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The boundary conditions of free vibration can be satisfied on the major surfaces of a plane-
parallel plate if the displacement components are assumed to be products of trigonometric
functions. In addition, the boundary conditions can be approximately satisfied on the minor
surfaces when the plate is thin. The theory leads to a frequency equation

v="35(c/p)[(n/2b)*+k(m/2a)* T}

which has been found empirically to satisfy observations. The theoretical values of the constant
k are 3.7 and 1.8 for the AT and BT quartz plates, respectively, while the observed values are

3.9 and 1.7, respectively.

INTRODUCTION

REE elastic vibrations of anisotropic plates

were treated extensively by W. Voigt! who
developed a general theory. Voigt's theory is
limited to the case where the wave-length is large
as compared with the thickness.and it must fail
when the wave-length is of the order of mag-
nitude or smaller than the thickness. This latter
case was not interesting to Voigt; because of their
high frequency it was impractical to excite these
vibrations. By piezoelectric excitation, it has
been possible to excite vibrations of high fre-
quency in thin plates. I. Koga? treated them
theoretically by assuming the plate to be
infinitely extended and gave a rigorous solution
for this case. Experiments®* showed, however,
that while one resonant frequency and the cal-
culated mode of motion were in good agreement,
numerous other frequencies could be detected
which were not foreseen by the theory of the
infinite plate. The purpose of the present paper
is to explain these deviations by presenting a
theory of the thin plate whose lateral extension
is large but not infinite.

The consideration will be limited to the case
where the elastic constants cys, €15, C25, C26, C35,
C36, Ca5, and cy¢ are zero or negligibly small. Ac-
cording to Voigt,' the former is the case when
the x-axis of the reference system (which we
assume parallel to one long edge) coincides with
a twofold axis of symmetry. This case includes

VW. Voigt, Lehrbuch der Kristallphysik (B. G. Teubner,
Leipzig, 1928).

2], Koga, Physics 3, 70 (1932).

3J.V. Atanasoff and P. J. Hart, Phys. Rev. 59, 85 (1941).
4+W. P. Mason, Bell Sys. Tech. J. 19, 74 (1940).
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those quartz plates whose one major edge is
parallel to the crystallographic x-axis. Most of
the experimental work was done on this type of
quartz plate.

Standing sine-waves along one major edge will
be first .considered so that the boundary con-
ditions on the major surface can be met rigor-
ously. With these solutions, the boundary con-
ditions on the smaller lateral surfaces can be
satisfied approximately.

Standing Sine-Waves along the X-Direction

We consider a rectangular plane-parallel plate
of edges 2a, 2b, and 2¢ where 2b is the thickness.
The origin of coordinates is in the center and
the x-, y-, and z-directions are parallel to the
edges 2a, 20, and 2¢, respectively. If, as we
assume,

C15=C16=C25= Cas = C35=C36= C45 = C46 =0,
the stress-strain relations are :*
— Xz = 11Xz C10Yy+C138.+ 14V
— Yy =ciaxs+Co2yy+Cas2.+Cosye
—Z = C13%z+Co3VytC333:+C34Y

(1)
— V. =c1aXz+Couyy+ 318+ Caay
-X,= CEExz+C56xy
_Xy= 656xz+666xy-

The boundary conditions for the free body are:
X, cos (n, x)+X, cos (r,y)+X. cos (r,2)=0,

Xy cos (n,x)+ Y, cos (n,y)+ Y, cos (n,2)=0, (2)
X . cos (n, x)+ Y cos (n, y)+Z. cos (n, 5) =0,

* Voigt’s notations are used, so that compressional
stresses are positive.
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which should be satisfied on all six faces. The obtain:

dynamic equations are: — X =i(caUd-ciap V-erp W)
X, 9X, 94X,

il = , Xexp [i(ax+py)],
ax ay (92 - Yy=i(612a U+622P V+C24PW)
pw2v=QXy+aYy+aYz, (3) Xexp [7,(0(:)(:__l_py)]Y
9 9y dz —Zz=?:(013aU+C23P V4csupW)
pw2w=aX=+8 YZ+GZZ, Xexp [(ax+py)], 5)
Ox 6y 9z - Yz =i(614a U+624p V+C44P W)
where w =27y is the angular frequency and «, v, Xexp [i(ax+py)],
and w are the components of the displacement

—X.=1i(cssaWcoep U~+csa V)
vector.
We desire at first to satisfy Eqgs. (3) in the Xexp [i(ax+py)],
whole body and Eqgs. (2) on the major surfaces — X, =i(cssa W+cosp U+cesa V)
y==b only. Furthermore, the displacement .
components will be assumed to be independent Xexp [i(ax+py) ]
of z. Tentatively, the solution will be written Substituting into Egs. (3), we get:

li inati f pl f th
as a linear combination of plane waves of the U(— peo?+cosp®Fc110®) + Vap(cra+cos)

form
+Wap(cra+cse) =0,

u="U exp [i(ax+py)],
U V — 2 2 2
v="V exp [i(ax+py)], 4) ap(Grat o) + V(= putcosa’ +enmp?) (6)

W 2 2) =0,
w=W exp [(ax+py)], +Wlessa +-caup?)
Uap(ciatcse) + Vcssa® +caap?)
where U, V, and W are constants.

2 2 2) —
If the strains are calculated in the usual way F W= pa+casel +cap?) =0.
from Egs. (4) and substituted into Egs. (1), we The compatability of Egs. (6) requires that

Cocp’tc110% — pw? ap(ciz+ces) ap(cratcse)
ap(ciaces) Coap?+copa? — pw? Cse®FCoap?  |=0. (7)
ap(cia+cse) C560® 4 Coap? Cuap?+cspa® — pw?

Solving Egs. (7) for p?, we obtain three roots p:?, ps?, ps?, and from Egs. (6) the corresponding ratios
Ui: Vi Wy Us: Ve: W and Us: Vi: W3, where the p2s and the ratios U,: V;: W; are functions of
pw? and o

The form of this function can be seen if we substitute p/a=gq and divide each row of the deter-
minant (7) by o?:

Cco6q+cu1t pw?/ o’ g(c12+ce6) g(c1a+cse)
g(c12+cCes) €22q%+Co6— pw?/ o Co6+C24g? =0. (8)
g(c1a+cs6) Co6tC24g” Caag?+cs5— pw?/a

From this, we see that the roots p;> will have the waves:
form u=U;exp [i(ax+py)]
pid=a’fi(pw?/a?), %) R R
. and )
and the ratios U;: V;: W, are only functions of u=U,; exp [1(ax—py)].
pw?/a? To each wvalue p? belong two complex S e
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We form real linear combinations of these com-

plex waves:
u=U; cos ax sin py,

v= "V, sin ax cos p.y, (10A)
w=W,sin ax cos p;y;

or u= U, cos ax cos Py,
v= T, sin ax sin p.y, (10B)

w=TW,sin ax sin p;y;

and the final solution will be a linear combination
of the three functions (10A) or (10B):

u=cos ax-y, L;U;sin pyy,

v=sin ax: Y, L;V; cos py, (11A)
w=sin ax‘-Z LW cos py;

o u=cos ax*y, L;U; cos py,
v=sin ax- Y, L;V;sin py, (11B)

w=sin ax:y, L;W;sin p;y;

where the U;--- and p; are known functions of
pw? and o?, while the L; are to be determined by
the boundary conditions. The strains are now:

Xz=—asin ax:y, L;U;sin p.y,
Vy= —sin ax* Z P»LL»L V; sin Dy,

2y=—sin ax Y p.L;W; sin p;y, (12A)
Z;=a cos ax*y, L;W; cos p;y,
xy=cos ax:y, L (Up;+al;) cos py,
for case 4 ; or
Xy=—asin ax- Y, L;U; cos piy,
Yy=sin ax- Y, p;L;V; cos p.y,
gy=sin ax- Y, p;L;W; cos p.y, (12B)

Z,=a cos ax- Yy L;W;sin py,
xy=cos ax*y, L(aV;—p;U,) sin puy,
for case B.

The boundary conditions require that the

stresses
V,=Y,=X,=0 at y=4b.

Substituting the strains, Egs. (12), into Eqgs.
(1), we obtain

2 Li(craUi+cap:Vitcup:Ws) sin pb=0,
2 Li(cusaUi+cosp Vit-caup:s W) sin p;b=0, (13A)
2= Li(cesps Uitcosa Vi+cssaW;) cos pib =0,

for case 4 ; or
Y Li(—craUitconp: Vi
+coupi W) cos pb=0,
Y. Li(—cuaUit-coupi Vs
+cup W) cos p;b=0,
2 Li(—cospiUitcosaVi
+cseaW5) sin p;b=0,

(13B)

for case B.

The compatibility of Egs. (13) demands that
the corresponding determinant vanish.

In view of Eq. (9), we can divide each Eq.
(13) by « and we then have only functions of
pw?/a? in the parentheses. The transcendental
functions sin ;b and cos ;b will have the form

sin abf#(pw?/a?), cos abf#(pw?/a?).

Consequently, the determinant of Eqgs. (13) will
yield a transcendental equation which relates
pw?/a? to ab. Solution of this equation yields the
frequency as a function of the wave-length 1/«
and of the product ab under the form

pw? = a2g(ab).

When this is done, Egs. (8) yield the ratio
Ly:Ly: Ly and the displacement components are
known from Egs. (11).

While this formal solution is impractical for
numerical results, a numerical solution can be
carried out by assuming some numerical value
for pw?/a? and calculating the roots, ¢;, of Eq.
(8) and the corresponding ratios U;: V;: W..

Then Egs. (13) yield a transcendental equation
for ab, the only unknown in (13). Thus the whole
frequency spectrum can be determined.

It is shown in Appendix I that Egs. (7) and
(13) include as a special case Timoshenko’s
theory of flexural vibrations in an isotropic plate.

Thickness Vibrations

We shall discuss Egs. (7) and (13) for the case
where « is very small, i.e., the displacement is a
very slowly variable function of x. Physically,
this can be expected to be true in a plate whose
thickness is very small as compared to its lateral
dimensions. If the displacement is independent
of x as can be assumed in an infinitely extended
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plate, «=0 and Eq. (7) becomes

Coep? — pw? 0 0
0 Casp® — pw? caup?  |=0. (14)
0 Cosp? Casp?— pw?
This determinant has the characteristic values
Poi®=pw?/Ces, Pos®=pw’/ce’, pos*=pw?/cs’, (15)
where
2,3’ =3(cortcaat[(coo—caa)?+4c22 ). (16)

I. Koga? has shown that the boundary conditions
on the surface of an infinitely extended plane-
parallel plate are satisfied when
J2b=8 (i=1,2,3 ) (17)

Pu=ra/25= n=1,2,3---/"
This must also be a solution of Egs. (13A) or
(13B). Indeed, if

por=(pw?/ces)t=nm/2b (nodd),  (18)

then we use the functions (11A). From the deter-
minant (14), it is evident that the corresponding
ratio is

Up:Vi:W1=1:0:0.
Because of Eq. (18)

cos ppb=0.

Therefore, the Eqs. (13A) are satisfied by

Li:Ly:L3=1:0:0.
If, on the other hand,

poe=nw/2b or poz=nw/2b (nodd),

then we use the functions (10B). From Eqs. (6)
and (14), it can be seen that in both cases

U2 = U3 =0.
Again,

cos Po2b =0,
or

cos pozb=0;
and (13B) is satisfied with

Ll = L3 = 0,
or

L1 = Lz = 0,

respectively. Similar considerations show that for

n even, Koga's solution satisfies Eqs. (13A or B)
if a=0.

We return to the case where « is not zero, but
small. Equations (6) can be written as

(A+a/pB+a?/p*C)U =puw?/p*U,  (19)
where
Ce6 0 0
A=0 0 ca caul
0 ¢ Cu4
0 Ci2tCe6  C1atCse
B=| c12tces 0 0 o (20)
C1a+Cs6 0 0
C11 0 0
C= 0 Cés Cps |-
0 s Cs
Putting
1/pB+a/p*C=D, (21)
Eq. (19) becomes
(A 4aD)U = pw?/p?U. (22)

Disregarding for the moment the fact that D
still contains a and p, we obtain from perturba-
tion theory the second-order solution of Eq. (22):

DklUOZ

Ui=Upta > , 23

SR 1 pw?/ Dot — pw?/pol =
pw?  pw? Dy?
PP | Dt et 5 e
P poi? t L pw?/poi’ — pw?/Por?
where

Diy=DU-Up)= U {1/PB+a/p*C}Uqy)
=1/p( Ui BUo) +a/p*(Uor- CUq1)
=1/pBri+a/p*Ch.

In Eq. (25), Uy are the normalized eigenvectors
of the secular equation (14) which satisfy the
following relations:

c22VostcosWoe=c2' Vs, |
C2aVoat-caaWoa=cs' Wos;

22 Vos+cauaWos=cs' Vis= —cs' Woe,
c24Voz+casWos=cs' Wos=c3' Voe.

The third member of Egs. (26b) follow from the
orthogonality of the eigenvectors. Further,

U01= (1) 0) 0)) U02= (01 V021 WOZ)! (27)
U03= (0) - W02! V02)7

(25)

(26a)

(26b)
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with

Coa—cC \ ¥ 7%
V02= 1+( ) =W03y
Co4

(28)
Cay Co4
and, of course,
VoWt = Vo2 + Wos? =1. (29)

The expansions (23) and (24) will fail if the
matrix 4 is accidentally degenerate or quasi-
degenerate, i.e., if two of the values

Ces, €2y €3
are equal or nearly equal. In this case, the de-
generacy should be first removed by the con-
ventional methods.

It can be seen that Bjir= (Ui BUyy) vanishes.
Indeed, the vectors Uy, have either no y- and
g-components or no x-component. Application of
the matrix B to these vectors produces a new
vector which has no x-component or no y- and
z-components, respectively, so that the scalar
product of vector and transformed vector
vanishes in either case. Therefore, by Eq. (25):

Dir=0a/p*(CUok-Uo) =a/p*Cis. (30)
According to Eq. (25) -
D2=1/p*(Uo- BUg)2+ - - - =1/p*Bys®
(k#10), (31)

where the dots stand for terms of higher order.
Equations (23) and (24) become

Bkonl
pw?/poit— pw?/ ot

pw?/pit= pw?/port+a?/porr

Ur=Uu+a/por.2.’ (32)

(33)

where
B?

pw?/ poit— pw?/po
In Egs. (32) and (33) we have, on the right-
hand side, replaced pi* by poi? because a cor-

rection would only add terms of higher order.
As shown above, if a=0,

K= Ckk+zl

!'Ces
pw?/Br=<c)

LC3/.

If « is small, the expansion

(Cse
pw?/B2=(14¢€){c)’

C3

(34)

can be assumed. e must be determined as a
function of a. Combining Egs. (33), (34), and
(15), we get
pw? B B*(1+e€)c
—c+a2Kk/p0k2—c+a26xk/pw2
. B(4ee
:c+a2xk/62(1+e)

where ¢ stands for either one of the three values
given in Eq. (34), and the notation

a/B=r,

P

28214 e—r%k/c), (35)

(36)
is used.

In the following, we shall treat explicitly the
shear vibration whose zero-order approximation 1s
given by Eq. (18). If

sz/ﬁz = (1 + E)Cﬁﬁy
then by Eq. (35)
P12=62(1 +€—7’2K1/Ces).
k1 is given by Eq. (33). In appendix I1 it is shown
that explicitly

(37)

(38)

2(614+Css)024(612+666) - (614+656)2(622—Ces) - (512+Cse)2(644—'666)

(39)

K1=C11

(522 - Cee) (644 - Ces) —Caq?

Substituting the expansions (32) and (33) with (27) and (17) into (13A), we have

’
C2 —Ce6

Licss(port -+ +) cos P1b+Lza(666

Bl3

+Lsa (Ces ;

€3 —Cep

B
- +cos VortcssWoa+ -+« ) cos (posd+--+)

+co6VostcssWos+ -+ ) Cos (Poab‘l" ++)=0,
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BV,
L1a(614+624 Z " Ol,+€44 Z

2,3 C66—C1 2,3 Ce6—C1

,) sin po1b+L2(624V02+C44W02+ c)

X (poet -+ +) sin (posd+ - - )+ La(ceaVos+casWos) (Pos+ -« - +) sin (posd+ -+ +) =0,
BV BuW
Lla(Cm‘f“Cn 2 - OZ,+C24 2 = O,l) sin P10+ Lo(c22 VortcoaWoe 4 - +)
2,3C66—C1 2,3 Ce6 —Cl
X (poz+ -+ +) sin (posb+ - - ) +La(caaVostcaaWost+ - ) (poz+ -+ +) sin (posb+---)=0.

The dots stand for terms of higher order which can be omitted.
The terms of Egs. (40) will be simplified one by one: By Eq. (38)

1=2B(1+3[e—7%k1/ces]),

nw ™
Cos P1b =CO0s '2—(1 +%[6—7’2K1/Css:])\-'-"_—_:f:z—(€—7’2K1/665).

(40)

(41)

(42)

The upper sign refers to n=1, 5, 9--- and the lower to n=3, 7, 11-.-. The factors sin p,b which

appear with the first terms of the second and third Egs. (40) are

sin p1b=Zsin nwr/2 =41,

(43)

The two signs refer again to the two cases mentioned above. Smaller terms are omitted here as they

are in addition to unity. By Eqgs. (20) and (27)
Biy= (U01‘BU02) = (612+666) Voot (014+056) Woe,
Bis=(Uo1: BUos) = — (c12+co6) Woa+ (cra+Cs6) Vo ;

B ces(C12+Ces) co6(Cr4+Cs6)
Coo = +666V02+556W02=Vo2(u+666)+wo2(u+566)

Co —Ce6 Ce —Cep Cy —Ce6

1
= [Vo2Cee(012+02')+W02(614666+62'656)];

’
Cy —Cep

Bis

B
Cee +ce6 Vst o6 Wos = ces ;

C3 —Cgs C3 —Cgs

—cesWoz+cs6 Vo

1
= [ Voe(cosc1a+c3'cse) — Woaces(cr2+¢5") .

’
€3 —Ces

In view of Egs. (26a) and (26b):
Bi1aVoa . B3V B12: Wy  Bi1sWos 62'312W02, ¢s'B1sWos
cutco +caa f = +

+

’
Ces—Cs’ Ces—C3

[ ’ ;T ’ 14
Cee—C2 Ces—C3 Ces—C2 Ceg—C3

The second and third terms of the second Eq. (40) become in view of (26a) and (26b)
Loy’ poaWos sin posb+Lscs' pos Vg sin posb.

Also, .
B12 V02 +Bla V03 ) +C24 (Blﬁw()? B13W03) - Clerc2,B 12 V02+C3,B13 VOS’

L
IT /
Ceg—C2 Co6—C3

612+C22(

Ces—Cy’  Cos—C3 Ces—Co/  Cog—Cs

The second and third terms of the third Eq. (40) become in view of (26a) and (26b):
Lacy’ pog sin posh — Lacs’ Woapos sin posb.

According to Egs. (15) and (18):

Po1=8, pPor=p(ces/c2')}, pos=PB(coe/cs' )t

(44)

(45)

(46)

(47)

(48)

(49)
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Equations (40) read now:

nw o
:FL],Cesﬂz—(e—‘ 7’2K/Ces) +L2 ;

Co —Ceg6

nw
[ Voaces(cra+c2") + Woe(cracss+c2'css) ] cos ‘2“(066/52’)%

[ Voa(craces+c3'cs6) — Woacss(c12+c3') ] cos —“(666/53 )=

nw
~+Lscs'B(ces/c5')} Ve sin ‘2*(066/53’)* =0,

+Lo—
€3 —Ces

c2'B1sWoe  ¢s'B1sWos

+Le (614 } — ) + Locy'B(cg6/c2’ ) Woe sin —“(Ces/cz )L
Ces—Cy’  Coe—C3

c2'B12Vos Cs B13 Vos

+Lio (c12+ p— ) +Lacy'B(cos/c2’)t Vs sin —(665/62 )k
66— C2

. hw
—L363 Woz(Cas/Calﬁ sin 7(655/63’)* =0.

Consequently, the determinant

nw
:FCGGB'Z_(G"'rz’(/CGG) [ Voeces(cra+co’)

7
C2 —Ce6

nw
+ W02(614666+62/056)] Ccos '2—(666/62/)é

¢o'B1sWos , " . nm i
+a 614+'—C‘——‘—,— Co 6(656/62 ) Wog sin —2‘(666/62 )“
66— C2

+Cs’313Wo3)

!
Ce6—C3

¢/ B12Vos , i . hm 1
+« 612+—~*——;‘ Co [3(655/(52 )’Vgg sin ——‘(665/62 )“
Ceg—Ca 2

¢s'Bis Voa)

Ces—Cs'

nm
a COs —“(655/62,)%

= [ Voa(craces+cs'css)
€3 —Ce6

- Wozces(612+63')]

. hw
Cg'ﬁ(&es/ca,)%Vog Ssin 7(655/63/)%

nw
—c3'BWoa(ces/cs')? sin —-2—(656/03')5'

17

(50)

(51)

must vanish. The determinant (51) is expanded in terms of the elements of the first row. The first

co-factor is

' migs i T L T - \ \
Ay =cge(ce’cs’)}B? sin —2"“(666/62 )% sin —2“(566/63 V(= Woe— Vie?)

et et T Ny i T i
= —666(62 C3 ) B sin '2—(656/62 ) sin —2—(656/63 )’,

in view of Eq. (29). The second co-factor is:

¢'B1sWoe c3’B1sW,
Ara= Facs'B(ces/cs’ )5[(614 e 02 ! 136 03) Woe
—c3

Cos—Co’

( CzBleoz ¢s’B13Vos
+1{ cr2t

“62
’

co'Bis
= Facy'B(ces/ 63')*[ : -(Wo2*+ Voo?) +

Cos—Co’ Ce6—Cs’

. nw o
— ) Vo sm—i—(c“/cg’)v

l
Ceg—C3

(Woz Wos+ Vo2 Vos)

nmw
+c1aWoe+c12 Voz] sin ‘2‘—(566/63,)%-

(52)

(53)
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The second term in the bracket vanishes because the quantity in parenthesis represents the scalar
product of two orthogonal eigenvectors. We substitute the value of By, from Eqgs. (44) into (53):

A= :*:015(06663’)’:‘[ Ve (ﬁrl‘m) + WO?(CN’*"M ] sin 7;1(666/63/)%

’ ’

Ce6—C2 Cee—C2
(66663,))5 , , . hm ,
= :I:aﬁ—l[: V02666(612+62 )+W02(C14666+62 Css)] sin ?(666/53 )§~ (54)
Cee— C2
The third co-factor is:
¢'B1sWee ¢’ B13Voe
A= j:aﬁcz’(cse/c{)%[ Voa (614 + —+ p )
Ce6— C2 Ce6—C3
c2'B12 Vo 63/B13W02 1. nr
_W02(612+ . ] ) sin —(666/02/)5
Co6—Co cee—cC3 /| 2
’ " C3IB13 9 62/312
= tafc, (666/62 ) ,(Vo22+W02 ) +— —,(Woz Voe— WoeVos)
Cee—C3 Cee— C2 -
. nT
+ Voec1a— Wtz | sin 7(566/52,)
Gl o
= 4 afic, . —,—[ Voa(cs'costc14¢66) — Woacee(c12+C3 )1sin ‘2"(666/62 )4, (55)
66— C3
because Viye= Wys and Wos= — Vos. The determinant Eqgs. (51) can now be written in view of Egs.

(52), (54), and (55):

¥/ , , . hm , . hmw i
:ECSGQﬂSZ(E—TQM/CGG) (62 C:;/)2 sin 7(666/62,)2 S1n 7(655/63 )7

a?B 3 ’ ’ I 3 n Ay}
:F——(Csecs )7[V02666(612+62 )+W02(CJ4666+62 656)]2 sin ——‘(Css/Ca )’ Ccos ——(666/63 )’
(62,'—666)2 2 2
a26 ALY ’ ’ M nw ! nw 7\1
p (66662 )’[V02(614666+Ca Cas) - W02666(612+Cs ):]2 sin —(666/62 )’% CcOos ——(666/62 )’= .
(¢s’ —cee)? 2 2

Solving for ¢, we obtain e=7%,, where

nw o
. 4 cot —(cg6/c2’)?

kn=—1| 1+ e —[ Voacss(cratc2") + Woa(cracos+c2'cro) I
Ces n(ces)t ( (c2')}(ces—c2')?

nw N
cot —(cg6/c3’)?

m[vo2(514566+031656)_W02066(612+C3/)]2 . (56)
3 )*(Ces—C3

If ¢14 and cs are very small:

™
cot ”(Cse/Czl)%
1 (c12tces)*(cas—Cos) | Cos’(Cratcs')? 4 2
— 11— 1 g N
Ce6 (622—666) (644—666)—6242 1+(C22—62')2 nﬂ'(Cee)* (62')’(666—62')2

C24

n .
cot —2—(666/63’)z

+(C22"62’)2 ces?(Cr2-+¢5')? 4 (57)

1+ (622—621)2 'ﬂ’lr(ces)% (63/)%(666_ Ca’)2 .

Ca4

Co4
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The fourth term vanishes with ¢,4. Indeed, by Eq. (26a), Wi =0 when cy4=0. Physically, the con-
stant ¢4 guarantees that there shall be no purely longitudinal plane waves propagated along the
y-direction, and that the displacement vectors Uy, and Ug; form angles with the wave vector. The
fourth term in Eq. (57) is due to this fact. If ¢s4 vanishes, Eq. (57) becomes

nmw
3 — 3
1 (c12+ce6)? Aeodt(Cratem)? cot 2 (€os/c2)
kn= Ci1— + ’ (58)

Ce6 C22—Ce6 nWsz%(Css—sz)Z

because then ¢y’ =cy2 and Vyy=1. In the isotropic case,
clu=Co=2p+N\, Cc12=N\, Ces=4p,

while all other constants vanish, and Eq. (58) becomes

16 N H nw o i
kn=1+—( ) cot — ) . (59)
nw \2u+A 2 \2u+2X

We now return to the general case: The ratio Li:Ly: L; is equal to the ratio of the corresponding
co-factors:

Lyi:Ly:Ly=A11:A12:A13

¥ V02666(612+C2,)+W02(Cl4666+52’556)

(62' - Cse) (62’566)}

=1:| %

. onw .
sin —2—(666/62')"

[ 4 V02(631656+614666) — Woecss(cr2+¢3")
Dl , . (60)
(cs' —ces) (coacs’)}

., nhm
[ Sll’l—z(Ces/Csl)%

If we substitute these values into Eq. (11A) and take into account Egs. (32), (33), and (35), we
obtain equations of the form

u=cos ax sin By[ 14+ 2r2(k—«1/c) ],
v=r sin ax[ 4. cos By+4, cos By(ces/c2’) -+ A3 cos By(ces/cs')t], (61)
w=r sin ax[ A3 cos By+ A4 cos By(ces/c2’ )i+ A5 cos By(ces/cs )],

where the constants 4 - - 45 are only functions of the elastic constants. We do not need the explicit
values, but it is simple to write them.
In the isotropic case, L3, Wy, and Wy, vanish. Therefore, we have

v p(N )
=0, An:Ap:Ap=1:|+
w 11:A12: 13 n i )% AF+weW+2u) ]
2 \\ 2
‘ 8 " 3 nr M ¢
_ (et n , 62
%=C0s ax sin By[ +rn7r(2n+)\) cot 2 (2,;—!—)\)] o
u 3
. [ ( u )%cosﬁy()\—i-h)
v=7 sin ax| —cos By+2
A2u/ |

n
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The difference between Egs. (61) and the solution for the infinite plate is:
(1) Instead of #=sin By we have a slow variation of % with x.
(2) The derivative du/dy is not exactly zero at y= b, because p, differs by a small quantity

(proportional to 7%) from B=nmr/2b.

(3) While for the infinite plate v and w vanish, we find small quantities proportional to 7 in the
case of the finite plate. ¥ and w do not in general vanish anywhere.

Approximate Solution for the Free Plate

The Eqgs. (1) and (13A or B) are rigorously
valid for sinusoidal standing waves in a plane-
parallel plate. Consequently, the frequencies (56)
and the modes (61) are correct solutions for this
case, if higher orders of 7 are disregarded. For a
free limited plate, however, the boundary condi-
tions in Egs. (2) should be satisfied on the lateral
surfaces. The boundary conditions in Egs. (2)
on the faces x = Z-a require that

ou v ow

—X,= 611—+C12—+614
ay

=asin aa- Fi(y) =0,

du Jv
—-X, —Css +Cee —+—
dy Ox

(63)
=g cos aa- Fas(y) =0,

=B cos aa- Fs(y) =0,

where Fi, Fy, and F3 are functions of y which,

in general, are of order of unity. It is evident

from Egs. (63) that it is impossible to satisfy
rigorously the boundary conditions by a choice
of a. If the second and third Egs. (63) are to be
satisfied, cos ¢ must vanish, but then sin aa
cannot vanish simultaneously, and therefore the
first Eq. (63) will not be satisfied. However, if
we put

a=mr/2c (m=1,3,5--+) (64)

the traction X, is proportional to 1/a and tends
toward zero as the lateral dimensions are in-
creased, while the other traction components
vanish completely. We shall consider Egs. (64)
as the definition of @. By moving the origin of
the reference system along the x-axis, we can
write instead of Egs. (61):

u=sin ax sin ¥8-[1+372(k—«/ces) ],

v=rcosax-[ -],

w=rcosax-[-]

cosaa=0;

(61a)

The boundary conditions Egs. (2) are now:

—X,=acos aa- Fi(y) =0,
—X,= —Bsin aa- Fy(y) =0,
—X,=—Bsin aa- F3(y) =0.

To satisfy the second and third Egs. (63a), we
have to assume

a=mr/2a (m=2,4,6---). (64a)

Taking the even and odd modes of (64) and
(64a) together, we note that m can now take on
any integer value.

If the extension in the g-direction, i.e., 2c, is
not infinite, the boundary conditions

u v Gw
+623“‘+634
ay

(63a)

sin aa =0,

-2, —-613

ou dv Jw
:=C1—+Coa—+Cas—=0,
ox dy - 9y

-Y (65)

ow ou v
—-X. —655—+656 —+—)=0.
Jdy Odx
on the faces z= #c cannot be satisfied. However,
if
€18=C14=C23=C24=C34=C56 =0,
(e.g., in the isotropic case) w vanishes and the
Eqgs. (65) are satisfied exactly. Fortunately, these
constants are often small so that we can expect
a fair agreement between theory and experiment
despite Eq. (65).
We shall consider Eq. (61) and (61a) with the
definitions (64) and (64a) of a as the approximate
solution of the problem for the free thin plate.

Comparison with Experiment

Combining Egs. (37), (56), (64), and (64a), we

obtain :
pw?=B%ee(147%kn)

(5 2 (3)]

Observations on thin quartz plates of the so-

(66)
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called Yo type were carried out by Sykes.® In
this case, one major edge is parallel to the
twofold x-axis, so that comparison with the
present theory is possible. Sykes found an
empirical formula for the shear type vibrations:

v=%(cse/p>*[(%)2+k(%)2+ k'(pz—cl)T'(é?)

When p=1, this empirical formula agrees with
the theoretical Eq. (66). The numerical value of
the empirical constant k is not given explicitly,
but it can be calculated from Sykes’ diagrams.
Expansion of Eq. (66) yields, when =1 and
a>b:

Vm = %(Css/P)gi (1 +7_€m£2_> )
2b 2 a?
and
vm—v1 k(b/a)?(m?—1)
n 2[1+3k(b/a)]

2 (a)2 Vi — V1
k= - .
n?—1\0b 2%

From Sykes’ Fig. 6.15, we find, for a/6=32:
V1=1662, V3=1688, V5=1736

IS

3k(b/a)}(m*—1);

or

which gives #=4.0 and 3.8, respectively. The
average value is £=3.9 for the A7-cut plate.
From Sykes' Fig. 6.17, we find, for a/b=48:

»1=2552, »,=2600, »y=2628, »1;=2658

which gives £=1.8, 1.7, and 1.6, respectively.
The average value is k=1.7 for the BT -cut plate.
With the elastic constants of quartz measured
by Mason® and the transformation formulas
listed by Sykes,® we obtain the following con-
stants for the plates in units of 10 dyn/cm?
(Table I). From Egs. (56), (39), (16), and (28),
we, calculate the following values for k(n=1):

AT BT
kobs 3.9 17
kcalc 3-7 1.8

The agreement is satisfactory. Theoretically, &
should be independent of #, but depend on .
Sykes does not state whether this is the em-
pirical meaning of k. However, comparison of

SR. A. Sykes, Bell. Sys. Tech. J. 23, 52 (1944).
SW. P. Mason, Bell Sys. Tech. J. 22, 178 (1943).

TasLE I.
AT BT AT BT
cu 86.05 86.05 c12 —10.35 26.20
Caz 129.86 97.77 c13 25.85 —10.70
Cas 39.06 40.85 Ci4 3.55 0.13
Co6 29.34 68.91 Caq —5.82 13.11
Cs6 —2.46 6.45

Sykes’ Figs. 6.15 and 6.16 referring to the cases
n=1 and n =3 seems to show that % is definitely
lower in the latter case.

It appears from the empirical Eq. (67) that
for the case p=1, the frequency is not affected
by the dimension ¢. This confirms our assumption
that for the type of vibration under considera-
tion, the boundary conditions (65) can be disre-
garded.

In the lowest mode (m=1), where

a=m/2a,

the displacement # is maximum in:the center
and. decreases monotonically  toward the edge
x==a. The displacement components v and w
are small, but they have their maximum value
at the edge. In a lycopodium powder experiment,
we should expect the powder to be most vigor-
ously moved at the center and only slightly
at the edge, while no exact nodes appear. This
is in agreement with experimental evidence.’
The clamping of a crystal on the corners does not
modify considerably its mode, as can be expected.
In the mode corresponding to m =2, i.e.,

a=w/a,

the mode is given by Egs. (61a). The displace-
ment component # has the form

u=f(y) sin 7x/a,

which vanishes in the center while it has opposite
signs in the left- and right-hand half of the plate.
Observations by Sykes® (third figure in Fig. 6.5)
are in agreement with this result.

Experiments show that a freely vibrating
crystal of the kind considered here, if mounted
between metal plates parallel to its major faces,
excites ultrasonic vibrations of the air between
the surface and the plate. This cannot be ex-
plained by the theory of the infinite plate

7 G. M. Thurston, U. S. Patent 1,883,111, October 18,
1932.
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because a shearing motion alone cannot cause
compression or dilatation. The present theory
shows that the component v is not zero and thus
explains the existence of air waves.

Sykes’ observations show that Eq. (67) ceases
to be valid at certain ratios a:b and c:b. With
these ratios, two nearby frequencies appear, one
lower and one higher than that given by Eq. (67).
Sykes explains this fact qualitatively by coupling
of the thickness vibration with other types of
modes. We shall discuss the phenomenon of
coupling from the theoretical viewpoint.

It was shown in a previous paper® how it is
possible to represent the solution of an elastic
vibration problem as a linear combination of
“zero-order’’ or uncoupled modes. We can con-
sider the mode given by Eq. (61) as a zero-order
mode. It differs from an exact solution in that
it does not exactly comply with the boundary
conditions on the lateral faces. Other zero-order
modes can be obtained by different solutions of
Egs. (7) and (13). We have only considered
those solutions where « is small. It can be shown,
however, that other types of solutions corre-
sponding to about the same frequency

1
V= (Css/P)%ZI;

can be obtained when « is of the order of mag-
nitude of p. One type corresponds to Timo-
shenko’s flexural waves treated in Appendix I.
These other modes will be equally zero-order
modes because they will satisfy the boundary
conditions on the lateral faces only approxi-
mately. Their frequency depends mainly on the
dimensions @ and ¢.! Consequently, a coupling
in the sense defined in a previous paper® will
exist between the thickness mode Eq. (61) and
the “lateral” modes. As the coupling is caused
by the stresses X, (on x==a) and Z,, Y., and
X. (on z==¢), which are all small, the coupling
itself will be small. As shown by the form of the
secular determinant in the same paper, a weak
coupling has a noticeable effect only when the
frequencies of two zero-order modes are nearly
equal. This explains why the exceptional regions,
where the uncoupled frequency becomes incor-
rect, occur at the intersection of the curve

8 H. Ekstein, Phys. Rev. 66, 108 (1944).
9 The proof is omitted here.

representing the uncoupled thickness shear mode
and one representing an uncoupled ‘lateral”
mode.

APPENDIX I

It will be shown that Egs. (7) and (13) include,
as a special case, Timoshenko’s theory of flexural
waves in an isotropic plate.!? In the isotropic case,

(1.1)

and all other constants appearing in Eqgs. (7)
and (13) are zero. The determinant (7) reduces to

P+ (N+2u)et —po?  ap(Nt-u)
ap(N+u) (A 2u) P2+ pa — po?
with Wi1=W,=0. The third solution:

up?+uo? — pw?=0,

cu=Co=2u+N, Cu=Css=Ce=p, Cr2=A\,

=0, (1.2)

and
U3= V3=0,

can be disregarded for this discussion, as will be
seen. The two solutions of (1.2) are:
w2
p12 = P - a2)
A 20
pot=pw?/u—a’.

If we substitute this into the first two Eqgs. (6),
the ratios

(1.3)
and

Ui:Vi=a:ipr, Us:Ve=—p2ia (14)

are found. We choose the case (A) corresponding
to Egs. (10A) and (13A). Equations (13A) reduce
to
Z L,-D\a U,"I‘ ()\‘{“2#)1), VZ:] sin pib = 0,
Z Li,uPiWi sin P;b ———0,
> Lip(p:Ui+aV,) cos p:b =0.

The second Eq. (1.5) can be satisfied identically
by

(1.5)

L3=0,

because W;=W,=0. We consider frequencies
low enough so that:

pw?/u <ol
and all‘the more:
pw?/ (A 42u) <ol
S, P, Timoshenko, Phil. Mag. [6] 43, 125 (1922).
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According to (1.3), p1 and p, then are both Egs. (1.5) become, in view of (1.3) and (1.4):

imaginary. If we put Li[Aa? —m2(\+2) ] sinh mb]
pw? H +1Lo2una sinh mb=0,
m=a|l ———+— |, . 1.7)
o a® (N 2p) 1L12ma cosh mb~+Lq(n2+ a?) cosh nb=0.
o (1.6) By eliminating L, and L. from (1.7), we obtain
n=a[1 —f——] , Timoshenko’s “frequency equation’:
2
e 4uo®mn tanh nd
so that m and » are positive real numbers, the = (@4 n?)[(\+2u)m?— a2 ] tanh mbd. (1.8)

APPENDIX II

Instead of using Eq. (33) for the explicit value of i, it is easier to find it by direct expansion of
the determinant (8). If

pla=q. (1/¢K1)

we divide the second and third rows and columns by ¢:

@(— pw?/p2+cost+c11/¢%) C12+Ces C14+Cse
C12+Ces — pw?/ pr+Caa+coe/ g Caa+Cs6/ G =0. (2.1)
C14+Cs6 CoatCs6/ @ — pw?/prt-castcs5/ g

In view of Egs. (33) and (15):
pw?/p1t=ces+ak1/posd,

so that we can neglect the term with o* everywhere except in the first element of the first column of
(2.1), finally omitting the terms c¢;z/q® where they are in addition to ¢, we obtain:

@(—pa?/pi2+cestc11/q?)  cratCos  C1atCse

C12+Cge Ca2—Ces c2a |=0. (2.2)

C14+Cse Cas C44—Cgs
We expand (2.2) and get:
@*(— pw?/ P12+ ces+c11/q%) [ (€22 — Ces) (Cas— Cos) — Coa ] — (€12t Ces) [ (€124 Co6) (Caa— Co6) — Caa(Cra+Ci6) ]
+ (cratcse) [(cr2+Cos)cas— (caa—Cos) (Crat-c56) ]=0.  (2.3)
Solving (2.3) for pw?/pi*:
pwz/p12=css+1/g2[6u

| (c1a+cs6) {caa(c1a+Co6) — (22— Co6) (Cra+C56) } — (Cr2+Co6) { (C12+Co6) (Caa— Co6) — C24(C1a+Ci6) }
+

(622 - Cee) (044 - Css) —Cas?

]. (2.4)
In the expression: 1/¢*=a?/p:* we can, in view of Eq. (15), substitute po:? for p,* without adding
~ correction terms of the second order. Comparing (2.4) with (33), we find that:

LZC24(614+556) (612+Cse) - (614+656)2(622—666) - (612+Cee)2(644—656)

K1=C11T

(39)

(622 - 666) (644 - Cee) —Cad



