C3 )

(C2 C66) 2 2

O.2p
(c66c2 )'[V02(c14c66+c3 c66) W02c66(c12+c3 )]' sin —(c66/c2 )* cos (c66/c2 ) =0.

(C3 —C66) 2 2

Solving for e, we obtain e =r2k„, where

nx
Co't —(C66/C2 ) *

1 4 ~ 2
k„=—Kj+ [U02C66(C12+C2 ) + Wpo(C14C66+C2 C66)]

njr(c66)l, (c2')l(c66 —c2')'

If c14 and c56 are very small:

COt —(C66/C3') '
2

+ [Voo(c14cop+co'c«) Woocoo(cjo+C3 )]' . (56)
(C3 )*(C66—C3 )

7m
Cot (C66/C9 )3

(C12+C66) (C44 C66) C66 (C12+C2')' 4 2
k„=—C11— +

c66 (c22 c66)(c44 coo) c94 (c22 c2 l ' n jr(coo) (c2 )'(c66 c2 )
&+I

E C24 )
n7r

Cot (C66/C3 )*
(C22 C2 ) C66 (C12+C3')' 4 2

+I
C24 ) (C22 —C2 l ' njr(C66)4 (C3')~(C66 —C3 )'

i+I
C24 )
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The fourth term vanishes with c24. Indeed, by Eq. (26a), W02 0 when c24 ——0. Physically, the con-
stant c24 guarantees that there shall be no purely longitudinal plane waves propagated along the
y-direction, and that the displacement vectors Up2 and Up3 form angles with the wave vector. The
fourth term in Eq. (57) is due to this fact. If c24 vanishes, Eq. (57) becomes

k„=—C11-
c66 n2rC22*(C66 C22)C22 C66

nor
4C66 (C12+C22) COt —(C66/C22)

(C12+C66) 2
—+ (58)

because then c2' ——c» and Up2=1. In the isotropic case,

c11——c22 = 2p+X, c12 =X) c66 =p)

while all other constants vanish, and Eq. (58) becomes

16( 44 )'* n2r( pu„=1+—! ! cot —!
n2r &244+X) 2 &244+X)

(59)

We now return to the general case: The ratio L1.L2..L3 is equal to the ratio of the corresponding
co-factors:

L1:L2:L3 =~11'.~12' ~13

nor
sin —(c66/c2') '

2

U02C66(C12+C2 )+W02(C14C66+C2 C66)

(C2' —C66) (C2'C66) &

nor
sin—(c66/c8') &

2

U02(C3 C66+C14C66) W02C66(C12+C3 )

(C8 C66) (C66C8 )*
(60)

If we substitute these values into Eq. (11A) and take into account Eqs. (32), (33), and (35), we
obtain equations of the form

u = cos 42x sin PyLI+ 2r'(I3 141/c66) ], -—
v= r sin nx[A1 cos Py+A2 cos Py(c66/c2')'+A8 cos Py(c66/c3')4],

2v = r sin nx[A3 cos py+A4 cos py(c66/c2')*+A 6 cos py(c66/c3 ) jy

(61)

where the constants A1 A5 are only functions of the elastic constants. We do not need the explicit
values, but it is simple to write them.

In the isotropic case, L3, Wp1, and t/I/"p2 vanish. Therefore, we have

+=0,
r 4 (~+4)

~11 ~ ~12 ~ ~13 :0,
) ' (~+4)(4 (~1+»)3'sin—

2 EX+244)

8 ( 44 )'* n2r( u
u = cos 42x sin Py 1+r'

!!

cot —!n~ &2u+Xi 2 (2p+&)

( 44

cos py!
( 44 l & EX+244)v=r sin nx —cos py+2! !
EX+244) n2r (sin—

2 4, lby2p)

(62)
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The difference between Eqs. (61) and the solution for the infinite plate is:
(1) Instead of u= sin Py we have a slow variation of I with x.
(2) The derivative Bu/By is not exactly zero at y= &b, because pi differs by a small quantity

(proportional to r') from / =rid/2b
(3) While for the infinite plate v and w vanish, we find small quantities proportional to r in the

case of the finite plate. v and m do not in general vanish anywhere.

Approximate Solution for the Free Plate

The Eqs. (1) and (13A or B) are rigorously
valid for sinusoidal standing waves in a plane-
parallel plate. Consequently, the frequencies (56)
and the modes (61) are correct solutions for this
case, if higher orders of r are disregarded. For a
free limited plate, however, the boundary condi-
tions in Eqs. (2) should be satisfied on the lateral
surfaces. The boundary conditions in Eqs. (2)
on the faces x = +c require that

OQ Ov O'N—X~= cyy—+cy2—+cy4-
Ox Oy Oy

=a sin na. Fi(y) =0,
O'N (BQ Ov )—X„=c56—+cats~ —+
Bx ~By Bx)

(63)
=P cos na F2(y) =0,

O'M (Bs Ov I—X*=c»—+c«~ +—
I

Ox &Oy Ox)
= P cos cLG

' F3(y) =0,

where F&, F2, and F3 are functions of y which,
in general, are of order of unity. It is evident
from Eqs. (63) that it is impossible to satisfy
rigorously the boundary conditions by a choice
of n. If the second and third Eqs. (63) are to be
satisfied, cos na must vanish, but then sin na
cannot vanish simultaneously, and therefore the
first Eq. (63) will not be satisfied. However, if
we put

cos na =0; o. ms. /2a =(m = 1, 3, 5 ) (64)

the traction X, is proportional to 1/a and tends
toward zero as the lateral dimensions are in-

creased, while the other traction components
vanish completely. We shall consider Eqs. (64)
as the definition of 0.. By moving the origin of
the reference system along the x-axis, we can
write instead of Eqs. (61):

u =sin nx sin yP [1+-',r'(h —~/c66)],
v = r cos o.x [ ], (61a)

w=r cos nx [ ].

The boundary conditions Eqs. (2) are now:

X—,= n cos nu Fi(y) = 0,
—X„=—P sin a.u F,(y) = 0,
—X,= —P sin na F,(y) =0.

(63a)

To satisfy the second and third Eqs. (63a), we
have to assume

OQ Ov O'N
Yz = Cg4 +C24 +C44 = Ot

Ox Oy Oy

Bw (Btt Bol—Xg=c»—+c«1 +
Bx &By Bxi

(65)

on the faces s = ~c cannot be satisfied. However,
if

cga c]4 c23 c94 c34 —c56 0

(e.g. , in the isotropic case) w vanishes and the
Eqs. (65) are satisfied exactly. Fortunately, these
constants are often small so that we can expect
a fair agreement between theory and experiment
despite Eq. (65).

We shall consider Fq. (61) and (6la) with the

defirtitions (64) and (64a) of n as the approximate
solution of the problem for the free thin plate

Comparison with Experiment

Combining Eqs. (37), (56), (64), and (64a), we
obtain:

or
poP =P'c6g (1+r'h„)

f rt 't ' fm ~ ' '*

=-:( /. )-:
]
—I+h. ]

—
[

i &2b) &2~i)
(66)

Observations on thin quartz plates of the so-

sin na=0, n =me/2a (m=2, 4, 6 ). (64a)

Taking the even and odd modes of (64) and
(64a) together, we note that m can now take on
any integer value.

If the extension in the s-direction, i.e. , 2c, is
not infinite, the boundary conditions

OQ Ov O&—Zz =C18—+C23—+C34—=0,
Ox Oy Oy
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called Ye type were carried out by Sykes. ' In
this case, one major edge is parallel to the
twofold x-axis, so that comparison with the
present theory is possible. Sykes found an
empirical formula for the shear type vibrations:

(np' (ml' (p —1)' '
=-:("/. )-:

I

—
I +ki —

I
+k'I

i(2bi (2a/ ( 2c ) (67)

AT BT

c11 86.05 86.05
c22 129.86 97.77
c44 39.06 40.85
c66 29.34 68.91

TABLE I.

C12

C18

C14

C24

cate

AT

—10.35
25.85
3.55-5.82—2.46

BT

26.20—10.70
0.13

13.11
6.45

k,b,
kcale

AT
3.9
3.7

J3T
1.7
1.8

The agreement is satisfactory. Theoretically, k
should be independent of nz, but depend on n.
Sykes does not state whether this is the em-
pirical meaning of k. However, comparison of

When P=1, this empirical formula agrees with
the theoretical Eq. (66). The numerical value of
the empirical constant k is not givep explicitly,
but it can be calculated from Sykes' diagrams.
Expansion of Eq. (66) yields, when n=1 and
c&)b.

1 ( k b2&
v„=-', (c66/p)i —

i
1+—m' —),

2b E 2 a')
and

i —vi k(b/a)'(m' —1)—~-,'k b a'm' —1;
2C 1+-',k(b/a)'j

or
2 (gl' v —vg

~i' —1 (b) ii

From Sykes' Fig. 6.15, we find, for a/b=32:

vt = 1662, v3 = 1688, v5 = 1736

which gives k=4.0 and 3.8, respectively. The
average value is k=3.9 for the AT-cut plate.
From Sykes' Fig. 6.17, we find, for a/b=48:

vl =2552, v7 = 2600, v9 = 2628, vt j = 2658

which .gives k=1.8, 1.7, and 1.6, respectively.
The average value is k = 1.7 for the BT-cut plate.
With the elastic constants of quartz measured
by Mason' and the transformation formulas
listed by Sykes, ~ we obtain the following con-
stants for the plates in units of 10' dyn/cm2
(Table I). From Eqs. (56), (39), (16), and (28),
we calculate the following values for k(@= 1):

Sykes' Figs. 6.15 and 6.16 referring to the cases
n = 1 and n =3 seems to show that k is definitely
lower in the latter case.

It appears from the empirical Eq. (67) that
for the case p=1, the frequency is not affected
by the dimension c. This confirms our assumption
that for the type of vibration under considera-
tion, the boundary conditions (65) can be disre-
garded.

In the lowest mode (m =1), where

a = s./2a,

the displacement I is maximum in the center
and decreases monotonically toward the edge
x= ~a. The displacement components v and m

are small, but they have their maximum value
at the edge. In a lycopodium powder experiment,
we should expect the powder to be most vigor-
ously moved at the center and only slightly
at the edge, while no exact nodes appear. This.
is in agreement with experimental evidence. '
The clamping of a crystal on the corners does not
modify considerably its mode, as can be expected.

In the mode corresponding to m=2, i.e.,

u=s/a,
the mode is given by Eqs. (61a). The displace-
ment component u has the form

N, =f(y) sin vrx/a,

which vanishes in the center while it has opposite
signs in the left- and right-hand half of the plate.
Observations by Sykes' (third figure in Fig. 6.5)
are in agreement with this result.

Experiments show that a freely vibrating
crystal of the kind considered here, if mounted
between metal plates parallel to its major faces,
excites ultrasonic vibrations of the air between
the surface and the plate. This cannot be ex-
plained by the theory of the infinite plate

'R. A. Sykes, Bell. Sys. Tech. J. 23, 52 (1944).
SW. P. Mason, Bell Sys. Tech. J. 22, 178 (1943).

7 G. M. Thurston, U. S. Patent 1,883,111, October 18,
1932.
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because a shearing motion alone cannot cause
compression or dilatation. The present theory
shows that the component v is not zero and thus
explains the existence of air waves.

Sykes' observations show that Eq. (67) ceases
to be valid at certain ratios a:b and c:b. With
these ratios, two nearby frequencies appear, one
lower and one higher than that given by Eq. (67).
Sykes explains this fact qualitatively by coupling
of the thickness vibration with other types of
modes. We shall discuss the phenomenon of
coupling from the theoretical viewpoint.

It was shown in a previous paper' how it is
possible to represent the solution of an elastic
vibration problem as a linear combination of
"zero-order" or uncoupled modes. We can con-
sider the mode given by Eq. (61) as a zero-order
mode. It differs from an exact solution in that
it does not exactly comply with the boundary
conditions on the lateral faces. Other zero-order
modes can be obtained by different solutions of
Eqs. (7) and (13). We have only considered
those solutions where o. is small. It can be shown,
however, that other types of solutions corre-
sponding to about the same frequency|

v = (c66/p)'—
4b

can be obtained when o. is of the order of mag-
nitude of p.

'

One type corresponds to Timo-
shenko's flexural waves treated in Appendix I.
These other modes will be equally zero-order
modes because they will satisfy the boundary
conditions on the lateral faces only approxi-
mately. Their frequency depends mainly on the
dimensions a and c.' Consequently, a coupling
in the sense defined in a previous paper' will

exist between the thickness mode Eq. (61) and
the "lateral" modes. As the coupling is caused

by the stresses X (on x= +a) and Z„F„and
X, (on s = &c), which are all small, the coupling
itself will be small. As shown by the form of the
secular determinant in the same paper, a weak

coupling has a noticeable effect only when the
frequencies of two zero-order modes are nearly
equa. l. This explains why the exceptional regions,
where the uncoupled frequency becomes incor-

rect, occur at the intersection of the curve

H. Ekstein, Phys. Rev. 66, 108 (1944).
9 The proof is omitted here.

representing the uncoupled thickness shear mode
and one representing an uncoupled "lateral"
mode.

APPENDIX I

and

pcs
Pl Q,

X+2p,

p2 =p&lp

(1.3)

If we substitute this into the first two Eqs. (6),
the ratios

Ug. V&=~.pg, U2. V2= —p, :~ (1.4)

are found. We choose the case (A) corresponding
to Eqs. (10A) and (13A). Equations (13A) reduce
to

Q L,[XaU,+(X+2p)p, V,] sin p;b=0,

Q L,pp, W; sin p,b =0, (1.5)

p L,p(p, U;+nV, ) cos p,b =0.

The second Eq. (1.5) can be satisfied identically

by
L3 ——0,

because S'&= S'2=0. We consider frequencies
low enough so that:

pGP jp (o.'

and all'the more:

p~'l(~+2p) &~'

' S. P. Timoshenko, Phil. Mag. L6) 43, 125 (1922).

It will be shown that Eqs. (7) and (13) include,
as a special case, Timoshenko's theory of flexural
waves in an isotropic plate. "In the isotropic case,

c» ——c» ——2p+X, c44 cg——g = esp =p, cy2= X, (1.1)

and all other constants appearing in Eqs. (7)
and (13) are zero. The determinant (7) reduces to

pp'+(~+2p)~' p~' —~p(7+ p) =0, (1.2)
~P(7 +p) (7+2&)P'+p& p&'

with W~ ——S'2 ——0. The third solution:

pP'+ po.' —pa)' =0,
and

U3= U3=0,

can be disregarded for this discussion, as will be
seen. The two solutions of (1.2) are:
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According to (1.3), Pl and Pb then are both Eqs. (1.5) become, in view of (1.3) and (1.4):
imaginary. If we put Ll[lln' —m'(X+2 p) ]sinh mb]

m=n 1
poP

n'(l+12p)

+if.22p,nn sinh mb = 0,
(1.7)

6L12mn cosh mb+Lb(n'+n') cosh nb =0.

pG)
1

n p,

so that m and n are positive real numbers, the

By eliminating Ll and Lb from (1.7), we obtain
Timoshenko's "frequency equation":

4pn2me tanh nb

= (nb+nb) [(I +2@)m' ).n—67 tanh mb. (1.8)

APPENDIX II

Instead of using Eq. (33) for the explicit value of zi, it is easier to find it by direct expansion of
the determinant (8). If

p/ =q (1/q«1)

we divide the second and third rows and columns by g:

q ( —pbl /p +Cbb+Cll/q )

C12+C66

C14+C56

In view of Eqs. (33) and (15):

C12+C66

—p40'/p'+ ebb+ ebb/q'

C24+C66/q

P40 /pl C66+n &1/p01 |

C14+Csq

C04+ Cbb/q

P40 /P +C44+Cbb/q

=0 (2.1)

so that we can neglect the term with n' everywhere except in the first element of the first column of
(2.1), finally omitting the terms c;0/q where they are in addition to c,b, we obtain:

q'( —p /40p +1c+bbcll/q ) cib+cbb cl4+ ebb

C12+C66 C22 C66
'

C24 (2.2)

We expand (2.2) and get:

C14+C56 C24 C44 —
C6l6

q ( P& /Pl +Cbb+Cll/q ) [(C60 Cbb) (C44 Cbb) C04 j (Clb+Cbb) [(Clb+Cbb) (C44 C66) C04(C14+Cbb) j
+ (c14+cb6)[(c12+ebb)c64 (cbb cbb) (c14+cbb)]=0. (2.3)

Solving (2.3) for P00'/plb:

P40!pl =C66+1/q' cll

+ (C14+C66) {C24(C12+C66) (C22 C66) (C14+Cbb) } (Clb+C66) {(Clb+Cbb) (C44 —Cbb) —C64(C14+Cbb) }

(C22 C66) (C44 C66) C24
(2.4)

In the expression: 1/q'=n'/plb we can, in view of Eq. (15), substitute p010 for plb without adding
correction terms of the second order. Comparing (2.4) with (33), we find that:

1

2C04(c14+cbb) (clb+cbb) —(c14+cb6) (cbb —cbb) —(clb+cbb) (c44 —cbb)
&1 C11+ (39)

(C22 C66) (C44 C66) C64


